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Abstract
This article discusses the geometricity of the direct sum, direct product and
lexicographic products of two lattices, and compute their characteristic polyno-
mials and classify their geometricity.

1 Introduction

We recall some terminology and definitions about finite posets and lattices. For more
theory about finite posets and lattices, we would like to refer readers to [1, 9].

Let P denote & finite set. A partial order on P is a binary relation < on P such
that

(i) a<aforanyacP.
(ii) @ < B and B < « implies a = .
(iii) aSﬂandBSvimpliesas'y.

By a partial ordered set (or poset for short), we mean a pair (P, <) where P is a finite
set and < is a partial order on P. As usual, we write o < # whenever a < 8 and
a # (3. By abusing notation, we will suppress reference to <, and just write P instead
of (P, <).

Let P be a poset and let R be a commutative ring with the identical element. A
binary function p(a, 8) on P with values in R is said to be the Mébius function of P

if
1, if =8,
=40, ifagpg,
”(a, ﬂ) - Z I"'(aa 7)’ if a< B
agy<B

For any two elements a, 8 € P, we say a covers 3, denoted by 8 <-a, if 3 < « and
there exists no v € P such that § < v < . If P has the minimum (resp. maximum)
element, then we denote it by L (resp. T) and say that P is a poset with L (resp.
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T). Let P be a finite poset with L. By a rank function on P, we mean a function »
from P to the set of all the nonnegative integers such that

@i r(L)=0.
(i) r(e) = r(B) + 1 whenever 8 <- a.
Let P be a finite poset with L and T. The polynomial

x(P,z) = E s(L, a)zr(T)-r(a)
a€EP

is called the characteristic polynomial of P, where r is the rank function of P.

A poset P is said to be a lattice if both aV 8 := sup{«, 8} and a A 8 := inf{e, 8}
exist for any two elements o, 3 € P. Let P be a finite lattice with L. By an atom
in P, we mean an element in P covering L. We say P is atomic if any element in
P\ {1} is a union of atoms. A finite atomic lattice P is said to be a geometric lattice
if P admits a rank function r satisfying

riaAB) +r(aV B) < r{a) +r(B),Ya, B€ P.

Let P be a lattice. A bijective map f from P to P is an automorphism of P if f
is join-preserving and meet-preserving, that is, for all o, 8 € P,

flaVvB)=f(e)V f(B)and f(a A f) = fle) A f(B)-

All the automorphisms of P form a group, called the full automorphism group of P,
denoted by Aut(P).

For i = 1,2, let L; be a lattice with the minimum element .L; and the maximum
element T;. Suppose r; denotes the rank function, u; denotes the Mdbius function of
L; respectively.

For any two lattices L; and Ly with LyNLy = {T,L}and T =T, = T, L =
1, =15, let L =L; UL, For a,B € L, define

a < Bifandonlyife < Bin L; ora £ B in Ly.

Then L is a lattice with L and T, which is said to be the direct sum of Ly and L,
denoted by L; & L,.

For any two lattices L; and Ly, let L = Ly X La. For a = (a1, a2), 8 = (61,82) € L,
define

a < Bifandonlyif a; < 8 and as < Bs.

Then L is a lattice, which is said to be the direct product of Ly and L3, denoted by
Ly ® Lo.

For any two lattices Ly and L, let L = Ly x La. For & = (a1, a2),8 = (B1,62) € L,
define

a < Bifandonlyifa; < B or a; = By and az < Bo.

Then L is a lattice, which is said to be the lexicographic product of Ly and L3, denoted
by L1 [Lz]
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Example 1.1 Let F, be a set of all positive factors of n. For any s,t € Fy, define
s < tif and only if s|t. Then F, is a lattice. Let L, = F3 U {33}. For any s,t € L,
define s < ¢ if and only if s|t. Then L, is a lattice. Let Ly = Fy; U {33} For any
8,1 € Ly, define s < t if and only if s|t. Then L is a lattice. Note that Fy3 = Ly @ L.

Example 1.2 Let X be a set with n elements, and let L be the set of all subsets
of X. It is well known that, partially ordered by ordinary inclusion L is a geometric
lattice. Let P = {0,1}, define 0 < 1, then P is a lattice. Note that L is isomorphic
toP®---®P.

N, e’

n

In a series of papers ([4, 5, 6, 7, 8, 10, 11]), Huo, Liu and Wan et al. constructed
lattices from orbits of subspaces under finite classical groups, computed their charac-
teristic polynomials and discussed their geometricity. Very recently, lattices associated
with distance-regular graphs have been discussed by Gao et. al [3, 12]. In this pa-
per, we classify the geometricity of the direct sum, direct product and lexicographic
products of two lattices, compute their characteristic polynomials.

2 The geometricity

In this section, we discusses the geometricity of direct sum, direct product and lexi-
cographic products of two lattices.

Theorem 2.1 Let Ly and Ly be two lattices with at least four vertices and the same
rank. If LhNL ={T,1} and T=Ty=Te, L =13 = 1y, then L = L, ® L, is
geometric if and only if both Ly and Ly are geometric and r(T) < 2.

Proof. Suppose both L; and L, are geometric lattices. Then the atomic set of L
is consists of all the atomics of L; and L. For any o € L, there exist atomics
",%2; - -, Tm of L or atomics 8,83, ...,8, of Ly such that

m
V% ifael,,

i=1

\7 &, ifae Ly;

i=1

o=

consequently L is atomic.
For any « € L, define

_f n(a), ifae L,
r(a) = { ra(a), ifa e Ly

Then 7 is the rank function of L.
Pick any o, 8 € L, if o, 8 € L;, then we have

r(aAB) +r(aV B) < r(a) +r(B);
ifa€Ly,f€Lyorac Ly,B €Ly, by r(T) <2 we have
raAB)+r(aVvp)=r(T)+r(L) < r(a) +r(F).
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Hence L is a geometric lattice.
Conversely suppose L; & Ly is geometric. It is routine to check that both L, and
Lo are geometric. If 7(T) > 2, pick two atoms o € Iy \ {L},8 € L \ {L}. Then

raAB)+r(aVv ) =r(T)+r(L)>2=r(a)+r(8).
Hence L is not a geometric lattice, a contradiction. a

Theorem 2.2 Let Ly and Ly be two lattices. Then L = Ly ® Ly is a geometric lattice
if and only if both Ly and Ly are geometric lattices.

Proof. Suppose both L, and L are geometric. Then the atomic set of L is {(v, L2) |
ri(y) = 1} U {(L1,8)} | r2(8) = 1}. For any (a1,a2) € L, there exist atomics
Y1,%25+ - - ,¥m Of L1 and atomics 8,82, ...,0, of Ly such that

V'rzandaz = VJ,,
i=1
consequently (a1, az) = (V (1, L2)) V( V (41,6:)), i-e., L is atomic.
For any (a1,a3) € L, deﬁne

(a1, ag) = r1{o) + ra{az).

Then r is the rank function of L.
For any two elements a = (a3, az), 8 = (81, 52) € L, we have

rlaV B) +r(aAp)
= r({oq VB, a2V B2)) +r((ar A Pr,02 A B2))

= 22: (rilas V B;) + ri{ou A Bs))

< 2 (ries) +7i(6i))
= r(a) + r(ﬁ)

Hence L is geometric.
Conversely suppose L is geometric. It is clear that both L; and L; are atomic

lattices. For any ay, 81 € L1, we have

ri(oq V B1) + ri(ea A B1)

r((a1 V B1, L2)) +r((e1 A Br, L2))

7'((01, -L2) v (ﬂl) J-2)) + 'I‘((Ck]_, J-Z) A (ﬂlv -L2))
r((e1, L2)) + 7((B1, L2))

1'1(01) + T1(ﬁ1).

Hence L, is a geometric lattice. Similarly L is a geometric lattice. o
For a = (a1, a2),8 = (B1,B2) € L1|Lz)], we have

(a1, 02V B2), ifay =P,
(al7a2)) ifﬁl < a,
(,311 ﬂ2)v if a; < ﬂl?
(a1 V By, L3), otherwise.

A nu

aVfi=
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Theorem 2.3 For any two geometric lattices Ly and Ly with at least two vertices,
Ly[Ly] is not a geometric lattice.

Proof. Since the atomic set of L = Ly[Le] is {(7,L2) | r1(7) = 1} U {(L1,8)] |
r2(8) = 1}, for any (a, T;) € L and any atomics 71,72,...,7m of L and atomics
81,02,...,8, of Ly, we have

VO LDV (L1,6)) = (7 La) # (a0 Ta).

i=1 i=1 i=1

It follows that L is not atomic; and so the theorem holds. (m]

3 Characteristic polynomials

In this section, we compute the characteristic polynomials of the direct sum, direct
product and lexicographic products of two lattices. Moreover, we always assume that
L, and L, be two lattices with rank functions.

Theorem 8.1 Let LyNLy = {T,L} with T =T, = Ty, L = 1; = Lary = 1y
Then
x(L1 & Lp,z) = x(L1,x) + x(L2, x).

Proof. Since
wfa,B), ifa,B8€ L,
e, B) = ¢ pa(a,B), ifa,B € Ly,

0, otherwise.

is the Mobius function of L = L; & Lj, we obtain

x(L1 & Ls, z)

= 2 p,(_]_, ﬁ)z"(T)"r(ﬁ)
BeL

= Y WL BTTTO LT (1, fr o
BEeL, BELy

= X(LI’ x) + X(L21 .’L'),
as desired. o

Theorem 3.2 Let L, and Ly be two lattices. Then
x(L1 ® L, x) = x(L1, z)x(Le, z).
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Proof. Since the Mdbius function of L = Ly ® L2 is p(a, 8) = pa(a1, Br)pa(az, B2),
we obtain
X(Ll ® L2: SC)
= 3 w(Lp e

BEL
= 3 Ly, B1)pa( L, Bo)am (T +ra(Ta)=ra(B1)=ralBs)
BeL
= z: /-‘1(-'—1,ﬂl)xﬂ(Tl)-r’(ﬂl)ﬂz(lz,ﬁz)-’l—'r’(Tz)_r’m’)
BeL
= Z [Il«l(J-1,ﬁ1)z"(T‘)"‘(ﬂ‘) . z: Fz(lz,ﬂz)l‘"”’)_"(ﬁ’)]
BieLy P2€L2

= Z p(Ly, B )a_.u(T:)—rx(ﬁx) . 2 #2(_L2,ﬂ2)$rg(T3)—r3(ﬁ2)
MEL fBa€La
= x(L1, )x(L2,2),
as desired. O

Theorem 3.3 Let L; and Ly be two lattices. Then

x(L1[L2}, z) = z xﬂx . Z xﬁ?:crl(Tl)"2(T2)""l(ﬂl)"2(ﬁﬁ)),
Bel, Ba€La

where xﬁl = (_]_1,[31);-"1(1'1)—1'1(131),xﬁ: = yz(lz,ﬁz)x":('ﬁ)—f‘z(ﬁz),

Proof. Since the Mobius function of L = Ly [Lg)] is p(e, B) = pa (a1, B1)p2(az, B2),
we obtain

x(L, )
= Z u(L, B)zr(M-r®
BeL
= Z #I(J_hﬂl)#z(J_z’52)z("l(T1)+1)("z(Tz)+1)-(1'1(ﬁl)+1)('2(ﬂz)+1)
Bel
= z (L1, B )xrl(Tl)"'l(ﬂl)uz(J_z’ ﬁz)zrz(Tz)-fz(ﬂz)zrz(Tx)"a(Tz)-":(ﬁl)fa(ﬂz))
BEL
= Z xﬂx . z Xﬂzzrx(T1)T2(Tz)—rl(ﬁl)"a(ﬁz)),
BeL B2€Ll,
as desired. a
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