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Abstract

We given a two parameter generalization of identities of Carlitz
and Gould involving products of binomial coefficients. The general-
ization involves Jacobi polynomials.
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1 Introduction

Let [z"](f(z)) denote the coefficient of ™ in f(z). An old problem of Dixon
from 1891 3] is to study the sums
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The following special values of Sy, (p, z) are known
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Carlitz [2] showed that
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where P, is a Legendre polynomial of degree n. Gould [6] proved the
following analogous identities
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The purpose of this note is to extend these results to the Jacobi polynomials
{PeP()},
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[12, (4.21.2)] with the shifted factorial (A), defined as
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The Legendre polynomials are the special case

(1.8) P, (z) = PO9(z).

In terms of gamma functions the binomial coefficient is

A\ T(A+1)
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Our main results are Theorems 1 and 2 below as well as (1.14). The
proofs will be given in §2. Section 2 also contains several remarks about

identities.

Theorem 1.1. We have

l1-2z

o) S (V) (1)

k=

2 ("0 () GO

k=0

[z"] (1 - 2)*(1 + tz)* P{*A (1 x)

188



The equality of the second and third lines follow from (1.9).

It is clear that the special case @ = = 0,A = n,t =1 of Theorem 1 is
(1.2) while @ = 8 = 0,A = n,t = —1is (1.4). It is clear that the case 8 =0
is

"] 1 = z)*(1 + tz)* P(>O) (ii;-)

SO

which is a two parameter generalization of (1.2).
Theorem 1.2. The following identity holds
- (L) GID )G
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Here again Theorem 2 is a two parameter extension of (1.3).

It is very curious to see that (1.12) is a convolution of the summands in
(1.10) with A = 0.

As we shall see in §2 the proofs are based on
14z = /n+a\/n+ B8
—gyrple) (2T 2} k
(1.13) (1 —z)"P§ (1—:1:) ’g(n_k)( . )z.
This shows how one can generalize (1.5). Indeed
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By specializing the coefficients ax one can generate many binomial coeffi-
cient identities each of which resembles (1.5).
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2 Proofs and Remarks

The proofs use the following representation of Jacobi polynomials
n k n—k
(@8) (1) — nt+a\/n+p\ (z-1 z+1
an e -3 (710) (1) (552) ()

which is (4.3.2) in [12)].

Proof of Theorem 1.1. Apply (2.1) to see that the left-hand side of (1.10)

equals '
1 (S0 o)

k=0
Expand (1 + tz)* by the binomial theorem and evaluate the coefficient of
z". This establishes Theorem 1. O

Theorem 1.2 follows similarly from (2.1).

Remarks:

1. Simons [10] proved

Som(0) (1o rer- gm0 (1)

k=0 k=0

which he called acurious identity. Later Gould [7] pointed out that
this is merely a restatement of the well known property P,(—z) =
(=1)"P,(z) of Legendre polynomials with z replcaed by 1+ 2xz. This
latter identity is a special case of the more general identity

P#)(—z) = (-1)"PP)(-z),
which when rewritten using (1.6) with z replcaed by 1 + 2z becomes
a binomial coefficient indentity.

2. In 1891 Dixon evaluated the sum S,(3,—1) in [3]. This, however, is
a very special case of Dixon’s later and more general theorem [4]

3Fy(a,b,c;l1+a—-b1+a—cl)
(22) Tr@+ae/2T(14+a-bl(l1+a—cl'l1-b—c+a/2)
T Tl+al(l-b+a/2)T(1-c+a/2)[(1+a—-b-c)’
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[11, (IIL.8)). Indeed S,(3,—1) is the special casea =b=c = —n. A
more general terminating case is

i (n) (@)n (B)n (-1)* _(1+a)p(l-n+a/2),
kJ(1+a-b)n(l+a+n) (1+a/2.(1+a—b)'

k=0
[11, (2.3.3.6)].

3. One may wonder whether Theorems 1.1-1.2 can be extended to a more
general class of orthogonal polynomials. The Askey Scheme [9] has the
Wilson and Racah polynomials at the top and the other orthogonal
polynomials are special or limiting cases of them. In spite of the fact
that the Jacobi polynomials are a very special limiting case of the
Wilson polynomials, the Jacobi polynomials are neverthless the most
general polynomials for which our method of proof works. The reason
is that the polynomials which are at any level in the Askey Scheme
higher than the Jacobi polynomials have the polynomial variable as
a parameter(s) in the hypergeometric function representation. This
complicates the evaluation of the respective polynomial at (1+z)/(1—
z).

4. In terms of g-analogues, it is not clear how to use the composition of
z — (z +1)/(1 — z) with g-function. There are g-analogues of the
Legendre and Jacobi polynomials (1], [8], [5] but it is not clear how
to find g-analogues of our results.
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