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Abstract

Consider a connected undirected graph G = (V, E) and an integer
T 2> 1; for any vertex v € V, let B(v) denote the ball of radius r
centered at v, i.e., the set of all vertices linked to v by a path of at
most r edges. If for all vertices v € V/, the sets B,(v) are different,
then we say that G is r-twin-free.

Studies have been made, e.g., on the number of edges or the min-
imum degree in one-twin-free graphs. We extend these investigations
and in particular we determine the exact size of the largest clique in
a connected r-twin-free graph.
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1 Introduction

1.1 Definitions and notation

Given a connected, undirected, finite graph G = (V, E) and an integer
r > 1, we define B,(v), the ball of radius r centered at v € V, by

B,(v)={z eV :d(z,v) <},

where d(z,v) denotes the number of edges in any shortest path between v
and z.

Whenever d(z,v) < r, we say that « and v r-cover each other (or simply
cover if there is no ambiguity). A set X C V covers a set Y C V if every
vertex in Y is covered by at least one vertex in X.

Two vertices vy, vz € V such that B,.(v1) = B,.(v2) are called r-twins or
twins. If G has no r-twins, that is, if

Vuy,v2 € V with vy # ve, Br(v1) # Br(v2), (1)

then we say that G is r-twin-free or twin-free.

A graph with one vertex is trivially twin-free, and generally we consider
graphs with at least two vertices.

Twin-free graphs are of interest because they are strongly connected
with identifying codes [18], which we now define.

A code C is a nonempty set of vertices, and its elements are called
codewords. For each vertex v € V, we denote by

Ko (v) = C A By (v)

the set of codewords which r-cover v. Two vertices v; and vz with K¢ (v1)
# Ko (v2) are said to be r-separated, or separated, by code C.

A code C is called r-identifying, or identifying, if the sets K¢ (v),v € V,
are all nonempty and distinct [18]. In other words, all vertices must be
covered and pairwise separated by C.

Remark 1. For given G = (V, E) and integer 7, the graph G admits at
least one r-identifying code if and only if it is r-twin-free. Indeed, if for all
v,ve € V, Bp(v1) and B,(v2) are different, then C' = V is r-identifying.
Conversely, if for some v),v2 € V, Br(v1) = By(v2), then for any code
C C V, we have K¢ r(v1) = Kc(v2). This is why r-twin-free graphs are
also called r-identifiable. For instance, there is no r-identifying code in a
complete graph (or clique) with at least two vertices.

If G is r-twin-free, we denote by ¢,(G) the size of the smallest r-identifying
code in G.
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We define the minimum distance of a code C as follows:
dmin(C) = min{d(2;, 2;) : z € C, 2; € C, 2; # z;}.

Remark 2. If C is r-identifying, then dpin(C) < r + 1 (otherwise, a
codeword c and a vertex adjacent to ¢ could not be r-separated by C).

Remark 3. If G is not connected, we simply consider each of its connected
components, and apply the above definitions.

In the following, n will denote the number of vertices of G. For any integer
g > 0, P, will denote the path on g vertices, and the length of P, will be
equal to ¢ — 1, its number of edges. Moreover, if vy, vy, ..., v, denote the
vertices in P, we shall assume that these vertices are numbered in such a
way that the edges in P, are {v;,vi41} for 1 <4 < g. The cycle of length ¢
(with q vertices and ¢ edges), consisting of P, to which we add the edge
{vg,v1}, will be denoted by C;. The following graph will be used several
times in the sequel: we shall call it the star, and it consists of n vertices
0,1,...,n—1,and n— 1 edges {0,4},1 <i<n-1.

1.2 Motivations

The motivations for identifying codes come, for instance, from fault di-
agnosis in multiprocessor systems. Such a system can be modeled as a
graph where vertices are processors and edges are links between proces-
sors. Assume that at most one of the processors is malfunctioning and
we wish to test the system and locate the faulty processor. For this pur-
pose, some processors (constituting the code) will be selected and assigned
the task of testing their neighbourhoods (i.e., the vertices at distance at
most 7). Whenever a selected processor (i.e., a codeword) detects a fault,
it sends an alarm signal, saying that one element in its neighbourhood is
malfunctioning, and we require that we can uniquely tell the location of the
malfunctioning processor based only on the information which codewords
gave the alarm.

Identifying codes were introduced in [18], and they constitute now a
topic of their own, studied in a large number of various papers, investigating
particular graphs or families of graphs (such as certain infinite regular grids,
trees, chains, cycles, or the k-cube), dealing with complexity issues, or using
heuristics such as the noising methods for the construction of small codes.
See, e.g., [1], [2], [3], [5], [6], [16], [22], and references therein, or [23].

Therefore, it is quite natural to study some of the parameters of twin-
free graphs, since these graphs admit identifying codes. This is what we
shall do in the present paper as well as in the forthcoming paper [9].
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1.3 Plan of the study

We intend to investigate the extremal values that some parameters, often
studied in graph theory, can reach in connected twin-free graphs. More
precisely, for a parameter p (such as the number of vertices, the number of
edges, the minimum degree, .. .), we fix 7 and search for the smallest value,
f+(p), that this parameter can reach in G, or we fix r and n and search for
the smallest and largest values, f,,(p) and F »(p), respectively, that this
parameter can reach in G:

fr(p) = min{p: G € G,},
where G, = {G : G connected, r-twin-free with at least two vertices};
frn(p) =min{p: G € G,n} and Fyn(p) = max{p:G € Grn},
where G, , = {G : G connected, r-twin-free with n > 2 vertices}.

The function F,(p) = max{p : G € G,} would present much less interest,
since, for the parameters that we shall deal with, F, is not bounded by
above.

In this paper, we are interested in the following four parameters:

- number of vertices, n,

- minimum cardinality, ¢, of an r-identifying code,

- r-domination number, v,,

- maximum size of a clique, w,
and study, for each of them, the functions f;, fr» and Fyn: each of the
Sections 2-5 deals with one parameter; at the beginning of each section, for
comparison, the extremal values of the parameter are given for connected
graphs — when relevant. Section 6 recapitulates what we obtained in three
tables (r = 1, r = 2, r 2 3). One of the main results is the exact value
of Fr n(w).

In [9], we intend to run the same study for the following five parameters:
number of edges ¢, minimum degree Ap;,, maximum degree Amax, diam-
eter 4, maximum size of a stable a.

We shall see that some of these parameters are connected in some way.
For instance, we shall derive results on the number of edges using knowledge
on the maximum clique size and the maximum degree.

So far, only the parameters n (cf. Sec. 2), ¢, (cf. Sec. 3), € [20, Sec. 4.1.2]
and, to a lesser extent, Amin [19] [12] and +, [17], had been investigated,
to our knowledge, within the framework of twin-free graphs.

Note that, for parameters not depending on r, the monotonicity of the
functions f,, and F.,, with respect to r, can be proved using the following
lemma, in which the condition n > 2r+3 is not restrictive, since we shall see
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(Prop. 3) that any connected r-twin-free graph has at least 2r + 1 vertices,
unless n = 1.

Lemma 1l Letr > 1 and n 2> 2(r + 1) + 1 be two integers. If G is a
connected (7 + 1)-twin-free graph with n vertices, then G is also r-twin-free.

Proof. Assume that G = (V,E) is (r + 1)-twin-free and not r-twin-free.
Then there exist two vertices x,y € V such that B.(z) = B.(y), and
one vertex z € V which (r + 1)-covers z and not y (or the other way
round). Necessarily, d(2,z) = r + 1; consider a vertex ¢t € V at distance
one from z and r from z. Then ¢ is also within distance r from y, therefore
d(y,2z) £ r + 1, a contradiction. A

Corollary 2 Letr > 1 and n > 2r + 3 be two integers, and let p = w, ¢,
Amin, Amax, 0, or a. Then Fr,n(P) 2 Fr+1,n(P) and fr.n(p) < fr+1,n(p)-

Proof. Since, by Lemma 1, the family G, », of connected r-twin-free graphs
with n vertices includes G, ; », we find a better optimum when searching
for it in G, than in Gr41 p- A

Corollary 2 holds also for any other parameter which does not depend on 7.
On the other hand, we cannot use it with parameters such as ¢, or 4. since,
when studying, e.g., f., with respect to domination, we chose to restrict
ourselves to the case when the same r parametrizes both f and 7, i.e., we
consider only fr (7).

2 The number of vertices, n
This parameter has already been studied, and we have the following result.

Proposition 3 [7/,/20],(4] Let r > 1 and G be any connected r-twin-free
graph with at least two vertices. Then we have: n > 2r + 1. Moreover,
Py is the only connected r-twin-free graph with 2r + 1 vertices. A

Corollary 4 For all r > 1, we have: fr(n) =2r + 1. A

Observe that obviously, frn(n) = Frn(n) =nforallr >1andn > 2r+1.

3 The minimum size, ¢, of an r-identifying
code

This parameter has already been studied, and we recapitulate here the
results obtained so far. First, we give an upper bound on Fy n(cr).
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Proposition 5 [8/,/18] Let T > 1 and n > 2r + 1 be two integers. Let G
be any connected r-twin-free graph with n vertices. Then we have: ¢.(G) <
n-1. A

When r = 1, this bound is sharp, as we now show.

Proposition 6 [8/ For all n > 3, there erists a connected one-twin-free
graph G with n vertices such that ¢;(G) =n — 1. A

One example is the star, defined in the Introduction.
Corollary 7 For all n > 3, we have: Fin(c1) =n—1. A

For r > 1, the following proposition shows that the upper bound can also
be attained, if n is large enough with respect to .

Proposition 8 /8] Let r > 2. Ifn > 3r? is even, or if n > 3r? + 1 is odd,
then there exists a connected r-twin-free graph G with n vertices such that

er(G)=n-1 A
For all » > 1, it is quite straightforward to observe that we also have:
cr(Pory1) =2r=n-1 (2)
Corollary 9 Ifn=2r+1, or if n > 3r2 is even, or if n > 3r2 + 1 is odd,
then we have: Fy n(c;) =n—1. A

Next, we have an easy lower bound on f;a(c,).

Proposition 10 [18/ Letr > 1 and n > 2r + 1 be two integers. Let G be
any connected r-twin-free graph with n vertices. Then we have: c(G) >
flogo(n + 1)]. A

Next proposition shows that this bound can be reached with conditions
on n.

Proposition 11 /8] Let r > 1. If n > 2%, then there exists a connected
r-twin-free graph G with n vertices such that ¢.(G) = [logo(n+1)]. A

A similar result was established independently in [11]. The case r = 1 was
previously solved in [18]. When r = 1, Proposition 11 is true for all n > 3;
for r = 2, it holds if and only if n > 6.

Corollary 12 Ifr =1l andn >3, orr=2andn > 6, orr > 3 and
n > 227, then we have: fyn(c,) = [loga(n+1)]. A

We feel that significant improvements on the bound n > 227 would involve
complex arguments. We now turn to f-(c), for which no previous results
are known, and first give an easy lower bound.
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Figure 1: Different twin-free graphs constructed in the proof of Theorem 14.
Codewords are in black.

Theorem 13 We have: fi(c1) > 2 and, for all v > 2, we have: fu(c;) >
[logy(2r + 4)]. '

Proof. Let G be any connected r-twin-free graph with n vertices. By
Proposition 10, we have ¢,.(G) > [logy(n + 1)], and by Proposition 3, we
have n > 2r + 1. Hence, for all v > 1, f(c,) > [logy(2r + 2)], which gives
the result for r = 1.

Now if n = 2r + 1, then, by Proposition 3, G = Py.41, and by (2),
cr(G) = 2r. Since 2r > [logy(2r + 2)] when r > 1, we have: f.(c;) >
[loga(2r + 3)]. The final result simply comes from the fact that 2r + 3 is
odd. ' A

In the following theorem, a construction gives r + 1 as an upper bound.
Theorem 14 For allr > 1, we have: fr(c,) <7 +1.

Sketch of proof. Besides the particular case r = 1, there are two different

constructions, depending on the parity of r.
(a) r = 1; we set G = P3, and the two ends of the path constitute a

one-identifying code.
(b) 7 odd, r > 3; we construct the graph G = (V, E), where

V={v%:1<i<2r+2}U{w;:jeven 2<j<2r+2},

E={{vi,vi41}:1<i < 2r + 2} U {{vj,w;} : j even, 2 < j < 2r + 2},
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with vgr43 = v;. The 7 + 1 vertices w; will constitute the code C (see
Figure 1). In other words, we consider the cycle Ca,42, and we link every
second vertex to a codeword.

(c) r = 2t,t > 1; we construct the graph G = (V, E), where

V={v,-:1$i5r+2}u{w,-,j:2SiST+2,1SJ'St},

E={{’U;’,’Ui+1} 3 | SiST+2} U
{{vi,win}, {wijywijn1}:12<i<r+2,1<j <t -1},

with v,43 = v;. The r + 1 vertices w;; will constitute the code C (see

Figure 1). In other words, we consider the cycle C,2, and we link every

vertex but one to a path with ¢ vertices, the end of which is a codeword.
In Cases (b) and (c), we leave it to the reader to check that C is indeed

r-identifying. A

Unfortunately, the gap remains important between lower and upper bounds.
For values of r up to 4, we can prove that the exact value for fr(c,) is the
upper bound.

Theorem 15 For r € {1,2,3,4}, we have: fr(c;)=r+1.

Proof. If r = 1,2 or 3, then the lower and upper bounds given by Theo-
rems 13 and 14 coincide.

If r = 4, all we have to show is that fy(cs) # 4. Assume on the contrary
that G is a connected graph with n vertices admitting a 4-identifying code C
of size four. By Propositions 10 and 3, and the fact that, by (2), ca(Ps) = 8,
we know that 10 < n < 15. By Remark 2, we have: 1 < dpin(C) < 5.

(i) dmin(C) = 1; there are at least two codewords, z; and z, with
d(z1,z2) = 1. Then there is a codeword z3 4-covering exactly one of 2
and 29, say z3. The only possibility is given in Figure 2(i). Then, for
i € {1,2,3}, we have: By(vi) N {21, 22,23} = {21, 22,23}, and we see that
with only one additional codeword we are unable to separate the three
vertices v;.

(i) dmin(C) = 2; there are at least two codewords, z; and z, with
d(z1,22) = 2. Then there is a codeword z3 4-covering exactly one of z;
and 2z, say z2. The only two possibilities are given in Figure 2(ii). In both
cases, similarly to the previous case, there is no way to separate 22, v, and
v3 with only one more codeword.

(iii) dmin(C) = 3; there are at least two codewords, z; and 2z, with
d(21,22) = 3. Then there is a codeword z3 4-covering exactly one of 2,
and z;, say z;. The only three possibilities are given in Figure 2(iii). In
the first and third cases, it will be impossible to separate zz,v2 and v
with only one more codeword. In the middle case, the fourth codeword, 24,
must be used to separate z; and vs: for instance z4 covers z; and not vs,

168



. 172
(i) *—o—0—0—0—9@
Y1V2 V3
Z 4 2 4 Z Z
. 1 2 3 1 2 3
(ii) ——e—0—0—e ——e—0—o—0—e
Va Vs V2 V3

Figure 2: The five cases in Theorem 15. Not all edges are drawn. Black
vertices are codewords, white circles are codewords or not, squares are
noncodewords.
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so that: K¢ 4(22) = {21, 22, 23, 2z4} and Kc4(v3) = {21, 22, z3}. Now, 21,1
and vy are covered by 2,22, and possibly by 23,24. Therefore the pos-
sible sets Kc4(.) for these three vertices are among {21, 22}, {21,22,23},
{21,22, 24}, {#1, 22, 23, 24}. But {z1, 22, 23, z4} and {21, 22, z3} have already
been “used”, therefore it will be impossible to separate 2;,v; and vs.

(iv) dmin(C) = 4; there are at least two codewords, 2, and z, with
d(z1,22) = 4, see Figure 2(iv). Then 2z, 22,v1,v2 and vz are covered by
21,22, and two more codewords are not sufficient to separate these five
vertices.

(v) dmin(C) = 5; there are at least two codewords, z; and zp, with
d(z1, 2) = 5, see Figure 2(v). We see that vy, v2,v3 and v4 are covered by
21, 20. Therefore, the sets K¢ 4(.) will be, for these four vertices: {z1, 22},
{21, 22,23}, {21, 22,24}, {71, 22, 23, 24}. So all the sets containing 2, and z;
have been “used”, which implies that there is no vertex adjacent to vz or
vz other than those already in Figure 2(v) — otherwise, this new vertex,
which would also be 4-covered by z; and 22, could not be separated from
v1, V2, v3, v4. Now a new codeword, say z3, must 4-cover exactly one of
v and v3, say vo: d(z3,v2) < 4 and d(z3,v3) > 4. Since any shortest path
linking z3 and v; must go through v;, we have d(z3,21) = d(z3,v2) < 4,
which contradicts dmin (C)=5. AN

Open Problem. Find the exact value of f.(c) for r > 5.

4 The r-domination number, 7,

The r-domination number in a graph G = (V, E) is the smallest size of
a code C C V which r-covers all the vertices of the graph. Such a code
is called an r-covering, or a dominating set in the case r = 1 and more
generally a distance-r dominating set. We denote by v,.(G) the size of the
smallest r-covering in G. Note that dominating sets have been intensively
studied in graph theory, see for instance [14], and that r-coverings in the
k-cube are well known in coding and information theory, see [10].

Here, the discrimination “connected twin-free graphs” vs “connected
graphs” is null, since we shall see that in both cases the bounds on -, are
the same.

We start with a result on one-domination.

Proposition 16 [21] Let G be a connected graph with at least two vertices.
Then we have: 1 < 71(G) < |§]. Moreover, these bounds are sharp. A

This is immediately transposable to our problem.

Corollary 17 Let G be a connected one-twin-free graph with at least three
vertices. Then we have: 1 < 71(G) < |5]|. Moreover, these bounds are
sharp.
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Figure 3: Different twin-free graphs constructed in Section 4. Codewords
are in black.

Proof. The lower bound is trivial, and the upper bound derives from
Proposition 16. Graphs used to reach the bounds in Proposition 16 are
one-twin-free, so they will work for Corollary 17 too. We describe here
possible constructions.

The star, defined in the Introduction, is a connected one-twin-free graph
for which C = {0} is a one-covering. More generally, any connected twin-
free graph with one vertex of degree n — 1 will do.

If n is even, n = 2p, p > 2, we consider any connected graph with p
vertices, Go = (Vo, Eop), where Vo = {v; : 1 < i < p}, and construct the
graph G = (V, E), where V = VoU{w; : 1 <i < p} and E = EqU{{v;, w;} :
1<i<p}. fn=2p+1, to G we add one vertex wp which we link to wy,
see Figure 3(a). In both cases, we obtain a graph which is connected and
one-twin-free, and C = {w; : 1 < ¢ < p} is a one-covering of size 13],
which is easily seen to be the minimum in G. If n = 3, then G = P; and
1(G) =1. A

And this is immediately generalizable to any .

Proposition 18 [15] Let G be a connected graph with at least two vertices.
Then v-(G) < |;37]. Moreover, this bound is sharp. A
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Corollary 19 Let G be a connected r-twin-free graph with at least 2r + 1
vertices. Then we have: 1 < v.(G) < [#{J Moreover, these bounds are
sharp.

Proof. The trivial lower bound can be attained by the following general-
ization of the star, see Figure 3(b); we build the tree G = (V, E) as follows:
first, we dividen — 1 by r,son=tr+p+ 1, witht>2and 0 < p <.
Then weset V={0} U {v;j:1<i<t,1<j<r}U{vq15:1<5<p),
and F = {{0,'0,‘,1}, {'u,-,j,v,-,jﬂ} :1<i<t,1<j5<r—- 1} U {{0, 'Ut+1,1}}
U {{ve+1,5> ve+1,5+1} : 1 £ 5 < p— 1}. In other words, starting from 0, we
have t “branches” with r vertices, and one with p vertices. This graph has
n vertices, n — 1 edges, is connected and r-twin-free (because there are at
least two “complete branches”), and C = {0} is an r-covering in G.

The upper bound derives from Proposition 18. A possible construction is
the following, see Figure 3(c). Divide n by r + 1: n = (r + 1)k + p, with
k>1land0<p<r+1;notethatifk=1,thenp=randn=2r+1,
because n > 2r+ 1. Set G = (V,E), with V ={v;;: 1<i<k,0<j <7}
U {w,~ 11<i<L p} and F = {{'Ui,o,v,'.,.l‘o} 11<i<k- 1}U{{v,~|j,v,~,,~+1} :
1<i<k0<j<r- l}U{{vl,o,wl},{w,',wi.,.l} 11L8iLp- 1}. Then
G has n vertices, is connected and r-twin-free, and C = {v;0:1 < i < k}
is an r-covering of size k = | ;37 ], which is easily seen to be the minimum
in G. A

Therefore, we have exact values for f-(7r), frn(7) and Fy n(7vr).

Corollary 20 For all r > 1, we have: fe(y) = 1. ForallT > 1 and
n > 2r+ 1, we have: frn(v)=1. A

Corollary 21 For alir > 1, n>2r+1, we have: Fru(y) = |75]. &

5 The maximum size of a clique, w

In any connected graph with n vertices, the maximum size of a clique
trivially lies between 2 (e.g., trees) and n. In this section we obtain, for all
r>1and n > 2r + 1, the exact values for f,.(w), fr,n(w) and, much more
significantly, for Fy.,(w). In particular, we shall see that, when r is fixed
and n grows, F. ,,(w) is close to n — rlog, n, which means that there exist
twin-free graphs with rather large cliques; conversely, if we wish to have a
system which is a clique, then with few additional processors, we can make
it twin-free.

We give a first easy result.

Theorem 22 For all r > 1, we have: fp(w) = 2. ForallT > 1 and
n > 2r + 1, we have: fra(w)=2.
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Proof. Any maximum clique has size at least two because we consider
only connected graphs. The largest cliques have size two in the paths P,
n>2r+1. A

The core of this section however is the study of F;.,(w). The case r =1 is
not too difficult; its underlying idea can already be found in [18, Sec. IV].

Theorem 23 For all n > 3, we have: Fy n(w) = k, where k is the largest
integer such that k + [logy k] < n.

Proof. Let G = (V, E) be a connected one-twin-free graph with 7 vertices,
n > 3. Let k be the size of a clique in G, with vertex set V}, and let
Va2 = V\ V1. The vertices in V; must have k different neighbourhoods, and
this can be done by the vertices in V; only, so 2*~* > k, which implies the
upper bound on Fj ,(w). Note that this argument works for any r.

We show that this bound can be reached for any n > 3, with the
following construction: let k be the largest integer such that k + [log, k] <
n, and let G; = (1, E}) be a clique with k vertices. To V; we add a set
V2 of n — k vertices, and create new edges as follows: we link each of the k
vertices of V; to a different subset of vertices in V5. This is possible because
k < 27~*, and this may include the empty set for a particular vertex in .
Moreover, we can easily make G connected, for instance by choosing one
vertex in V; which is linked to all vertices in V;. The graph G is also
one-twin-free: it is easy to check that two vertices in V;, two vertices in V5,
or one vertex in V; and one vertex in V2, cannot be one-twins. A

How does k vary with n? If n = 3, then k = 2. Let £ = [log,n| > 2.

If2<n< 2844 thenk=n—¢ because 2 — £ < n — ¢ < 2¢ and
[logy(n —€)] = ¢, 50 n — £+ [logy(n — £)] = n.

If20+£+1<n <2 then we prove that k = n — £ — 1. Because
28<n-£0-1<2%! —¢—1, we have [logy(n — £ —1)] € {£,£+ 1}, and
n—{£—1+ [logy(n—£—1)] € {n—1,n}. If this sum is equal to n, we are
done, so assume that n—£—1+ [logy(n—£€~1)] = n— 1. This implies that
[logo(n— € —1)] =¢, and 2° = n — £~ 1. Therefore [logy(n — )] = £+1,
and n — £+ [logy(n — €)] =n+ 1, so n — £ is too large.

As a consequence, we can reformulate Theorem 23.

Theorem 24 For all n > 3, we have:

Fin(w) = "—[1082;1J if2l<n<2t4¢,£>1,
= n—logen] -1 if28+e+1<n< 20+ ¢2>9
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Figure 4: Partial representations of the graphs constructed for Theorem 25.

We now turn to the general case for r, and give constructions where there
is a large clique. By “large”, we mean that it will meet the upper bound
(see Theorem 27). Let r > 2 and n > 2r + 1, let k be the largest integer
such that k + r[log, k] < n — 1, and let p = [log, k].
If 27~ < k < 2P, then, since (k + 1) + r[logy(k + 1)] > n and p =
[logy(k + 1)], we have:
rp+l=n-k. (3)

If k = 2P, then, since (k+ 1) + r[logy(k+ 1) =k +1+r(p+1) 2 n, we
obtain:
p+1<n—k<rp+1+r. (4)

Now let G, = (V4, E,) be a clique with k vertices. To V; we add a set V3
of n — k vertices, where

Vo={wo}U{v;:1<i<p,1<j<r}U{zp1,j:mP+2<j<n—k},

see Figure 4(a). Note that by (3) and (4), there are between 0 and r
vertices zp41,; in Va. We construct the edges {v;;,vi,j+1} for 1 <@ < p,
1<j<r-1, and {2p41,j, 2p41,j+1} for rp+2 < j < n—k -1, to which
we add the edges {wo, Zp+1,rp42} and {wo,vir}, 1 <i < p.

Then we create new edges as follows: we link each of the k vertices in 1}
to a different subset of vertices taken among the vertices v;;, 1 < i < p.
This is possible because k < 27, and this may include the empty set for a
particular vertex in V;. Obviously, this can be done in such a way that G
is connected.

The graph G is r-twin-free: one can see that two vertices in V; are not
r-twins, since by construction the vertices v;, 1 < i < p, all contribute
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differently to the balls of radius r centered at the vertices in the clique; one
vertex in V) and one vertex in V, cannot be r-twins, because wy r-covers
all the vertices in V,, and no vertex in V;. Finally, we have to consider
two vertices in V5. If p = 1, then & = 2 and our construction yields the
path Py, which is r-twin-free for n > 2r + 1. If p > 1, the vertices wo, v; ;
and vy ;¢ (¢ # i') belong to chordless cycles of length 2r + 2 or more, which
suffices to show that they are not twins. Lastly it is easy to check that the
vertices zp41,m are twins neither with themselves, nor with wp, nor with

any vertex v; ;.

In some cases, we can improve on this construction by one. First, we place
ourselves in the case when 2P~1 < k < 2. We have seen that (3) holds:
rp+ 1 = n — k, which means that there are no vertices 2,41,;. Now we
assume that k£ < 2P—p—1, and we modify the previous graph as follows: we
remove the edges going to wp, and we move wy into the clique, which has
now size k + 1, see Figure 4(b). We keep the edges {v; j,vij+1}, 1 <i < p,
1 £ 7 £ r—1, and we link each of the k 4+ 1 vertices in the clique to
a different subset of vertices taken among the vertices v;;, 1 < i < p,
in a way slightly different from previously: subsets containing ezactly one
element v; ) are forbidden. This is possible because k41 < 2P —p, and this
may include the empty set for a particular vertex in the clique. We can
also require that each v;; is linked to at least one vertex in the clique (so
that G is connected). We leave it to the reader to check that this graph is
r-twin-free.

Next, we assume that k = 2P withp > 2 and that n —k=rp+1+7r —
see (4). Then, since n— (k+1) = (p+ 1)r, we can, starting from the graph
in Figure 4(a), remove the edges going to wp, move wy into the clique, and
directly link 2,.41,rp+2 to vertices belonging to the clique, so that the chain
of vertices 2p41,7p42, -+, Zp+1,rp+1+r assumes the same role as any of the
chains v; 1, ..., v;,r; again, because k +1=2P +1 < 2?1 _ (p 4 1) when
p 2 2, we can avoid the singletons, cf. above paragraph. See Figure 4(c).
This new graph, which contains a clique of size k + 1, is r-twin-free (and
can be made connected). We leave the details to the reader.

Finally, using the two particular constructions given in Figure 5, which are
easy to check, we obtain the following lower bounds on F,. ,(w).

Theorem 25 For allr > 2 and n > 2r + 1, we have:
F rn (w) 2k,
where k is the largest integer such that k + r[log, k] <n — 1.

If the same k satisfies either k < 2Mlo8ak1 _ T logok]l — 1, or4 < k =
2Moekl gndn = k+1+r([logy k] +1), ork =2 and n = 2r+3,0rk=5
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Figure 5: Two particular constructions of twin-free graphs.
and n = 12 with r = 2, then we have:
Fin(w)2k+1
A

Next, we give upper bounds on F ,(w).

Theorem 26 Let r > 2 and n > 2r + 1 be two integers, let G = (V,E) be
a connected r-twin-free graph with n vertices, and let Gy be a clique of G
with size kg. Then we have:

ko + r[logy ko] < n.
If ko satisfies 21982 %ol _ [log, ko] < ko (< 2flogz ko) then we have:
ko + r[logg ko] <n—1,

unless either r = 2, [log, ko] = 3, ko = 6 and n = 12, or [logy ko] = 2,
k=3 andn=2r+3.

Proof. Let G = (V, E) be any connected r-twin-free graph with n vertices,
containing a clique Gy of size ko, whose set of vertices is denoted by V5, and
let po = [log, ko]. For i =1,2,...,7,..., let V; = {x € V : d(z, Vo) = i},
where as usual d(z, V) is the smallest distance between z and the vertices
in V. Obviously, the sets V;, i = 0,1,..., partition V. Because Gy is a
clique, any vertex in V; is at distance i or i + 1 from the vertices in Vp. We
observe that edges in G can exist only inside the sets V; or between V; and
Vig1, for i = 0,1,... (there is no jump between non-consecutive sets Vi).

Assume that for some i between 1 and r, we have |V;| < po. Then there
are two vertices in Vp, = and y, such that B;(z)NV; = B;(y)NV;. We claim
that z and y are r-twins.
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Assume on the contrary that there is a vertex w which, say, r-covers
z and not ¥: d(w,z) < r and d(w,y) > r. Then necessarily w € V, and
d(w,z) = r, d(w,y) = r + 1. Consequently, B;(z) N V; # @ and any vertex
2 € By(z) NV, is at distance exactly ¢ from z and exactly » — ¢ from w.
Since z is also in B;(y) N V;, this implies that d(w,y) < r, a contradiction
which shows that z and y are twins.

So |Vi| 2 po and

n 2> ko + po. (5)

Next, we assume that 2P° —pg < ko (< 2P°), and show that we can improve
on (5) by one.

We can assume that for i = 1,2,...,r, |Vi|=ppand V; =@ for j > r
(otherwise, n > ko +7po and we are done), so that n = kg +rpy. We distin-
guish between two cases, each of them ultimately yielding a contradiction.

Case 1: Vz € V1,Vy € V1,32 € Vp such that {z,z} € E and {z,y} € E.

Let zo,z1,2-—) be any vertices in Vp,V; and V,_;, respectively. We
know that d(z,_1,20) < 7, and, since z,_, is at distance r — 1 from Vj,
there is a vertex ¢t € V} such that d(z,-1,t) = r — 2. By assumption, there
is a vertex z € Vp such that {2,z,} € E and {z,t} € E, so d(zp—1,2;) <
(see Figure 6). This shows that for all z € VoUV}, we have: V,._; C B,.(z),
and, a fortiori, V \ V. C B,(z). This implies that the sets B.(z) N V,,
z € Vo UV}, must be pairwise distinct. This in turn implies that 2P0 >
[Vo| + V1| = ko + po, which contradicts our assumption 2P° — pg < kq.

Case 2: 3z € V},3y € V}, such that Vz € Vp, {z,z} € E= {z,y} ¢ E.

We know that the sets By1(z) N V4, z € Vy, must be pairwise distinct.
Moreover, they do not contain both vertices z and y. Therefore, since
there are 2P°=2 gubsets of V; which contain simultaneously z and Yy we
have only 2P0 — 2P0=2 gybsets available, and we obtain: ko < 2P0 — 2Po—2,
This contradicts 2P° —pg < ko, unless either pg = 3, ko = 6 and n = 3r +6,
orpg=2,kp=3and n=2r+43.

Finally, among the above cases which do not give a contradiction, when
Po =3, n =3r+6, 7 > 3, we show that actually ko, = 6 is impossible, so
ko < 5 and in this case also, ko +7pp < n— 1. Strangely enough, the proof
of this particular case is not that easy; see Appendix. A

The following theorem shows that the upper and lower bounds given in the
previous theorems actually coincide.

Theorem 27 Forallr > 2 andn > 2r+1, let k be the largest integer such
that k+r(logy k] < n—1. If k satisfies either k < 218251 _[log, k] -1, or
4 < k=2M"%* gndn =k+1+r([log, k) +1), ork=2 andn = 2r + 3,
ork =35 and n = 12 with r = 2, then we have:

Fr,n(w) = k + 1.
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Figure 6: A partial representation of the clique Go and the sets V;.

Otherwise, we have:
Frln(w) = k.

Proof. Let p=[log, k], K=k+1ifk <2°P—p—1,or 4 < k=2° and
n=k+1+r(p+1),ork=2andn=2r+3, or k=>5and n =12 with
r = 2, and K = k otherwise; this means that, by Theorem 25, we have:
Fn(w) > K.

Let kg be the size of the largest clique in a connected r-twin-free graph
with n vertices, and pp = [log, ko]. We have seen that ko satisfies ko +
rpo < n, and even ko + 7pg < n— 1 if ko is such that 2P0 — pg < ko < 27°,
excluding the case (a) r = 2, pp = 3, kp = 6 and n = 12, and the case
(b) po =2, ko =3 and n = 2r + 3.

We now prove that K > kg, which will establish the theorem.

If kg + rpo < n — 1, then the very definitions of & and K show that kp <
k < K. So from now on, we assume that ko + rpg = n, and the definition
of k now shows that k = kg — 1. Because kg + rpp = n, either we have
290 _ pg > ko, or we are in cases (a) or (b). Since these two cases have
precisely been treated in Theorem 25 (see Figure 5), we can assume from
now on that 2P% — py > ko, s0 2P —pp — 1 > k.

If p = po, then k < 2P — p — 1, and we are in the case when K =k + 1,
i.e., K= ko.

Ifp+#po, thenp=po—1, ko=2P"1+1and k =27, If k <2, then
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Figure 7: General behaviour of k and F, ,(w) with respect to n.

ko does not satisfy 27 — pg > ko; so k > 4. Since n = kg + rpo, we have
n=k+1+rp+r, and again we are in a case when K =k + 1 = k.
In both cases (p = po and p # po), K > ko. A

The very general behaviour of k and F;.,(w) with n is given by Figure 7.
We conclude this section by showing that F}. ,(w) is close to n—r logy n,
when r is fixed and n grows, and that F,,(w) is bounded by above by a

constant when r is a fraction of n.
For simplicity, we study not exactly the k defined in Theorems 25

and 27, but the largest k such that k + r[log, k] < n, since this new &
is also close to Fy n(w).

Proposition 28 Let r > 2 andn > 2r + 1 be two integers, and let k be
the largest integer such that k +r[log, k] < n. If

n— 2[logz nj-1

"< Thogen] ©
or equivalently 2U°82n=1 < n _r|log, n|, then
n—rl|loggn] —r <k <n—rllogyn|, )

and these bounds are sharp.
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Proof. Let £ = |log,n|. By assumption, 26~} < n —r¢ < 2441,

Because [logy(n — 7€ —1)] < £+ 1, we have (n — r€ — r) + r[logy(n —
rl —1)] € n,s0 k > n—rf—r, with possible equality.

Because [logy(n — )] > ¢, we have (n — rf) + r[logy(n — r€)] > n, so
k < n — r¢, with possible equality.

So we see in particular that, if » is fixed, then there exists an ng such that
all n > ng satisfy inequalities (7), which means that when n goes to infinity,
F, n(w) behaves like n — rlog, n.
If now r is a fraction of n, say r = pn, where p is a constant satisfying
0 < p < 1/2, then the very definition of k gives the rough estimate
n-k _1

log, k] < <=,
[logy k] < P

showing that k < constant. The extremal case is when r = (n — 1)/2 and
Fr'n(w) =2 (path Pn).

6 Recapitulatory

The tables below recapitulate the results obtained in the previous four
sections, without the specific conditions on n or r. They are given for
r=1,r=2,and r > 3. We can see that, apart from the conditions on n
and r, the only uncertainty left is for f(c,), 7 = 5.

r=11] fi() fin() Fia() |
n 3 (Cor. 4) n n
a1 2 (Th. 15) [loga(n + 1)1 (Cor. 12) | n—1 (Cor. 7)
o7 1 (Cor. 20) || 1 (Cor. 20) |n/2] (Cor. 21)
w 2 (Th. 22) || 2 (Th. 22) =n- [log;n] —1or
=n — |log, n| (Th. 24)
r=2] f2() fan(.) Fyn ()
n 5 (Cor. 4) n n
c2 3 (Th. 15) [logy(n 4+ 1)] (Cor. 12) | n—1 (Cor. 9)
~a 1 (Cor. 20) || 1 (Cor. 20) [»/3] (Cor. 21)
w 2 (Th. 22) || 2 (Th. 22) =kor=k+1, kmax
s.t. k+2[loga k] £n—1
(Th. 27)
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23| f() " frn() Fra() —I

r
n 2r + 1 (Cor. 4) n n
cr > [logy(2r + 4)] (Th. 13) || [loga(n+ 1)] | =1 (Cor. 9)
<r+1(Th 14) (Cor. 12)
YIr 1 (Cor. 20) 1 (Cor. 20) [n/(r + 1)] (Cor. 21)
w 3 (Th. 22) 2(Th.22) | =kor=k+1,
k max such that
k+r[logok] <n-1
(Th. 27)

7 Appendix

Continuation of the proof of Theorem 26, the case pp = 3, n = 3r + 6,
r>3.

Assume that a clique Go = (Vp, Eo) of size six exists. We denote by
v, ..., Ug the vertices in Vy, and by a;, b;, s; the three vertices in V;, for i
between 1 and . Going through Cases 1 and 2 in the proof of Theorem 26,
we can see that the absence of contradiction appeared only in Case 2, so
there are two vertices in V3, say a; and by, such that for all 7 between one
and six, the edges {ai,v;} and {b;,v;} do not exist simultaneously. It is
then straightforward to see that, up to permutations, there is a unique way
of linking V5 and V), given in Figure 8(a). We will denote the vertices in V;
by the set of vertices in V) to which they are linked; so, for instance, v, = @,
or v4 = {a1,8:}-

Now there is a path of length 7 — 1 between V, and a, (otherwise, 0
and {a;} would be twins). The same is true for b; and s;. Without loss of
generality, one path of length r — 1 between s; and V; is sy, s3,..., 3., see
Figure 8(b).

(i) Assume that there is a second vertex in V,, say b,, which is at
distance r — 1 from s;. Then the three vertices {s,}, {1,5:} and {a;, 81}
are within distance r from all vertices in V, except maybe a,. Therefore,
among these three vertices, at least two of them are r-twins. This shows
that in V,., s, is the only vertex at distance r — 1 from s,. In particular:

d(ar,81) 27 (8

We can also see that all vertices in V, except maybe a, and b, are within
distance r from s;.

(i) Next, we assume that d(b;,s;) < r — 1. Then the five vertices
s1, {s1}, {s1,b1}, {s1,a:} and {b1} are within distance r from all vertices
in V, except maybe a, and b,, and some of them are necessarily r-twins
(two vertices are not sufficient for distinguishing between five vertices). So:
d(by, s;.) > r, and similarly,

d(a1,8,) 2 . (9)
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Figure 8: The case r > 2, pg = 3, n = 3r + 6: there is no clique of size six.
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Now, by (i) and (ii), any path of length r — 1 going from V;. to b, cannot go
through vertices s;. Therefore, without loss of generality, we can assume
that one such path is by, by, ..., br, and no edge {s;, b;11} or {b;, s;11} exists
in G, for i between 1 and r — 1. See Figure 8(c).

We now study the possible connexions between vertices a; and b;;;
or bi_;. Assume that the path a;,as,...,a, does not exist, and let 7 be
the smallest integer such that the edge {a;,a;+1} does not exist, and j the
largest such that {a;_;,a;} does not exist.

Since there is a vertex in V;. which is at distance r — 1 from a; and since
inequality (9) holds, the edge {a;,bi+1} exists; also, since there is a vertex
in V; which is at distance r — 1 from a, and since inequality (8) holds, the
edge {a;,b;—1} exists, see Figure 8(d) and (e).

Now a; and b; are within distance r from all vertices except maybe
those in V., and the same is true for s; and the six vertices in V5. But then
it is impossible to distinguish between nine vertices with only the three
vertices in V...

This shows that there is the path ay,a3,...,a,, and furthermore there
are no edges {a;,biy1} or {ai+1,b;}: Figure 8(f) gives the only possibility
for paths of length r — 1 between the vertices a;, b; and s; on the one
hand, and V; on the other hand; additional edges in this figure can be only
horizontal, i.e., of type {a;, b;}, {ai,s:} or {si,b;}.

So far, in Figure 8(f), we have B.({s1}) = B.(s1) = V \ {a, b},
B.({a1,81}) =V \ {b,}, and B.({b1,51}) = V'\ {a,}. Therefore, we must
have two edges {s;,b;} and {sj,a;}, 1 < i,j < r, so that B.(s;) = V;
see Figure 8(g). This however implies that B.(s3) = V, i.e., s; and s
are r-twins (this works only for r > 3, since v; ¢ B,(s2) when r = 2, cf.
Figure 5(b) which gives a 2-twin-free graph). A
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