The Properties of Middle Digraphs*

Juan Liu^{a,b}, Xindong Zhang^a, Jixiang Meng^{b†}

- a. College of Mathematics Sciences, Xinjiang Normal University,
 Urumqi, Xinjiang, 830054, P.R.China
- b. College of Mathematics and System Sciences, Xinjiang University,
 Urumqi, Xinjiang, 830046, P.R.China

Abstract: Let D be a strongly connected digraph with order at least two, M(D) denote the middle digraph of D, $\kappa(D)$ and $\lambda(D)$ denote the connectivity and arcconnectivity of D, respectively. In this paper we study super-arc-connected and
super-connected middle digraphs and the spectral of middle digraphs.

Key words: Middle digraph; Super-arc-connected; Super-connected; Spectral

1 Introduction

For graph-theoretical terminology and notation not defined here we follow Bondy and Murty [2]. Let D=(V(D),A(D)) be a digraph with vertex set V(D) and arc set A(D). For a vertex $v\in V(D)$, we denote the indegree, the outdegree of v, the minimum indegrees and outdegrees in D by $d_D^-(v)$, $d_D^+(v)$, $\delta^-(D)$ and $\delta^+(D)$, respectively. We denote the minimum degree of D by $\delta(D)=\min\{\delta^-(D),\delta^+(D)\}$. $\overrightarrow{K_n}$ denotes the complete digraph of order n.

Let D = (V(D), A(D)) be a digraph, |V(D)| = n, |A(D)| = m, $V(D) = \{v_1, v_2, \dots, v_n\}$. In 1960, Harary and Norman [4] introduced the concept of the line digraph. For a digraph D, the line digraph of D, denoted by L(D), is the digraph with vertex set $V(L(D)) = \{a_{ij} | a_{ij} = (v_i, v_j) \text{ is an } \{v_i, v_j \in A(D)\}$

^{*}The research is supported by FSRPHEXJ (No.XJNU2010S30), China Postdoctoral Science Foundation (No.20100471000), Science Foundation for The Excellent Youth Scholars of Xinjiang Normal University (No.XJNU0920) and NSFXJ (No.2010211A06).

[†]Corresponding author. E-mail: liujuan1999@126.com

arc in D}, and a vertex a_{ij} is adjacent to a vertex a_{st} in L(D) if and only if $v_j = v_s$ in D. In 1977, Zamfirescu [8] introduced the concept of the middle digraph. For a digraph D, the middle digraph of D, denoted by M(D), is the digraph with vertex set $V(M(D)) = V(D) \cup A(D)$, there is an arc $(a,b) \in A(M(D))$ from vertex a to vertex b in M(D) if and only if one of the following cases holds: (1). If $a \in V(D)$ and $b \in A(D)$, then a is the tail of arc b in D. (2). If $a \in A(D)$ and $b \in V(D)$, then b is the head of arc a in a. (3). If $a \in A(D)$ and a0, then the head of arc a2 is the tail of arc a3 in a5. The middle digraph has been discussed in [7, 8, 9].

In fact, the middle digraph M(D) can be viewed as $V(M(D)) = V(D) \cup V(L(D))$ and $A(M(D)) = A(L(D)) \cup A(D, L(D))$, where A(D, L(D)) denotes the arcs with one end in V(D) and the other end in V(L(D)). For each vertex $v \in V(D)$, $d_{M(D)}^+(v) = d_D^+(v)$, since there are $d_D^+(v)$ out-arcs from v to vertices in V(L(D)). For each vertex $a_{ij} \in V(L(D))$, $d_{M(D)}^+(a_{ij}) = d_D^+(v_j) + 1$, since $d_{L(D)}^+(a_{ij}) = d_D^+(v_j)$ and there are exactly one out-arc (a_{ij}, v_j) from a_{ij} to vertices in V(D). Similarly, $d_{M(D)}^-(v) = d_D^-(v)$, $d_{M(D)}^-(a_{ij}) = d_D^-(v_i) + 1$.

An arc-cut of a strongly connected digraph D with order at least two is a set of arcs whose remove makes D no longer strongly connected. The $arc\text{-}connectivity\ \lambda(D)$ is the minimum cardinality of an arc-cut over all arc-cuts of D. The inequality $\lambda(D) \leq \delta(D)$ is wellknown. We call a digraph D maximally arc-connected, for short $max\text{-}\lambda$, if $\lambda(D) = \delta(D)$. For a vertex $v \in V(D)$, denote by $N_D^+(v)$ the set of out-neighbors of v, $N_D^-(v)$ the set of in-neighbors of v, $E_D^-(v)$ the set of in-arcs of v. A strongly connected digraph D is super-arc-connected, for short $super-\lambda$, if every minimum arc-cut is either $E_D^+(v)$ or $E_D^-(v)$ for some vertex v. The $connectivity\ \kappa(D)$, $max\text{-}\kappa$, $super\text{-}\kappa$ are defined similarly.

In this paper, we study super-arc-connected and super-connected middle digraphs and the spectra of middle digraphs.

The following two lemmas will be used in our discussions.

Lemma 1.1. [10] Let D be a digraph with order at least two. Then D is strongly connected if and only if the line digraph L(D) is strongly connected.

Lemma 1.2. Let D be a stongly connected digraph, then $\kappa(D) \leq \lambda(D) = \kappa(L(D)) \leq \lambda(L(D))$.

2 The spectra of middle digraphs

Let D=(V(D),A(D)) be a pseudodigraph, i.e. loops and multiple arcs may occur in A(D). Let $V(D)=\{v_1,v_2,\ldots,v_n\}$ and $A(D)=\{e_1,e_2,\ldots,e_m\}$. Its out-incidence and in-incidence matrices (both are (0,1)-matrices), denoted by X_o and X_I respectively, are defined as follows.

$$X_o = (x_{ij}^o), \quad X_I = (x_{ij}^I),$$

where

$$x_{ij}^o = \left\{ egin{array}{ll} 1 & ext{if } v_i ext{ is the tail of } e_j; \\ 0 & ext{otherwise;} \end{array}
ight. \ x_{ij}^I = \left\{ egin{array}{ll} 1 & ext{if } v_i ext{ is the head of } e_j; \\ 0 & ext{otherwise.} \end{array}
ight.$$

The following lemmas are needed for the proof of Theorem 2.4.

Lemma 2.1. [5, 6, 11] Let M, M_L be the adjacency matrices of digraph D and its line digraph L(D) respectively. Let X_o and X_I be the out- and in-incidence matrices of D, then

$$M = X_o X_I^T, \quad M_L = X_I^T X_o.$$

Lemma 2.2. [3]

$$\det \left(\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right) = \left\{ \begin{array}{cc} \det A_{11} \det (A_{22} - A_{21} A_{11}^{-1} A_{12}) & \text{if } A_{11} \text{ is invertible;} \\ \det A_{22} \det (A_{11} - A_{12} A_{22}^{-1} A_{21}) & \text{if } A_{22} \text{ is invertible .} \end{array} \right.$$

Lemma 2.3. Let $\lambda_i (i = 1, 2, ..., n)$ be the eigenvalues of matrix A, let f(x) be a polynomial. Then the eigenvalues of f(A) are $f(\lambda_i)(i = 1, 2, ..., n)$.

Theorem 2.4. Let D be a pseudodigraph with n vertices and m arcs, let M(D) be the middle digraph of D. Then

$$P_{M(D)}(\lambda) = \lambda^{m-n} \prod_{i=1}^{n} (\lambda^2 - (\lambda+1)\lambda_i),$$

where $\lambda_i (1 \leq i \leq n)$ are the eigenvalues of D.

Proof. By a suitable labeling the vertices of M(D) we can see that the adjacency matrix of M(D) is

$$M_{M(D)} = \left(\begin{array}{cc} 0 & X_o \\ X_I^T & M_L \end{array} \right) = \left(\begin{array}{cc} 0 & X_o \\ X_I^T & X_I^T X_o \end{array} \right).$$

Therefore

$$P_{M(D)}(\lambda) = |\lambda I_{m+n} - M_{M(D)}|$$

$$= \begin{vmatrix} \lambda I_n & -X_o \\ -X_I^T & \lambda I_m - X_I^T X_o \end{vmatrix}.$$

By adding the product of $-X_I^T$ and the first row of the block matrix to the second row, we have

$$P_{M(D)}(\lambda) = \begin{vmatrix} \lambda I_n & -X_o \\ -(\lambda+1)X_I^T & \lambda I_m \end{vmatrix}.$$

By Lemma 2.2 and Lemma 2.3, we have

$$P_{M(D)}(\lambda) = |\lambda I_m| |\lambda I_n - \frac{\lambda+1}{\lambda} X_o X_I^T|$$

$$= \lambda^m |\lambda I_n - \frac{\lambda+1}{\lambda} M|$$

$$= \lambda^{m-n} |\lambda^2 I_n - (\lambda+1) M|$$

$$= \lambda^{m-n} \prod_{i=1}^n (\lambda^2 - (\lambda+1)\lambda_i).$$

Corollary 2.5. Let D be a pseudodigraph with n vertices and m arcs $(m \ge n)$. Then M(D) has m - n zero eigenvalues, and the following 2n eigenvalues:

$$\frac{\lambda_i \pm \sqrt{\lambda_i^2 + 4\lambda_i}}{2} \qquad (i = 1, 2, \dots, n)$$

where $\lambda_i (1 \leq i \leq n)$ are the eigenvalues of D.

3 Super-arc-connected middle digraphs

In this section, we consider strict digraph D (digraph having no loops and no parallel arcs are allowed). If |V(D)| = 1, then M(D) is an isolated vertex. So we consider the case that $|V(D)| \ge 2$.

Theorem 3.1. Let D be a digraph with order at least two. Then M(D) is strongly connected if and only if D is strongly connected.

Proof. If D is strongly connected, then L(D) is strongly connected by Lemma 1.1. According to the definition of middle digraph, we know that the vertices of V(D) have both in-arcs and out-arcs in M(D). Hence, M(D) is strongly connected. If D is not strongly connected, then there exist two subsets X_1 and X_2 in V(D) such that $X_1 \cup X_2 = V(D)$ and there are no arcs from X_1 to X_2 in D. It is easy to see that, in M(D), there are no directed paths from vertices in X_1 to vertices in X_2 .

Theorem 3.2. Let D be a strongly connected digraph with order at least two. Then $\lambda(M(D)) \ge \min\{\delta(D), 2\lambda(D)\}.$

Proof. Clearly, $\delta(M(D)) = \delta(L(D)) = \delta(D) \geq 1$. Let S be a minimum arc-cut of M(D), then there exists a nonempty proper vertex subset $X \subseteq V(M(D))$ such that there is no arc from X to \overline{X} in M(D) - S, where $\overline{X} = V(M(D)) \setminus X$.

We consider three cases.

Case 1. $X \subseteq V(D)$.

If |X| = 1, then $|S| \ge \delta(M(D))$. If $n \ge |X| \ge 2$, since D - S is no longer strongly connected, and every vertex $v \in X$ has $d_D^+(v) \ge \delta(D)$ out-neighbors in V(L(D)), we have

$$|S| \ge |X| \cdot \delta(D) > \delta(D).$$

Case 2. $X \subseteq V(L(D))$.

If |X| = 1, then $|S| \ge \delta(M(D))$. If $\delta(D) \ge |X| \ge 2$, since every vertex $a \in X$ has at least $\delta(L(D)) - (|X| - 1) = \delta(D) - |X| + 1$ out-neighbor in $V(L(D)) \setminus X$ and exactly one out-neighbors in V(D), we have

$$|S| \ge |X|(\delta(L(D)) - |X| + 1) + |X| > \delta(D).$$

If $m \geq |X| > \delta(D)$, then

$$|S| \ge |X| > \delta(D)$$
.

Case 3. $X \cap V(L(D)) \neq \emptyset$ and $X \cap V(D) \neq \emptyset$.

We may suppose that $V(D) \nsubseteq X$ and $V(L(D)) \nsubseteq X$. In fact, in the case that $V(D) \subseteq X$ or $V(L(D)) \subseteq X$, by considering \overline{X} , the proof is analogous to the proof of Case 1 or Case 2. For each arc (v_i, v_j) from $X \cap V(D)$ to $\overline{X} \cap V(D)$ in D, if the corresponding vertex $a_{ij} \in \overline{X} \cap V(L(D))$, then (v_i, a_{ij}) is an arc from X to \overline{X} in M(D); if the corresponding vertex $a_{ij} \in X \cap V(L(D))$, then (a_{ij}, v_j) is an arc from X to \overline{X} in M(D). Hence,

$$|S| \ge \lambda(D) + \lambda(L(D)) \ge 2\lambda(D).$$

We thus conclude that $\lambda(M(D)) \ge \min\{\delta(D), 2\lambda(D)\}.$

Remark 3.3. If the digraph D has the following properties, then $\lambda(M(D)) = 2\lambda(D)$.

- (i). $\lambda(D) = \lambda(L(D))$.
- (ii). Let S be a minimum arc-cut of D and there exist two vertex set X and \bar{X} such that there are no arcs from X to \bar{X} in D-S, where $\bar{X}=V(D)-X$.
- (iii). The arc set from $A(D[X]) \cup [\bar{X}, X] \cup S$ to $A(D[\bar{X}])$ is a minimum arc-cut of L(D), where $[\bar{X}, X]$, D[X] and $D[\bar{X}]$ denote the arc set from \bar{X} to X, the vertex-induced subdigraph of X and \bar{X} , respectively.

Corollary 3.4. Let D be a strongly connected digraph with order at least two. If $2\lambda(D) \geq \delta(D)$, then M(D) is max- λ .

Theorem 3.5. Let D be a strongly connected digraph with order at least two. If $2\lambda(D) > \delta(D)$, then M(D) is super- λ .

Proof. From the proof of Theorem 3.2, only when |X|=1, or in Case 3, the equality $\lambda(M(D))=\delta(M(D))$ may hold. If |X|=1, then we are done. In Case 3, the equality cannot hold when $2\lambda(D)>\delta(D)$. Hence if $2\lambda(D)>\delta(D)$, then M(D) is super- λ .

4 Super-connected middle digraphs

Theorem 4.1. Let D be a strongly connected digraph with order at least two. Then $\kappa(M(D)) = \lambda(D)$.

Proof. By the definition of middle digraph, in order to destroy the connectivity of M(D), we must destroy all the out- (in-) arc set of some vertex in V(D), or destroy the connectivity of L(D) firstly. Thus, $\kappa(M(D)) \geq \kappa(L(D)) = \lambda(D)$. On the other hand, if S is a vertex-cut of L(D), then S is a vertex-cut of M(D). In fact, the corresponding arc set S' of S is an arc-cut in D. Therefore there exists a nonempty proper vertex subset $X \subseteq V(L(D))$ such that there is no arc from X to \overline{X} in L(D) - S, and there exists a nonempty proper vertex subset $X' \subseteq V(D)$ such that there is no arc from X' to \overline{X}' in D - S', and where $\overline{X} = V(L(D)) \setminus (X \cup S)$, $\overline{X}' = V(D) \setminus X'$. It is easy to see that there is no arcs from $X \cup X'$ to $\overline{X} \cup \overline{X}'$ in M(D) - S. Hence, $\kappa(M(D)) = \lambda(D)$.

By Theorem 4.1, we have the following consequences.

Corollary 4.2. Let D be a strongly connected digraph with order at least two. Then M(D) is max- κ if and only if D is max- λ .

Corollary 4.3. Let D be a strongly connected digraph with order at least two. Then M(D) is super- κ if and only if D is super- λ .

Proof. Clearly, if M(D) is super- κ , then D is super- λ . On the other hand, if D is super- λ , then L(D) is super- κ , For any vertex-cut $S = \{a_{ij_1}, a_{ij_2}, \ldots, a_{ij_d}\} = N^+(a_{ti})$ of L(D), we find that $S = \{a_{ij_1}, a_{ij_2}, \ldots, a_{ij_d}\} = N^+(v_i)$ in M(D). Thus M(D) is super- κ .

References

- [1] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, Athenaum Press Ltd, 2001.
- [2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London, Elsevier, New York, 1976.
- [3] F.R. Gantmacher, Theory of Matrices, New York, 1960.

- [4] F. Harary, R.Z. Norman, Some Properties of Line Digraphs, Rend. Circ. Mat. Palermo, 9(2) (1960) 161-168.
- [5] D. Lind, B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, 1995.
- [6] Y. Wu, A. Deng, Hoffman Polynomials of Nonnegative Irreducible Matrices and Strongly Connected Digraphs, Linear Algebra Appl., 414 (2006) 138-171.
- [7] W. Yan, F. Zhang, Indices of convergence on four digraph operators, Australas J Combin., 31 (2005) 247-260.
- [8] C. Zamfirescu, Lokal und Globale Untersuchungen der Line, Middle, Und Total- Digraphen, Dissertation RWTH Aachen, 1977.
- [9] C. Zamfirescu, Local and Global Characterizations of Middle Digraphs, in: The Theory and Applications of Graphs (G. Chartrand, Y. Alavi, D.L. Goldsmith, L. Lesniak-Foster and D.R. Lick, Eds.) Wiley, New York, (1981) 593-607.
- [10] M. Lü, J.M. Xu, Super Connectivity of Line Graphs and Digraphs, Acta Mathematicae Applicatae Sinica, English Series, 22(1) (2006) 43-48.
- [11] F. Zhang, G. Lin, J. Meng, The Characteristic Polynomials of Digraphs Formed by Some Unary Operations, J. Xinjiang Univ. (Natural Science Edition), 4(2) (1987) 1-6.