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Abstract: Let D be a strongly connected digraph with order at least two, M (D)
denote the middle digraph of D, (D) and A(D) denote the connectivity and arc-
connectivity of D, respectively. In this paper we study super-arc-connected and
super-connected middle digraphs and the spectral of middle digraphs.
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1 Introduction

For graph-theoretical terminology and notation not defined here we fol-
low Bondy and Murty [2]. Let D = (V(D), A(D)) be a digraph with vertex
set V(D) and arc set A(D). For a vertex v € V(D), we denote the indegree,
the outdegree of v, the minimum indegrees and outdegrees in D by dp(v),

‘ df(v), 6-(D) and §+(D), respectivel)_/._’ We denote the minimum degree of
D by §(D) = min{d~(D),é6*(D)}. K, denotes the complete digraph of
order n.

Let D = (V(D), A(D)) be a digraph, |V(D)| = n, |A(D)| = m, V(D) =
{v1,v2,-+ ,un}. In 1960, Harary and Norman [4] introduced the concept
of the line digraph. For a digraph D, the line digraph of D, denoted by
L(D), is the digraph with vertex set V(L(D)) = {aijlai; = (v;,v;) is an
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arc in D}, and a vertex a;; is adjacent to a vertex as in L(D) if and only if
v; = vg in D. In 1977, Zamfirescu [8] introduced the concept of the middle
digraph. For a digraph D, the middle digraph of D, denoted by M (D),
is the digraph with vertex set V(M (D)) = V(D) U A(D), there is an arc
(a,b) € A(M(D)) from vertex a to vertex b in M(D) if and only if one of
the following cases holds: (1). If a € V(D) and b € A(D), then a is the tail
of arc bin D. (2). If a € A(D) and b € V(D), then b is the head of arc a
in D. (3). If a € A(D) and b € A(D), then the head of arc a is the tail of
arc b in D. The middle digraph has been discussed in (7, 8, 9].

In fact, the middle digraph M (D) can be viewed as V(M (D)) = V(D)u
V(L(D)) and A(M(D)) = A(L(D)) U A(D, L(D)), where A(D, L(D)) de-
notes the arcs with one end in V(D) and the other end in V(L(D)). For each
vertex v € V(D), dyy py (v) = d}(v), since there are df5(v) out-arcs from v
to vertices in V(L(D)). For each vertex a;; € V(L(D)), dyy(py(ai;) =
dh(v5) + 1, since df p(ai;) = di(vj) and there are exactly one out-
arc (a;j,v;) from a;; to vertices in V(D). Similarly, d;,(D)('v) = dp(v),
dry(oy(an) = dp(w) + L

An arc-cut of a strongly connected digraph D with order at least two
is a set of arcs whose remove makes D no longer strongly connected. The
arc-connectivity A(D) is the minimum cardinality of an arc-cut over all arc-
cuts of D. The inequality A(D) < 6(D) is wellknown. We call a digraph
D mazimally arc-connected, for short maz-A, if A(D) = §(D). For a
vertex v € V(D), denote by N7 (v) the set of out-neighbors of v, Ny (v)
the set of in-neighbors of v, Ef;(v) the set of out-arcs of v, Ep(v) the set of
in-arcs of v. A strongly connected digraph D is super-arc-connected, for
short super-), if every minimum arc-cut is either Ef,(v) or Ep(v) for some
vertex v. The connectivity (D), maz-k, super-x are defined similarly.

In this paper, we study super-arc-connected and super-connected middle
digraphs and the spectra of middle digraphs.

The following two lemmas will be used in our discussions.

Lemma 1.1. [10] Let D be a digraph with order at least two. Then D is
strongly connected if and only if the line digraph L(D) is strongly connected.

Lemma 1.2. Let D be a stongly connected digraph, then k(D) < A(D) =
k(L(D)) < ML(D)).
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2 The spectra of middle digraphs

Let D = (V(D), A(D)) be a pseudodigraph, i.e. loops and multiple arcs
may occur in A(D). Let V(D) = {v1,v2,...,v,} and A(D) = {ey,e2,:..,em}
Its out-incidence and in-incidence matrices (both are (0, 1)-matrices), de-
noted by X, and X; respectively, are defined as follows.

Xo= (ng)! Xr= (zz!j)7

where
1 if v; is the tail of e;;
x:., =
0 otherwise;
P 1  if v; is the head of ¢;;
L. =
N 0 otherwise.

The following lemmas are needed for the proof of Theorem 2.4.

Lemma 2.1. /5, 6, 11] Let M, My be the adjacency matrices of digraph
D and its line digraph L(D) respectively. Let X, and X; be the out- and
in-incidence matrices of D, then

M=X,XT, Mp=XTX,.
Lemma 2.2. [9/

i A App detAy det(Ag — A21A1‘11A12) if A11 is invertible,
et =
Az Az detAgpdet(A;1; — A12A2_21A21) if Agg is invertible .

Lemma 2.3. Let A\;(i = 1,2,...,n) be the eigenvalues of matriz A, let f(z)
be a polynomial. Then the eigenvalues of f(A) are f(\)(i = 1,2,...,n).

Theorem 2.4. Let D be a pseudodigraph with n vertices and m arcs, let
M(D) be the middle digraph of D. Then

Prupy(A) = A [T, (A2 = (A + 1)N),

where A\i(1 < i < n) are the eigenvalues of D.
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Proof. By a suitable labeling the vertices of M (D) we can see that the
adjacency matrix of M (D) is

o (0 X \_(0 X
MDY=\ xF My, )\ XF XxTx, )

Puipy(A) = [ Mmin — Mup)l
Py -X,
—X]T /\Im - X}I‘Xo

Therefore

By adding the product of —X7 and the first row of the block matrix to the
second row, we have

M, =X,
Pupy() = ’—(A+1)X,T M,

By Lemma 2.2 and Lemma 2.3, we have

/\-4-1

Pupy(d) = |Mn||Mn — 5= X XT |

(AL, - 2F 1M|
= A AL, — (A +1)M]|
Am=r TTO2 = (A + 1))

i=1

O

Corollary 2.5. Let D be a pseudodigraph with n vertices and m arcs
(m > n). Then M(D) has m — n zero eigenvalues, and the following

2n eigenvalues:

2 Y&yt

where A\;(1 < i < n) are the eigenvalues of D.
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3 Super-arc-connected middle digraphs

In this section, we consider strict digraph D (digraph having no loops
and no parallel arcs are allowed). If [V(D)| = 1, then M(D) is an isolated
vertex. So we consider the case that |V(D)| > 2.

Theorem 3.1. Let D be a digraph with order at least two. Then M (D) is
strongly connected if and only if D is strongly connected.

Proof. If D is strongly connected, then L(D) is strongly connected by
Lemma 1.1. According to the definition of middle digraph, we know that
the vertices of V(D) have both in-arcs and out-arcs in M (D). Hence, M(D)
is strongly connected. If D is not strongly connected, then there exist two
subsets X; and X3 in V(D) such that X; U X, = V(D) and there are no
arcs from X; to X2 in D. It is easy to see that, in M(D), there are no
directed paths from vertices in X; to vertices in Xo. a

Theorem 3.2. Let D be a strongly connected digraph with order at least
two. Then A(M(D)) > min{é(D), 2A(D)}.

Proof. Clearly, 6(M(D)) = 6(L(D)) = 6(D) > 1. Let S be a minimum
arc-cut of M (D), then there exists a nonempty proper vertex subset X C
V(M(D)) such that there is no arc from X to X in M(D) — S, where
X =V(M(D)\X.

We consider three cases.

Case 1. X C V(D).

If |X| = 1, then |S| > §(M(D)). If n > |X| > 2, since D — S is no
longer strongly connected, and every vertex v € X has df(v) > (D)
out-neighbors in V(L(D)), we have

S| 2 |X| - 6(D) > &(D).

Case 2. X C V(L(D)).

If | X]| = 1, then |S] > §(M(D)). If §(D) > |X| > 2, since every vertex
a € X has at least §(L(D)) — (|X| - 1) = 6(D) — | X| + 1 out-neighbor in
V(L(D))\X and exactly one out-neighbors in V(D), we have

IS| 2 |XI(6(L(D)) - |X| + 1) + | X| > &(D).
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If m > |X| > é(D), then
S| 2 |X| > 6(D).

Case 3. XNV(L(D)) # 0 and X NV(D) # 0.

We may suppose that V(D) ¢ X and V(L(D)) € X. In fact, in the
case that V(D) € X or V(L(D)) € X, by considering X, the proof is
analogous to the proof of Case 1 or Case 2. For each arc (v;,v;) from
XNV(D) to XNV(D) in D, if the corresponding vertex a;; € XNV (L(D)),
then (v, ai;) is an arc from X to X in M(D); if the corresponding vertex
aij € X NV(L(D)), then (a;;,v;) is an arc from X to X in M(D). Hence,

S| = M(D) + ML(D)) 2 2X(D).
We thus conclude that A(M (D)) = min{é(D), 2A(D)}. ]

Remark 3.3. If the digraph D has the following properties, then A(M (D)) =
2X(D).

(i). M(D) = ML(D)).

(#). Let S be a minimum aerc-cut of D and there ezist two verter set
X and X such that there are no arcs from X to X in D — S, where X =
V(D) - X.

(iii). The arc set from A(D[X])U[X,X]U S to A(D[X]) is @ minimum
arc-cut of L(D), where [X, X}, D[X] and D{X] denote the arc set from X
to X, the vertez-induced subdigraph of X and X, respectively.

Corollary 3.4. Let D be a strongly connected digraph with order at least
two. If 2A(D) = §(D), then M (D) is maz-A.

Theorem 3.5. Let D be a strongly connected digraph with order at least
two. If 2A(D) > &(D), then M(D) is super-A.

Proof. From the proof of Theorem 3.2, only when |X| = 1, or in Case
3, the equality A(M(D)) = §(M (D)) may hold. If |X| = 1, then we are
done. In Case 3, the equality cannot hold when 2A(D) > §(D). Hence if
2X(D) > 6(D), then M(D) is super-A. O
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4 Super-connected middle digraphs

Theorem 4.1. Let D be a strongly connected digraph with order at least
two. Then k(M (D)) = A(D).

Proof. By the definition of middle digraph, in order to destroy the connec-
tivity of M (D), we must destroy all the out- (in-) arc set of some vertex
in V(D), or destroy the connectivity of L(D) firstly. Thus, (M (D)) >
&(L(D)) = A(D). On the other hand, if S is a vertex-cut of L(D), then
S is a vertex-cut of M(D). In fact, the corresponding arc set S’ of S is
an arc-cut in D. Therefore there exists a nonempty proper vertex subset
X C V(L(D)) such that there is no arc from X to X in L(D) — S, and
there exists a nonempty proper vertex subset X’ C V(D) such that there
is no arc from X’ to X' in D — &', and where X = V(L(D))\(X U 8),
X = V(D)\X'. It is easy to see that there is no arcs from X U X’ to
XuX in M(D) - S. Hence, k(M(D)) = A(D). O

By Theorem 4.1, we have the following consequences.

Corollary 4.2. Let D be a strongly connected digraph with order at least
two. Then M(D) is maz-x if and only if D is maz-).

Corollary 4.3. Let D be a strongly connected digraph with order at least
two. Then M (D) is super-x if and only if D is super-A.

Proof. Clearly, if M(D) is super-x, then D is super-A. On the other
hand, if D is super-A, then L(D) is super-x, For any vertex-cut § =
{aijy,Qijzy.- -, aij,} = N¥(ay;) of L(D), we find that § = {aijsaijyy .. -y 045, }
= N*(v;) in M(D). Thus M (D) is super-x. O
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