SUPERGRAPHS AND GRAPHICAL COMPLEXITY OF
PERMUTATION GROUPS

ANDRZEJ KISIELEWICZ

ABSTRACT. This paper introduces the concepts of a supergraph and
graphical complezity of a permutation group, intended as a tool for
investigating the structure of concrete permutation groups. Basic
results are established and some research problems suggested.

1. INTRODUCTION

We speak of concrete permutation groups in contrast with abstract
groups they represent. Instead of abstract isomorphism we apply permu-
tation isomorphism in our study: two permutation groups are considered
as different unless they can be obtained from each other by renaming ele-
ments of the base sets. Obviously, the permutation groups viewed in this
way give more insight into the the symmetry of an object than abstract
groups, Figure 1 being here a striking example. Yet, the problems involving
concrete permutation groups are usually much harder then their abstract
group counterparts.

It is well-known that while every abstract group is isomorphic to the
automorphism group of a graph, not every permutation group can be rep-
resented as equal to the automorphism group of a concrete graph. This
paper is the result of our attempt to find a simple graphical representation
for concrete permutation groups, which could form a base for an exhaus-
tive classification. Attempts to do such classifications via k-ary relations
go back to Wielandt [14], but the concept generally turned out to be hard
(see also [6, 12] and [1, 2, 15] for further references). A trouble with k-ary
relations is that they lack a structure that could be easily visualised. Su-
pergraphs we introduce in this paper have superedges coming in a variety
of types that have to be preserved by automorphism. This makes possible
and often easy to see a solution of a problem and to construct proofs that
can be subsequently reproduced in terms of relations. So, our hope is that
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FIGURE 1. Graphs with automorphism groups isomorphic
to S; wr Sg.

this uniform graphical representation may prove not only to be more acces-
sible, and interesting as a new point of view, but also helpful in attacking
old problems.

Formal definitions are given in Section 2, where we also discuss dia-
grams, and prove the basic result. In Section 3, we introduce the concept
of graphical complezity based on the rank of a supergraph, and establish
the complexity of the simplest classes of permutation groups. Here we ap-
ply an approach used already in [7, 4, 5], where various constructions of
permutation groups are studied with regard to the growth of complexity.
The most interesting open problem and further directions of research are
suggested in conclusion.

It is my pleasure to thank Peter Cameron, Wiesiek Dziobiak, Mark
Ellingham, Peter Jipsen, Mikhail Klin, Wojtek Peisert, and Stephan Tho-
masseé who all, more or less directly, influenced the content of this paper.
I wish also to thank anonymous referees for many comments and remarks,
both to those who were enthusiastic about this paper and to those who
did not like my ideas at all. All remarks I found valuable and I believe
they helped me considerably in improving the presentation of the ideas
and results.
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2. SUPERGRAPHS

A supergraph consists of vertices and superedges; each superedge, like
an edge in a simple graph, joins two elements, and the only difference is
that these elements may be also other superedges.

Formally, a supergraph is a pair (V,S) of sets V of vertices and S of
superedges such that S C E¥(V), for some i > 1, where E'(X) denotes the
set of unordered pairs of X, and E¥(V) = EX(V U E*~}(V)) for i > 1. To
fit the simple idea described above we require also that S is hereditary in
the following sense: if {s,t} € S, and s is not a vertex, then s € S, as well.

We consider only finite simple supergraphs, i.e., with both V and S
finite, and with no loops (each superedge is a two-element set). A superedge
{s,t} € E¥(V)\ E*"1(V) is said to be of rank i. The rank of a supergraph is
the maximum of the ranks of its superedges; for empty supergraphs, those
with S = @, the rank is zero.

Supergraphs have natural and simple representations, both graphical
and symbolic. In diagrams vertices are drawn as circles, and superedges as
lines joining suitable elements. A superedge joined with another superedge
or a vertex has a filled circle on it, such that, all lines joining the superedge
with other elements come out from this very circle. In such a way the
picture consists only of lines and two kinds of circles (in a three-dimensional
picture, without line crossings, filled circles could be removed). To give a
precise definition we start from symbolic representation.

In this representation, to denote superedges, we use words consisting of
symbols of vertices and brackets, in the natural way. Thus, (zy) denotes the
superedge joining vertices z and y, and (st) denotes the superedge joining
elements s and ¢. Then, for example, (c(ab)) is a superedge joining vertex
¢ with edge (ab), and ((ab)(c(ab))) is a superedge joining superedge (ab)
with the superedge (c(ab)). The rank of a superedge coincides with what
is sometimes also called the rank of the corresponding word.

Note that this notation is not quite unique: the elements in brackets
can be written in either order. Formally, the strings denoting superedges
may be considered as idempotent commutative groupoid words (IC-words, in
short), put in their normal form (since by definition we do not allow loops,
we do not have substrings of the form ss). A superedge s is contained
in a superedge ¢ if the word corresponding to s is a subword of ¢ (up to
commutativity).

By definition, if s belongs to a supergraph S, then each superedge con-
tained in s also belongs to S. Therefore, usually it is enough to deal
only with mazimal superedges, those not contained in other superedges. In
particular, only maximal superedges are listed in symbolic representation.
From this point of view, a supergraph is simply a set of noncomparable
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FIGURE 2. A supergraph K on 4 vertices representing the
Klein 4-group.

IC-words, and from now on we adopt convention that in notation (V,S)
the set S contains only maximal superedges.

Now, in order to draw a diagram of a supergraph (V,S), we first make
a list of all superedges (which can be easily derived from S), and then
we draw in turns: vertices, superedges of rank 1, superedges of rank 2,
etc. To distinguish between usual line crossings and the starting points
of superedges, for the latter we use filled circles. To distinguish between
starting points of lines and points on lines (representing lines) we adopt
the convention that the lines representing superedges joining two points are
smooth segments of lines, while a line starting in a point has no smooth
continuation through the point.

Example 1. Let V = {1,2,3,4} and

S = {((12)(14)), ((12)(23)), ((12)(34)), ((23)(34)), ((34)(14)), (13), (24)},

K = (V,S) is a supergraph with six superedges of rank 1 (which are (12),
(14), (13), (23), (24), (34)), and five superedges of rank 2 (listed in S). It
is pictured in Figure 2.

While given a set of noncomparable IC-words we may easily draw a. cor-
responding diagram (at least, in principle), the converse is not so obvious.
It is even not quite obvious that the diagram determines the supergraph
uniquely. To see this, we need to observe that the maximal superedges are
distinguished by the fact that these are the only lines joining two points
(starting in them) having no filled circle on themselves. Once we remove
them from the diagram, and then remove filled circles of ”degree 2” (those
being no longer starting points for other superedges) we get a diagram of
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FIGURE 3. Supergraph with double transitive automor-
phism group AGL,(5).

rank less by one. Thus, using simple induction we may prove that the
diagram determine uniquely the supergraph.

The automorphism group Aut(S) of a supergraph § = (V,S) may be
defined and viewed into two ways: 1) as the set of all permutations on
V preserving the diagram (for every superedge s € S its image under the
action induced by a permutation of V' is again in S), and 2) as the symmetry
group of the set of words representing maximal superedges (i.e. the set
of all permutations preserving the set of these words). So, investigating
automorphism groups of supergraphs we may work both with graphical and
symbolic representation. This makes supergraphs easier objects to study
then k-ary relations, and may be even a way to solve analogous problems
on the symmetry groups of relations.

For example, in the study of the automorphism groups of graphs, a very
useful invariant is the degree of a vertex. For supergraphs we may also
consider analogously the degree of a superedge defined as the number of
outcoming other superedges, and even the degrees with respect to types of
superedges (these where used successfully in [5]).

Example 1(continued). In Figure 2 every vertex has degree 3, but among
the superedges of rank 2, there are two superedges of degree 3, two of degree
2, and the remaining two of degree 0. It follows that every automorphism
preserves or exchange the pairs (1,2) with (3,4), (1,3) with (2,4), and
(1,4) with (2,3). It is not difficult to see that each of this exchangings is
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4¢ )
FIGURE 4. Decomposition of the supergraph of Figure 3.

actually possible, and that the full automorphism group is just the Klein
4-group with its regular action.

Example 2. In Figure 3, a supergraph is given whose automorphism group
is the one-dimensional linear affine group AGL,(5) over the five-element
field. It may be instructive to check that this is indeed the case. First ob-
serve that this supergraph has 20 superedges of rank 2 (the starting points
are filled circles), and (the remaining) 10 superedges of rank 1. As it is
well known (cf. [3]), AGL,(5) can be presented as the permutation group
generated by two cycles: (0,1,2,3,4) and (1,2,4,3) (the first is translation
by 1, and the second is multiplication by 2). From Figure 3 one sees im-
mediately that the first cycle preserves the supergraph structure. In order
to see that the second cycle does, as well, we decompose the supergraph
into two parts and draw them separately in a way that makes the state-
ment, again, obvious: see Figure 4. The only thing to check is that the
supergraphs in Figures 3 and 4 have exactly the same superedges. Now,
from Figure 3 we also see that transposition (2,4) does not preserve the
structure of the supergraph (the image of the superedge ((40)1) under this
transposition is ((20)1), and the latter does not belong to the supergraph).
Therefore, since AGL;(5) is a maximal subgroup of S, the automorphism
group of the supergraph given in Figures 3 and 4 is precisely AGL,(5).

Of course, the practical use of diagrams, as in case of graphs (or even
more), is restricted only to small supergraphs. What however counts here
is that the very idea of existence of graphical representation may be very
useful in arguments (arguments in [5] are very illuminating with this re-
spect).

Before we state our first result we fix some notational conventions. By a
group we mean always a permutation group, unless otherwise stated. We
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say often briefly that a graph (digraph, colored graph, or other mathemat-
ical object) represents a permutation group G = (X, G) meaning that the
automorphism (symmetry) group of this object is equal (up to permuta-
tion isomorphism) to G (i.e., the elements of the base sets may be identified
in such a way that the automorphisms coincide with the permutations in
G). The automorphism (or symmetry) group of an object S is denoted
generally Aut(S). If the base set is clear from the context we use short
notation S = (X, S), for a supergraph on a set X of vertices, and similarly,
G = (X,G) for a permutation group on the same set X. We also write
informally x,s € S both for vertices and superedges. We use the notation
w = w(z1,%2,...,Zm) to denote a word of in m letters z;,z3, ..., Zn. Fol-
lowing common practice, writing down concrete words, the ¢xternal pair
of brackets is usually omitted. Below, logz stands for log, z, and we put
logz =0 forz =0.

Theorem 1. For every permutation group G = (X,G) on an n-element
set X, there exists a supergraph S = (X, S) such that Aut(S) = G, and the
rank of S is less than 2 + log(n - 2) .

Proof. It is well-known (and easy to see) that each finite permutation group
G = (X,G) is the automorphism group of a relational structure (X, R),
where R is an (n — 1)-ary relation on X [3, p. 43]. Indeed, it is enough to
fix an (n — 1)-tuple (z122 ...zn—1) of distinct elements of X and take R to
be the least set containing (z1x3...2,—1) and closed on permutations in
G (under its natural action on k-tuples).

So, all we need is to show that for every relational structure (X, R), with
a single relation R, there exists a supergraph (X,.S) such that Aut(S) =
Aut(R). This is, in fact, a problem of encoding relations into supergraphs.
The construction below will be useful also later.

Let us consider words of the form z;(z2(...Zm-1(ZmZm+1) - ..)), which
we denote briefly 123 ... £m—1(ZmTm+1) (We leave the last pair of brackets,
because Zp,Tm41 can be written in the reverse order). Then, there is an
obvious one-to-one correspondence between m-tuples (z;,z2,...,Tm) of
elements X and words of the form 123 ...2n—1(2mz1). It is also obvious
that the supergraph S consisting of all superedges corresponding in such a
way to m-tuples in a relational structure (X, R) has the same automorphism
group as (X, R).

This natural correspondence yields the bound n — 1 for the rank of
the supergraph. To get better bound we must find a more compact en-
coding. What we need is to assign to every m an asymmetric IC-word
w = w(z,T2,...,Zm) (ie., one with the property that each permutation of
variables yields a different IC-word; for example, z(yz) = z(zy) is not asym-
metric). Above, we have used uniformly the word w = z,25 ... Tp—1 (Zmz1)
for all m. Now we look for words of lower rank.
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We prove that for all £ > 3 and n > 4 satisfying n < 25! + 1 there
exists an asymmetric IC-word w(z;, Zg,...,Zs) in n letters of rank k.

The proof is by induction on k. For k = 3, the words ((zy)(2t))(z(2u))
in 5 letters, and ((zy)(zy))(z(zu)) in 4 letters, are as required.

For induction step, define u(zy,2;) = (z122), and

(T, ..., T2k) = u(T1y. . o T)U(Tht1, - - -y T2k)-

Suppose that the claim above is true for a fixed k, and let w(z1,22,...,%Zm)
be an asymmetric IC-word in m = 2%¥=! + 1 letters and of rank k. Then,
consider the word

U(Z1, Y15+ -y Eme1, Ym—1)W(T1, T2, . - ., Tin—1, 2)-

This word is, by assumption, of rank k+1, in 2(m — 1) + 1 = 2¥ + 1 letters,
and it can be easily seen to be asymmetric. Hence, it proves the required
statement for n = 2% + 1. For 27! +1 < n < 2% + 1 it is enough to put

#1=... =y, with r = 2¥ + 2 — n. A key observation is that, in any case,
the word u on the left hand side is not asymmetric itself, in contrast with
the word w(z1,Z2,...,Tm-12) on the right hand side, and therefore the

resulting word is always asymmetric. This completes the induction proof.

Now, having the claim proved, it is routine to see that given n > 4,
the minimal rank of an asymmetric word in n letters does not exceed [1+
log(n — 1)]. Taking into account that according to the argument at the
beginning of the proof, it is enough to apply asymmetric words in n — 1
letters, the rank of a supergraph S we construct (using these words as
corresponding to m-tuples) does not exceed [1 + log(n — 2)].

It remains to consider cases n = 2 and 3. For n = 2 there are two groups:
S, represented by a graph, and I, (trivial) represented by a directed graph.
For n = 3, there are four groups (up to permutation isomorphism) that can
be denoted Ss,S2,C3, 3. Again they are represented either by a graph or
a directed graph. Since, directed edges can be represented in supergraphs
as superedges z(zy), in any case, the rank of a supergraph is less or equal
to 2, and the result follows. O

Note that the proof above contains a method that given a k-ary relation
representing a permutation group makes possible to produce a supergraph
representing this group.

3. GRAPHICAL COMPLEXITY

In general, by a graphical complexity of a permutation group P we mean
the degree of complexity of a graphical structure whose symmetry group
(automorphism group) is P. In this paper, the result above suggests to
define the graphical complezity of G as follows. By gc(G) we denote the
least k such that supergraph S = (X, S) of rank k represents G. Theorem 1
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shows that gc(G) is well-defined, and gc(G) < 2 +log(|X| — 2). Since there
is a finite number of supergraphs of a given rank on X, we see that gc(G)
is, in principle, computable.

The trivial graphs without edges represent the full symmetric groups
Shn, and therefore gc(S,) = 0. The groups with gc(G) < 1 are exactly the
automorphism groups of graphs. It is also not difficult to see, using the
encoding from the proof above, that for automorphism groups of directed
graphs we have gc(G) < 2. Taking into account the representation of
AGL, (5) in Figure 3, one also easily infer that gc(AGL, (5)) = 2. A natural
question arising in this connection, whether there are supergraphs with
higher complexity, is answered by the next result.

Theorem 2. For every k > 1 there exists a permutation group G such that
gc(Gk) = k.

Proof. The most widely used example of groups that are difficult to repre-
sent as a symmetry groups of given objects are the alternating groups A,.
From the previous theorem we have gc(A4,) < 2 + log(n — 2), and we will
see that this bound is close to the actual value. At this moment, we are not
able to establish the exact value, but what we need here is only a suitable
lower bound.

It should be obvious that we will be done when we establish the following
two facts:

(i) ge(An) > log(n —1).

(i) ge(An+1) < ge(4a) +1

First let us note that if Aut(S) = A, then S has a superedge involving
more than n—2 vertices. Indeed, if the number of vertices (letters) involved
in an superedge 8’ is n — 2 or less, and say s’ = s(z1,...,ZTn-2), then for
every permutation 7 € S, there exists a permutation ¢ € A, such that,
under the induced action of S, on superedges, 7(s') = o(s’). Hence, the
set S’ of all superedges s € S such that s = g(s') for some o € S, is
invariant under any permutation of vertices. It follows that removing from
S all the superedges that are in S’ leaves us with a supergraph S” whose
automorphism group is the same as that of S. Hence, we may assume
that each superedge in S involves at least n — 1 vertices. Now, since the
maximal number of vertices involved in an superedge of rank k is 2¥-2, (i)
easily follows.

Going one step further we infer that it is necessary that S has an
superedge (in > n — 1 letters) such that no odd permutation in S, fixes the
superedge. Otherwise, the argument in the previous paragraph works. Con-
versely, if there exists such an superedge then it is not difficult to see that
its orbit under the action of A, forms a supergraph § with Aut(S) = 4,,.

Now, to prove (ii), suppose that gc(A,) = k. Then, there exists an
superedge s = s(z1,...,Zm) of rank k, with m < n, such that no odd
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FIGURE 5. Supergraph with automorphism group A4 and
its ,,face”.

permutation in Sy, fixes it. It follows that the superedge s’ = (Zn415) has
the same property for permutations in Sp4+1. Indeed, if 7 € Sp41 were an
odd permutation fixing &', then 7(Zp41) = ZTn41, and 7’ obtained from 1
by restricting its domain to {zi,...,2s}, would be odd and would fix s. It
follows that the orbit of s’ under the action of Ap4) forms a supergraph S’
with Aut(S’) = An+1. Therefore, gc(An+1) < k + 1, as required. O

In Figure 5 a supergraph is given whose automorphism group is A4. It
can be viewed in three dimensions as a tetrahedron whose face is pictured
beside. This observation makes it immediately clear that any 3-cycle pre-
serves the structure of the supergraph, while a 2-cycle does not. It follows
that the automorphism group is the alternating group. (I am grateful to
Peter Jipsen for this observation; in fact, the decomposition in Figure 4
also follows this idea). It follows that gc(A4) = 2

Note that for each Mathieu group M, gc(M) > 3, since they are 4- and
5-transitive (in such a case, if ((zy)(zt)) is a superedge of a supergraph
representing M, then each word of this type must be a superedge). We
also remark that using A, one can construct various groups G with gc(G)
arbitrarily large. It is an open problem whether there are such groups not
involving A, in any way (see Section 4).

One easily establishes the graphical complexity of the simplest permu-
tation groups on an n-element set X. The full symmetric group Sy, the
trivial group In, the reflection group R, (generated by a reflection permu-
tation p(i) = n + 1 — i), the cyclic group C, generated by an n-cycle, and
the dihedral group D,, are all represented by graphs or directed graphs (cf.
e.g. [4]), and therefore their graphical complexity does not exceed 2. For
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regular permutation groups the same is proved in [13] (most of the cases
were established in papers on graphical regular representation; see [1, 2]).

In order to establish the complexity of more complex groups we adopt
the approach introduced in [7] and look for closeness of the complexity
classes on the most natural constructions. As we will see the classes based
on supergraphs are much more "compatible” with these constructions, then
classes considered so far.

Recall that by the direct sum G, ® G, of permutation groups G; =
(X1,G1) and G2 = (X2,G2) we mean the direct product of groups G; and
G2 acting on the disjoint union of sets X; and X; in the natural way (thus
the product is determined up to permutation isomorphism). In the litera-
ture, this construction is more often called the direct product, but we prefer
the first name (following [9]); this name is certainly more appropriate from
the point of view of concrete permutation groups (to distinguish it from the
direct product with product action, which leads to different permutation
groups). It was established in [10] that the direct sum of two automorphism
groups of simple graphs is the automorphism group of a simple graph, un-
less both the groups are permutation isomorphic, transitive, and unique
(in the sense that there is a unique graph representing the group, up to
graph isomorphism; see also [11] for a very interesting development of this
topic). A similar result were established in [4] for automorphism groups
of edge-colored graphs; exception are edge-colored counterparts of unique
graphs. On the other hand it was also observed in [4] that the class of
automorphism groups of directed graphs is closed on the direct sum.

The reason is somehow explained in the result below. It can be inter-
preted so that the complexity of the construction of the direct sum itself is
2: once superedges of rank 2 are accessible, the class is closed on the direct
product.

Theorem 3. For every pair of permutation groups G, end G2, the com-
plezity ge(G1 & G2) < max{ge(Gh), gc(G2), 2}

Proof. Let S; and S, be supergraphs representing G; and G2 on disjoint
sets of vertices X, and X, with |X;| = n and |X,| = m, respectively.
We form a supergraph S joining each vertex z € X; with any vertex y €
Xz by a directed edge (z,y), i.e, a superedge z(zy). Then, obviously,
Aut(S) 2 G1 ® G2. It should be obvious that due to using directed edges
we have also Aut(S) C S, & Sp, and then, it is easy to see that also
Aut(S) C G1 @G> holds. Obviously, the graphical complexity of S satisfies
the required conditions. a

This result suggest that also the problem of complexity of groups gener-
ated by a single permutation (i.e. those that are cyclic as abstract groups)
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FIGURE 6. Drawing a graph whose automorphism group
is generated by a single permutation, a product of two

cycles.

should be easy. In fact, slight modification of the construction used above
yields immediately

Theorem 4. All permutation groups G generated by a single permutation
have the complezity gc(G) < 2. In fact, all these groups are automorphism
groups of directed graphs.

Proof. If h = ¢icz ... ¢y, is an arbitrary permutation given in the form of a
product of disjoint cycles, then the group generated by h is a direct sum of
groups generated, respectively, by cycles ¢;,¢z,...,¢n, up to some parallel
actions caused by common divisors of the lengths of the cycles. Each such
a group is represented by a directed cycle of suitable length. All we need
to do is to join all these cycles by as few edges as possibly, just to ensure
that the action in any of the cycles forces a suitable action in other cycles.

Let us denote the directed cycles corresponding to cyclic permutations
€1,...,cn by C,...,C". Foreachi=1,...,n—1 we join the cycles C* and
Ct! by directed edges so that the automorphism group of the resulting
directed graph is one generated by a single permutation h' = ¢;ci4a; it is
enough to take one directed edge joining C? with C**!, and add all the
images of this edge under the permutation h’. (In Figure 6 the situation
is pictured for ' = (10,11,...,15)(0,1,...,9); to make the picture clear
and show the pattern, edges outgoing from vertices 11,13,14, and 15 are
omitted). This construction extends obviously on n cycles. 0

The next natural construction to consider is that of intersection of per-
mutation groups. The fact that the intersection can be handled by means
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of supergraphs and that the graphical complexity increases only by one in
this case is perhaps the most interesting result of this paper.

Theorem 5. For every finite set of permutation groups G; = (X,G;) on
a set X, the complezity gc(( G;) < 1+ max{ge(G;)}.

Proof. Let S; be the supergraph representing G; of the lowest possible rank,
i.e., Aut(S;) = Gj, and the rank of S; is gc(G;). Denote G = (G; and
m = max{gc(G;)}. We wish to construct a supergraph S with Aut(S) =G
and rank not exceeding m + 1. We cannot simply take S = [J S;, since at
first, there can be comparable IC-words in (J S;, and at second, there may
be new permutations preserving S that do not preserve all S; individually.

To overcome this obstacle, our construction consists of a few steps.

First we show that we may assume that all S;, as sets of IC-words,
contain only words of rank m. Indeed, let S] be the set of superedges
obtained from S; by replacing each superedge ¢ € S; by the set of superedges
w; = zz...z(zt), for all z € X, where the number of occurrences of z is
chosen so that w; is of rank m. Observe that, since the superedges in S;
are incomparable, this construction leads to pairwise distinct incomparable
words of the same rank m. Moreover, for each i, Aut(S!) = Aut(S;), and
consequently, (] Aut(S}) = G, as required.

Now we show that we may assume in addition that S;, as sets of IC-
words of rank m, are pairwise disjoint. Suppose that I = Sy N S; # O for
some k # j. Then, obviously, I is closed under the action of G = G;,
as both Si \ I and S; \ I are. Moreover, G 2 Aut(S; \ I) N Aut(/), and
G; 2 Aut(S; \I)NAut(I). It follows that if, in the family {G;}, we replace
Gy and Gj by the groups Aut(Sk \ I), Aut(S; \ I), and Aut(I), then the
intersection of all the groups in the family remains G. To keep the family
{S:i} as one consisting of supergraphs representing groups G;, at the same
time, we replace supergraphs S and S; in the family {S;} by Si\I, S;\ I,
and I. Applying such a replacement until I = S, N.S; # @ for some k # j,
we finally obtain a family S; of disjoint supergraphs representing a family
G; of groups whose intersection is (1 G; = G, and such that all words in all
S; have the same rank m.

It may still happen that some superedges in different S; and S; have the
same pattern (as IC-words), and taking the union may result in appear-
ing new automorphisms. Therefore for the last step we make use of the
possibility of increasing the rank as follows.

Let 51,S2,...,S5, denote now all the supergraphs in the recently ob-
tained family. We define by induction, S} = {zt: z € X and ¢t € S}, and
for k > 1, Sy, is the set consisting of all superedges (st) with s € Sk_; and
t € Sg. Then, the sets Si, for 1 < k < r, are pairwise disjoint and all
consist of edges of rank m + 1. Moreover, an inductive argument shows
that any automorphisms of the union §' = (JS} preserves S} for each
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k=1,2,...,r. It follows also that Aut(S’) = Aut(S;) = G, and the
rank of S’ is m + 1, as required. 0

Obviously, the automorphism group of an edge-colored graph is the in-
tersection of the automorphism groups of graphs given by particular colors.
Such groups can be also characterized as invariance groups of families of bi-
nary symmetric relations, and in this connection they are called 2*-closed.
The automorphism groups of an edge-colored directed graphs are invariance
groups of families of binary relations, and are called 2-closed ([3, 9, 14]).
For these classes we have the following corollary.

Corollary 6. For each 2*-closed group G the complezity gc(G) < 2, and
for each 2-closed group G the complezity gc(G) < 3.

4. FINAL REMARKS

There are many open problems arising naturally in this connection. We
point out here only one general question that seems most interesting, leads
to many particular problems, and is strictly connected with other charac-
teristics, by which one tries to compare the ”complexity” of permutation
groups.

In [4, 5] we consider the classes GR(k) of permutation groups represented
by k-colored graphs (more precisely, by k-edge-colored complete graphs).
The main open problem here is whether for every k > 1 there are permuta-
tions groups in GR(k) which are not in GR(k—1). We have an example of a
group which in this sense requires k = 6 colors. The situation is analogous
for the classes DG R(k) of permutation groups represented by k-colored di-
graphs. In contrast, by Theorem 2, the situation seems quite different for
the classes SGR(k) of permutation groups represented by supergraphs of
rank k. Yet, also for these classes, one can formulate an analogue of the
problem above.

Indeed, observe that the construction in the proof of Theorem 2 is based
on alternating groups A,. The fact that they are (n — 2)-transitive causes
that one needs at least (n — 1)-tuples or corresponding superedges of high
rank to represent such groups. Now, a question arises whether this is the
only reason for this phenomenon, i.e. whether every permutation group of
high graphical complexity must involve somehow an alternating group, or
on the contrary, there exist other groups with arbitrarily large graphical
complexity. A similar question may be asked for arity of representing re-
lations: does there exist a constant k such that every permutation group
not involving an alternating group can be represented as the symmetry
group of a k-ary relation? Of course, to solve the problem one must also
specify what means here "not involving”. It seems that solving the first
problem, which seems more accessible, may help to solve the second. Any
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answer to these questions, yes or no, would be of a great value, giving bet-
ter insight into possible combinatorial complexity of permutation groups.
A good starting point maybe an attempt to apply the results of [12] on
k-closures of primitive groups, but it is certainly not straightforward.

For other open problems, more discussion and related bibliography the
reader is referred to [8].
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