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Abstract In this paper, we obtain the numbers of embeddings of wheel graphs
on some orientable and nonorientable surfaces of small genera, mainly on torus,
double torus, and nonorientable surfaces of genus 1,2,3 and 4. These are the
first results for embeddings of wheel graphs on nonorientable surfaces as known

up to now.
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1. Introduction

In topology, a surface is a compact 2-dimensional manifold without boundary.
In fact, it can be seen as what is obtained by identifying each pair of edges on
a polygon of even edges pairwise. The sphere is written as Op = aa™ where a~
is with the opposite direction of a on the boundary of the polygon. Thus, the
projective plane, torus and Klein bottle are, respectively, aa, aba~b~ and aabb.
In general,

b4 .
0, =[] asbia; b} 1)
i=1
and
q
Qq =[] aias @
=1

denote, respectively, a surface of orientable genus p and a surface of nonorientable
genus g. The surfaces given by (1), (2) are called standard forms(9] of the surfaces.
Of course, Oo, @1, 01, Q2 are, respectively, the sphere, projective plane, torus and
Klein bottle.
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Let S be the collection of surfaces and let AB be a surface. The following three
operations[9]) and their inverses do not change the orientability and genus of a
surface.

Operation 1: Aeca™ B & AB where a ¢ AB
Operation 2: AabBab < AcBc where c ¢ AB
Operation 3: AB < (Aa){aB) where AB # 0

Notice that A and B are both linear orders of letters and permitted to be
empty. The parentheses stand for cyclic order when more than one cyclic orders
occur, for distinguishing from one to another. In fact, what is determined under
these operations is just a topological equivalence ~ on S.

The following relations[9] can be deduced by using Operations 1 — 3.

Relation 1: (AzByCz~Dy~) ~ ((ADCB)(zyz"y™))

Relation 2: (AzBz) ~ ((AB~)(zz))

Relation 3: (Azzyzy~z7) ~ ((A)(zz)(yy)(22))

In the there relations, A, B, C, and D are all linear orders of letters and permitted
to be empty. B~ = b, - - - babab; is also called the inverse of B = bybgb3 - - bs, 8 >
1. Parentheses are always omitted when they are unnecessary to distinguish cyclic
or linear order.

An embedding of a graph G into a surface S is a homeomorphism h : G — S of
G into S such that every component of S — h(G) is a 2-cell.

Given a graph, how many distinct embeddings does it have on each orientable
surface . This problem was inaugurated by Gross and Furst(3]. Gross et al.[4]
solved it for bouquets of circles; Furst et al.[2] for closed-end ladders and cob-
blestone paths; Kwak et al.[5] for dipoles; and Tesar{13] for Ringel ladders, etc.
Chen et al.[1] generalized this problem to nonorientable surface, and calculated
the total genus distribution of necklace, closed-end ladders and cobblestone paths;
Kwak et al.[6] for bouquets of circles and dipoles. And Liu{8] gave the number
of embeddings of a graph on the plane.

In the following, we will introduce the joint tree model of a graph embedding,
this theory established in [9] by Liu, based on his initial work in 1979(7]. By using
joint trees, Wan and Liu[15,16] calculated orientable embedding distributions for
certain type of non-planar graphs.

Given a spanning tree of a graph G, the edge set E can be partitioned into
Er(tree edge) and Er(cotree edge), i.e,.E = Er + Er. Let Er = {esfi =
1,2,---,8}, B = B(G) be the Betti number of G. Distinguish all edges in Er by
letters. For each e; = (u[e:,v[ei]) € Er, splitting it into two semi-edges eu,, ey,
which incident with ulei], v[e:] respectively. The two semi-edges labelled with
same letters as e;. Write &' = (V + W, Er + E1), where Vi = {v;, 5|1 < i < 8}
and E; = {(ulei], v:), (v]es], %)l < i < B}. G’ is a tree, denoted by 7. According
to the rotation at each vertex, all lettered semi-edges of T' form a polygon with
B pair of edges.

Let § = (61,02, ,d3) be a binary vector. Denote by T that edges (ule:], v:),
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(v[ei]), %:),1 < i < B, in T are labelled by same letter with indices: +(always omit-
ted) or —, where §; = 0 means that the two indices are the different; otherwise,
same. Then, § is called an assignment of indices on 7"

A rotation at a vertex v, denoted by o, is a cyclic permutation of semi-edges
incident with v. Let 0 be a rotation system of G, then g = [[,ev(g) 7v-

Given a rotation o¢ for a graph G, the joint tree of G is T. According to the
rotation at each vertex of 1'%, all lettered semi-edges with indices of them form a
surface. We call it is a associate surface of G, denoted by F(T% ).

Two associate surfaces of G are the same is meant that they have the same
cyclic order with same 4. Otherwise, distinct.

Let F(G) be the set of all distinct associate surfaces of G, and Let (G} 1),
Fa(G;3), t 2 0,5 > 1 be the set of all distinct associate surfaces of orientable
genus ¢ and the set of nonorientable genus j, respectively.

The lemmas following are all proved by Liu[10], and they are very useful in the
following sections.

Lemma 1.1{10] F(T?) is orientable if and only if 5 =0 .

Lemma 1.2(10] An orientable surface is a surface of orientable genus 0 if and
only if there is no form as AzByCz~'Dy™! in it.

Lemma 1.8[10] An orientable surface AzByCz~'Dy™! is a surface of genus
k(k > 1) if and only if the surface (ADCB) is orientable, and the genus of it is
k-1.

Lemma 1.4(10] A nonorientable surface (AzBz) is a surface of nonorientable
genus k(k > 1) if and only if the surface (AB™!) is nonorientable with genus
k — 1, when k is even; the surface (AB~') is nonorientable with genus k — 1 or
(AB™1) is orientable with genus %31, when k is odd.

Lemma 1.5[10] For any integer i > O(or j > 1), the cardinality |Fp(G;i)|(or
|F4(G; 5)|) is independent of the choice of tree T on G. Further, it is the number
of distinct embeddings of G on surfaces of orientable genus i(or nonorientable
genus 7).

Lemma 1.6[10] There is a 1-to-1 correspondence between associate surfaces
and embeddings of a graph.

For n > 3, the wheel graph of n spokes is the graph W, obtained from the cycle
Cn by adding a new vertex and joining it to all vertices of Cn. In this paper, we
get |Fp(Wn;1)|, |Fp(Wn; 2)| and |Fo(Wa;d)l,1 < j < 4. Those are the numbers
of embeddings of W, on torus, double torus, projective plane, Klein bottle and
the surfaces of nonorientable genus 3 and 4. All of the results are in explicit
expressions.

There are three main reasons why we do these research. Firstly, wheel graph
have some special characters, which had been proved very useful in the research
of 3-connected graph[14]. Ren(11] investigate the flexibility of wheel graphs on
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torus. Stahl[12] obtained some asymptotic estimates on the region distribution
of wheel graph W, on orientable surface, but the exact numbers of embeddings
of W, on each surface can’t be obtained from their results. Secondly, there is no
result about embedding of wheel graph on nonorientable surfaces as we known up
to now. Thirdly, the number of embeddings on surfaces of higher genera is much
depend on those of lower genera, so it will be helpful for the further research of
embeddings on the surfaces of higher genera.

Let S be a set of surfaces, gp(5), §4(S),» = 0,q > 1 be the numbers of surfaces
of the orientable genus p and the nonorientable genus ¢ in S, respectively.

2. The associate surfaces of W,, and some lemmas

In this section, we classify all of the associate surfaces of Wy into n types. Let
@1,...,0n-1 are letters with binary indices, A, B,C and D are all linear orders
of these letters and permitted to be empty. We define 9 surface sets as follows:

TP~ ! = {a1a2--an-14}, in which |4|=n-1;

Ty~' = {a1a2---an-1AB}, in which |A|+|B|=n-1;
Tr~! = {a1a2---an-1ABC}, in which |A|+|B|+|C|=n-1;

T8 ! = {a102-++an-1ABCD}, in which |A|+|B|+|C|+|D|=n-1;
TP 2 = {ai+--@1AGi41 -+ @n—2B}, in which |A|+|B|=n-2,1<i<n-3;
To~% = {a;--- @1AGi+1+ +* @n—2BC}, in which |A|+|B|+|C| =n-2, 1 <i < n-3;
T84 = {ai---01ABais1++an-sCD}, To~* = {ai---01ABCais1---an-aD},
in which |A|+|B|+|C|+|D|=n—-4,1<i<n-5;

n—4
Tg ={a.1~-a;-,Aa;---a.j_lBa.j---an_.;C}

in which |A|+|B]|+|C|+|D|=n—-4,i22, j—i2landn—-j2>4.
The numbers of surfaces of small genera in these sets are investigated, all the
results that we obtain are in explicit expressions.

For wheel graph, the Betti number of Wy, is 8(Wy,) = |E| — |V|+ 1 = n. Let
ao, - -+ , a3 be cotree edges of Wy, according to the way to get a joint tree of a graph
mentioned in Section 1, and the rotations of vy, - - - , v4, we draw 16 trees of W, in
Fig.1. For each of the 16 trees, once the rotation of vo and § = (8(ao),- - ,9(as))
are given, we will get a joint tree of Wy. Because there are 3! different rotations
of vo, and 2* different binary vectors of . We will get 16 x 3! x 2* different joint
trees of Wy, which is equal to the number of embeddings of Wy on all surfaces
that it can be embedded.

According to the rotation o of W, and the indices assignment § = (do,- - ,0n-1)
for n cotree edges, the associate surfaces of Wy, can be classified into n types as
follows:
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Mo = {ava1 -+ an-16i° A},M) = {@1a0a2 - an-1a{° A}, - -,

M; = {ai---a1a0ai41 - -an—1a5° A}, -+,

M2 ={an-2- a100an-10° A}, Mn-1 = {an_1 - - a1a0a§’ A}.
in which af!,--+,e;" 7' € A, and |A|=n—-1.For0<i<n-—1

__ | +(always omit) when é(a:) = 1;
s= - when d(a;) =0

Since we have (*7') ways to choose as,-+ ,a; from {a1,--+an-1}, and two ways
to place ao, ag?, the number of type M; is 2(*7?),(0<i < n—1).

‘L n'v!vsvswv%:: 1 P2 : a ::Islo;é
w—%ﬁ %—%Lr% ﬁif-%
1 42 0 1 0 2 y 1 ’ 0

Lemma 2.1 The 4 sets of surfaces:
TP ! = {a1az- cran1A}, TP l= {a1e2---an_1AB},
T3 ={a162--an_14BC}, T;™!={aiaz-- an-1ABCD}

the numbers of planes in the 4 sets are

n(n +1)

BT =1, (T3 = n, go(Tp ™) = HED, gygp-yy 2t Dt D)

respectively.

Proof According to Lemma 1.2 and Operation 1, there is only one surface
in Tp"~! is a plane, that is a1a2---an—1a;}, - -azay. So as for the numbers
of planes in T, T3~!, T2}, they are equal to the numbers of non-negative
integral solutions of the equations z1 + 2 + -+ zr =n —1, r = 2, 3, 4, respec-
tively. And the number of non-negative integral solutions of £; + 2 + -+ +z, =

n—1is ("F27%). For r = 2,3,4, we can get go(T3™') = (*:"7%),90(T9?) =
Gt 00T ) = 4+7-2), the lemma is obtained.
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Lemma 2.2 The 5 sets of surfaces:

T5 -2 = {a.» “ee alAaH.; v an_zB}, Té‘_z = {a,— e alAaH.l . 'an_zBC},
T';'_“ = {ai---a1AB@it1 - an-4CD}, Tgn_A = {a;---a1ABCai41---an-aD},
T;-4 = {a; ceeai—1Aaice a,-..lBaj s an_4C},

the numbers of planes in the 5 sets are

E+1)n—-i-1)n
2 b

TP =(G+)n-i-1), g(Te )=

go(TF™) = £(i+ 1)(n =i = 3)(n? — In+ (n—4)i = ¥ +2),

go(T—%) = -1-15(12 +1)(n—i—3)(2n? — (6 +i)n +i® +4i +4),

and 1
9o(T3™%) = 5ii —i+1)(n-j - 2)(n -2),

respectively.
Proof According to Lemmas 1.1, 1.2, T#*~2 can be written as
{ai--+a1A1Az2ai41 - an—2B2B1}
in which ¢;,...,a7 € A1+ B1, a;,,,...,0,_5 € A2+ B2. And
ai---a1A1A28i41 - @n2BaBy ~ Oo
& Biai---a14) ~Op and Azaiy1--:@n-2B2 ~ Op.
From Lemma 2.1, we can get that
9o(TP™2) = go(Tgo(TF %) = (i + 1)(n —i — 1).
By Lemmas 1.1, 1.2, T¢~2 can be written as
{ai---a1A1A20i41 - an-2B2B1C2Ch }}

in which a;",...,a7 €A1+31+Cl,a;‘+1,...,a;_2eA2+Bg+Cg and
|By] x |C2| =0.
Casel |Bi|=0.

a;i---a1A1A28:41 - Gn-2B202C1 ~ Og

& Ciai---a1A1 ~ O and Azait) - -an-2B2C2 ~ Ogp.

In this case, the number of planes in 752 is

oo(Tgo(Tp—+-% = L@ = ; —1n-9)
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Case2 |Bi]#0.
According to Lemma 1.2, |C2| = 0, otherwise, the genus will be more than 0, and

ai - a1A142ai41 - an-282B1C) ~ Og

& C1Bia;i -a1A1 ~ Op and Azaity-:-an—2B2 ~ Ogp.

Notice that |B)| # 0, in this case, the number of planes in Ty~ 2 is

(@) - (T oo(rp—h = (LEUEED 4 4)) iy

(n—i—1)(i+1)i
2

Summarizing Cases 1,2, we get that

w(Te™?) = G+ 1)("'2" 1)(n —1) + (n-—i—zl)('i+ 1)
_ (G+l)n-i-Nn
7 .

In a similar way, we can get that

9o(T7 ™) = %(i+ D(n—i-3)(n’=3n+(n-4)i-i*+2),

go(T2~4) = .113(1' +1)(n—i—8)(2n% — (6 +i)n -+ + 4i +4),

and 1
9o(T3™") = 5ii —i+1)(n—j -2 (n -2),

respectively.
Lemma 2.3 The number of torus in surface set Ty~ = {a1az2 - an-14} is

n(rph = (22 =Dntn+ 1)

- a1 ’
Proof Casel A=aqa;l A
- 14 -
21802+ Gn-1A ~ Q102+ Bn—2Gn-1a6,_1A' ~ @102+ an_2A’ = i 2

by Operation 1. In this case, the number of torus in T~ ! is equal to the number
of torus in T2,
Case 2 A= Aiaja,_1A2,j€(l,n—2)

a1a2-+-an-14 ~ ajaz--- aj-- ‘an—lAlaj—ar_;—lAz

~ @102+ @j—1A18j41 * - Gn-2A28jGn-10] G5,
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by Relation 1. And according to Lemma 1.3,
102+ aj—1A18541 a,,_gAzajan_xa;a;_, ~ Oy

& 2102+ Qj-1418541 - an—2A2 ~ Op
Let j — 1 =4, then a1+ aj—1418j41 - @n-242 = a1---2iA18i+2 - Gn-242

n—3
~ay-aiA18i41 0 an-3A2 =T5 .

From Lemma 2.2, in this case, the number of torus is E jln—1-3) = Q_-_z)_g;_—xm_
Jj=

Summarizing Cases 1,2, g1(T""!) = 1(T? %) + ‘-’-':—2)-(-'3-'—’& Since it is easxly
to get that g1(T?) = 1, i.e., a102A = a1az2a7 a;, the number of torus in TP~ i
pty 1 e = 2= i _ (1= 2)(n = Dnfn+1)

i=4

Lemma 2.4 The number of torus in surface set

T:_2= {ai"'alAai+l"'an-2B}

(TP = %(n —2)(n = 1)(n — i — 1)(i + 1)(n? — (2 + 3)n + 262 + 4i).

Proof 'We can classify T3~ to two sets T, 2 and T2, in which
T\'?x_z = {ai---a141a,_3A2ai41 - an-2B}
and
T‘,:;_z = {ai ‘e alAai-l-l e a"_zB‘a;_sz}.
Of course |A1| + |Az| +|B] = n—3 and |A| +|B1] +|B2| = n — 3. We will discuss

n—2

s and 2 respectively in the following.
In the set T’;z there are three possible ways to place a,,_3, so we can classify
Tg‘;z into Ts, 1 Tsy 2 T"l"'sz, i.e.,

n—2 -1 -
Ts,, = {ai--a14nae; 3A12a;_2A20i41 " Gn-3Gn-2B}
Tsl 2 = {ai-+-a1A1a,_5A20ai41" - an-3an-2B1a,_3 B2}
Te 2 ={ai---@1dia;_pAna;_3A220i41 -+ - Gn-36n-2B}

From Relation 1,
a;-- alAua,_,_3A12¢l;_gA2a£+l “++Gp-3an-2B

~@ai---a1A11A28i41 - Gn-gA12Ban-30n-2a,_3a,_2
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and
a;---a141a,_pA20i+1 - an-3an-2B1a,_3B>

~ @i+ +a1A1B142ai41 " - @n-4B2an_3an-20a,_za,_,

By Lemma 1.3, we get

9(TETT) = golT7™) = G+ 1)(n — i = 3)(n* — B + (n — d)i = £ +2),
and

(T2 = (T8 = %(i +1)(n—i—3)(2n% = (6+i)n + 4% + 4i +4).

Now we discuss Tg,~2. If | A21| = 0, according to Operation 2,

Qi 1416, _20,_30i41 " An-3an—2B

- n—3
~ai--+a141a,_3A220i41° " @n-3B =Ty,

If |A21] #0, then A2y = a;A%,j €[l,i]orje€ [i+1,n— 4).
1)when j € [1,1),

- 7 -
Qi Q5 alAla,,_gajAna,‘_sAzga.-.,.l s an_aa,,_gB

? - - -
~ @i* 414210, _3A228i41 - Gn-3aj-1---a1A1Bajan-207 a,_,

by Relation 1. And according to Lemmas 1.2, 1.3,
Qi aj+lA1210;-3A22ai+1 e Qn-3Q5-1""" alAlBajan—2aj_a;—2 ~ 01

> A220ait1- - an_g ~Oo and aj-1:--a1A1Ba;---aj+142 ~ Oq.

2) whenjefi+1,n—4],
in the same way, we can get that

P, 3 -
[~ S a1Alan_2ajAgxa,,_3A220.(+1 ©1+ @i+ @n-3an-2B ~ Oy

< ai-+a1A1B ~ 0O and Qj41 0 an_4A22a,-+1 LK aj—lA,21 ~ Op.

By applying Lemmas 2.1, 2.2, we have

i 2 e
a(T57) = o)+ Z»J_(‘ +1 —21)(2 +1)
i=1
n—4
+ > G+DG-i)(n--3).
=i+l

Summarizing the above, we have
a(T5?) = a@GH+a@@ D) +aT5?
a5 )+ 1—12-(11. = 2)(i + 1)(4i® + (23 — 9n) + 6(6 — 5n + n?)).
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In order to get g (Ts';'z), we have to know g1 (Tg1'), Tg1' = {ai - - a141a];, A20i11 B}
Consider set Tg;"l. If |A2] = 0, then

a;--ra1dia; 81 B~aic a1 A1B = T':
If |A2| # 0, then A2 = a7 Az, j € [1,1] and A3 can be empty.
i@ alAla'-__,_la;A'zaHlB ~ai--aj41A505-1 ¢ a1A1Bajeia;ay,

According to lemmas 1.3, 2.1, 2.2 and 2.3, we have

AT = G+ D) +z=,: fir1-g)G+)
= (i+1) (i - l)i(i;; DGE+2) i+ 11:(1' +2)
_ z(z+1)3(z+2)
24
So
a8 = a@@ ) +a@E0) + a5
_ i+ +2)
N 24
+ Z i — 2)(i + 1)(44® 4 §(23 — 95) + 6(6 - 55 + 57))

J—t+4

= 5 (n=2)(n— 1 +1)(3n" = (13 +6i)n + 47 + 143 + 12).
In a similar way, we can get
aTe ) = 24(z+ 1)(n - i = 2)(n = 2)(n - 1)(n? — (2i + 5)n + 2i* + 6 + 6).

Hence

a(T3™?) gx (T3 + a1(T57?)

ﬁ(n —2)(n = 1)(n —4— 1)@ + 1)(n® = (2 + 3)n + 2i® + 4).

‘Lemma 2.5 The number of double torus in surface set T]'~' = {a1a2+-an-14}
s

92(T7 ™) = s (n — 4)(n - 3)(n - 2)(n — n(n +1)(3n” —n - 6).

5760

Proof Similar argument with the proof of Lemma 2.3.
Casel A=oa_,A" a1az2- - an-2an-1a;_A' ~ @182+ an_2A' =T]2.
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Case 2 A= Aiaja;_;A42,j€([1,n-2]
0162 @; * Gn-14185 0n_1 A2 ~ 0102+ aj-1410541 - - an—2A205an-18] a;;_;.

In this case, for 1 < j < n — 2, with the application of Lemmas 1.3, 2.4, we get
that the number of double torus is

1

5" = 3)(n=2)

n-2
XY (n=j—1j((n-1)" - 2@ - 1) +3)(n—1)+ 2 — 1)* +4( — 1))

j=1
= L tn—8n—3)(n—N%n—
= 5 (n—-4)(n-3)(n—2)°(n—1)n(8n +1).
Summarizing Cases 1 and 2
92T = 92(TP ™) + 525 (n — 4)(n = )(n — 2)°(n — Dn(3n + 1),
Since it is easy to get that g2(T¢) = 8, T1 = {a1 - --asA}, the number of double
torus in TP~ ! is

(TP =8+ ge F;—O(i — 4)(i — 3)(i — 2)%( - 1)i(3i + 1)
_(n=4)(n—-3)(n—-2)(n-1)n(n+1)(3n% —n - 6)
- 5760 ’

Lemma 2.8 Let S be a nonorientable surface, if there is a form as AxByCz™ Dy
in S, then the genus of S will be not less than 3; if there is a form as AzByCz~ Dy
in S, then the genus of S will be not less than 2.

Proof If the form as AzByCz~ Dy~ exists in S, by Relation 1, AzByCz™ Dy~
~ ADCBzyz~y~, and there is at least one pair of semi-edges z, 2° with same
indices, for S is nonorientable. By Relation 1-3, we can get S ~ A’'zzzyzr~y~
~ A'zzzzyy. So the genus will be not less than 3.

If the form as AzByCz~ Dy exists, by using Relation 2 twice, we get that
AzByCz~ Dy ~ AzBD~2C~yy ~ ADB~C™ zzyy, so the genus of S will be not
less than 2. Thus the proof is complete.

Lemma 2.7 The numbers of projective planes and Klein bottles in the surface
set Tln_l = {alaz e 'an_lA} are

I = (l:zm and G(Ty™') = L"__z).(sﬁ.:lﬁ,

respectively.

Proof We can classify T7*"! into two sets Tll'1 and T{;‘l, according to
é(an-1)=1or0, ie.,
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Tl"l'1 = {102 - an-14A18n-142} and T}, ' = {a1a2 - an-1410;_, A2}
We will discuss the two sets respectively in the following.
1) TI"‘-I = {alag cee a,._lAlan_lAz}

@102+ Gn-1410n-142 ~ 0102 * * Gn-24A] A2Gn_1Gn1
Applying Lemmas 1.4, 2.1, it is easy to get that
G ) =n-1 and §(T7,") = (n - DH(TT™).

2 To e o Aran o)

We can classify T, ~! into T7,}, T1, .}, and T}, in which

n—1 -
le,l = {a1a2- “@n-18,_141},

T,’;_'; ={a1: -6 an-1d1850, 1 A2}(1<j<n-2),

and
Tl';'-sl = {al ree@e an_lAlaja;_lAz}(l <js<n- 2).

From Operation 1, a1a2 - - @n-28n—18_, A1 ~ @182+ an—24 = TP""%, we can
get that
G =8I, §A(T]") = 5(T777).
From Relation 1,
@1+ G5+ @n-1A10] Gp_1 A2 ~ a1+ 651418541 Gn—2A20jGn-105
then according to Lemma 2.6, we know that
(T ) =0, §(T;) =0.
By applying Relation 2 twice, we get that

a1 a5 Gn-1A1050,_1 A2 ~ a1+ aj-1A7 Gp_y 1 05410, 1 A2050;

~ay-- aj_1A{'aj+1 v an_zAzan_lan_la,-aj.

By Lemmas 1.4, 2.2, we have that

n-2 .
QI =0, H@TLH=Yjin-j-1)= (n— 2)? ~n
i=1

Summarizing the above,
(TP = (n— 1) + §i (T~ 2), since §i(T}) = 1, we get that

A =1+ -1 =250,
j=3
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and

a1 (n—1)(_"_"_2)2._(’"i) (TP 4+ (n—2)gn— n

= %(4113 — 150 + 17n — 6) + §2(T7"2).

Since it is easy to calculate that §2(77) = 3, we can get that

@) =1 2(41 - 155 4175 - 6)+3=—(n 2)(n — 1)n?.
1—4

Lemma 2.8 The number of projective planes in surface set
T3~? ={ai- - a1AGi41---an_2B} is

§(TE?) = %(i +1)(n—i—1)(n? = G+ 3+ +2+2).

Proof Casel 6d(an—2)=1
Subcase 1.1 an-2€ A

@i---a1Adi417 - @n2B = a;---@1416n-2428i41 - an—2B
~ ai---a1h10,_3- a0, A7 Ban_2an_2
Subcase 1.2 an-2€ B
ai--ra148i41-r@ne2B = @i--:@140i41---an-2B1an-2B2
~ @i+ a14ais1--an_3B7 B2an_20an_2
According to Lemmas 1.4, 2.2, the number of projective planes in Case 1 is
200(T5 %) = (i+ 1)(n —i-2)(n-1).

Case 2 4(an-2)=0
Subcase 2.1 a, ,€ A

@i - 01A4Qit1 @n-2B ~a;---a1A1a,_3A20i41 - @n_30n_2B
According to Lemmas 1.4, 2.6,
‘ai---a1A10,_2A28i41 - @n-3an-2B~ Q) &

Ba;---a1A1 ~ Op and A2ait1 - a@n-3 ~ Qu;
or
A2ai41+--an-3 ~ Op and Be;:--a14; ~ Q1.
From Lemmas 2.1, 2.7, the number of projective planes in Subcase 2.1 is

—i-3)(n—-i-2) z(2+1)
2

G+ +(+)iEtD)
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Subcase 2.2 a,_,€B
@i+ +a1AGit1Gn2B = @i+ -01AGi41+ Gn-3@n-2B1a,_» B2

If | By| # 0, according to Lemma 2.6, the nonorientable genus of this case will be
more than one, so {B;| = 0. By Operation 1,

- n-3
Qi alAa'-_'_l ce an—3an—2Blan—2Bz ~ Qi alAai-i-l s an—aBz = T5

So the number of projective planes in Case 2 is

(i+1)(n—i—3)(n—z'—2)+i(i+1)2
2 2

Summarizing Cases 1, 2, we have

+5(T9%).

HIr = %(i +1)(3n — (11 + 4i)n + 2(5 + 4i + %)) + 51(T5 ™).

With a similar argument, we can get that §i(T¢+!) = (¢ 4+ 1)(i +2) +i(i + 1)%.
Hence

sy = & ;”) S (352 — (11 + 4i)j +2(5 + i + ) + B(TEH)
J=i+4

= %(i+1)(n—i— 1)(n® - i+ 3)n +i* +2i +2).

Lemma 2.9 The number of nonorientable surfaces of genus 3 in surface set
TP = {a1a2---an-1A} is
1

30 (n - 3)(n — 2)(n — 1)n(41n® - 9n — 20).

GBI =

Proof The argument is similar to that of Lemma 2.7, and we adopt the same
notations as that in Lemma 2.7. According to Lemmas 1.4, 2.1, 2,3 and 2.7, we
have

(n - 1)g2(T7 %) + (n - D1 (T777)

(n = 3)(n — 2)(n — 1)%(5n — 4)
24 ’

ga(Tll- !)

It is easy to get that §3(T~!) = ga(T?).

121
As for sets 1';;‘, and T,’;;l, by Lemma 1.4, we know that
a1+ 6j-1A18541  @n—24205an-10; Gy _1 ~ Qs &

a---aj_1418j41-°Gn_2A2 ~ Q1
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and
@)+ aj—1A7 @j41 - @n-2A2@4-1an-1a50; ~ Q3 &
ay - 051418541 @n_2A2 ~ Q1
So with the application of Lemma 2.8, we get that
= pmn—ly _ = el
33(Ty,, ) = 3(TY,,
n—2

= %Zj(n—i-l)((n—1)2—(J'+2)(n—1)+(j—1)2+2(j—1)+2)

i=1

= 25 =3)(n—2)(n—n(2n - 3)

Summarizing the above, we have

(TP = (n—3)(n-2)(n -1 2}())(41712 — 69n + 20) + 3a(T2).

Since it is easy to calculate that §s(TF) = 20, we can get that

BT = 353 (G-90-26 - D@ - 69 +20)) +20
i=5

= %(n —3)(n - 2)(n — 1)n(41n? - 9n — 20).

Lemma 2.10 The number of projective planes in the surface set
T8n—3 = {a; <o @1AGigr - an_sBC’} s

G(TE% = 41(2' +1)(n—i—2)(n—1)(n? - (5 +i)n+ i + 3i +6).
Proof Casel é(an-3)=1
Subcase 1.1 an-3€ A
a;---a1A18n-3A20i41 - an—3BC ~a;-- -al.Ala;_,‘ a4 A; BCay_3an-3
Subcase 1.2 a,-3€ B
@i---a1Aai41 - an-3B1an-3B2C ~ a;-- - a1Aai41 - @n-a BT B2Can—3an-3
Subcase 1.8 an-3€C
@i -a14ait1 - - an_3BC1an-3C2 ~ a; -+ - 21AGi41 G4 CT B™Ca2an-38n-3

According to Lemma 1.4, the number of projective planes in Case 1 is 3go(T5%).
Case 2 4(an-3)=0
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Subcase 2.1 a,_; € 4, i.e., a;i---a1d1a,_gAz2ai41 - an-3BC.
By Lemmas 2.6, 1.4, we get that aij}’,...,a;"3* € Az and af',...,a' € A1 +
B+C. So
ai---a1A10,_3A20i41 - ran3BC~ Q1 &
a;i---ayA1BC~Q; and aiy1+--an-4A2~ 0o

or
ai-+-a1A1BC~0Op and ai41-'-an-gd2~ Q@)

From Lemmas 2.1, 2.7, the number of projective planes in Subcase 2.1 is
i+1) G+ DE+2) , G+1D)E+2) (n—-i-4)(n-i-23)
+
2 2 2 2
_ (G+1)(E+2)(12+2i(4+14) - Tn — 2in + n’)

4
Subcase 2.2 a,_; € B, i.e, ai---a1Aaiy1 - an-3B1a,_3B2C.

By Lemma 2.6, we get that |B;| = 0.

@i +01Aai41 - Gn-30,_3B2C ~ a;i---01A6i41 -+ an-4B2C

So the number of projective planes in Subcase 2.2 is § (Tg™*).
Subcase 2.3 a,_; €C, i.e, ai - a1daisr - an-3BClra,_3Ca.
By Lemma 2.6, we get that |B| = |C1| =0

@i+ 01AGi41 " -Gn_3a,_3B2 ~ a; - -a148i41- an-4B2

So the number of projective planes in Subcase 2.3 is §i (Ty~*).
Summarizing Cases 1, 2, by Lemmas 2.2, 2.8, we have

BT = ()
C + ) (= (% + 932 + 36 + 60) + 2(37 + 156 + 26%)m — 6(5 + )n? + 4n°).

G+ 1)E+3)(E +2i+2)
5 .

With a similar argument, we can get that §i1(Ta*!) =
Hence, we can get that

s rnegy _ G+ 1)(E+3)(E® +2i+2)
Q(Tg") = - 3
+OED T ( (6 4 062 4 361+ 60) + 2(37 + 163 + 2i%)j — 6(5+1)7% + 45°)

J=i+5
= %(i+ 1)(n—i-2)(n—1)(n® = (5+i)n+i° +3i+6).
Lemma 2.11 The number of Klein bottles in surface set

Tg‘_g =‘ {a; v a,lAa,-+1 vee a,._zB} s

agny = LHAOZITD o (e (74 0n°

+ (17 +12i 4+ 3%)n? — (17 + 28i + 1262 + 2%)n + (1 + 8)%(6 + 26 + z"))
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Proof Casel {§(an-2)=1
Subcase 1.1 an,-2€ A
@i+ +a1Adit1--an-2B ~ ai---a1418n-2420i11+ Gn-2B

~ ai--a1hia,_g: - a;1AZ Ban—2an-2
Subcase 1.2 a,-2 € B

[ PR aIAa.-H v an_zB ~ Qi a1Aa4+1 o a,._gBlan-sz

~ @i+ @1Aaiy) - Gn-3B] Baan—2an-2
According to Lemma 1.4, the number of Klein bottles in Case 1 is 2§ (Tg~3).
Case 2 d(an-2)=0
Subcase 2.1 ¢, ,€ A4

- n—2
@i+ 01Aai41- - an-2B ~ @i+ - 01418, 3428141+ @n—3an-2B = T,

Subcase 2.1.1 a;"7’ € B

Notice that 8(an—_3) = 1, otherwise the nonorientable genus of this case will more
than 2, from Lemma 2.6. So this case should be a,-3 € B. By using Relation 2
twice, we have

a;---arA18,_5A20i41 "+ @n-3an_2B1a,_3B2

~ @i--ra1A1Biag 4+ 64347 B2an—_2an-20n-3Gn-3

According to Lemma 1.4, the number of Klein bottlés in Subcase 2.1.1 is go(T5 %),
Subcase 2.1.2 a;"7% € A;

For the same reason with that in Subcase 2.1.1, §(an—3) = 1, and this case should
be Qn-3 € Al.

a;i--a1Anan_adia,_sA2i41 - an—3Bi1an-3B; -
~ airra1Ana,_y 8 Az A12Ban_200_26n-3an-3
According to Lemma 1.4, the number of Klein bottles in Subcase 2.1.2 is go (Ta"").
Subcase 2.1.3 a."3° € A
a) When §(an-3) =0, i.e., ai-- carAia,_sAz1a;_zA22ai41-an—3an-2B.
If |A2:1] = 0, then by Operation 2,
ai--+a1d10, 0, _3A220i41 - Gn_3an—2B -
~ @i aAia;_3A20it1 - Gn-3B = T2
If |A21| # 0, then Az1 = a}’ Ay, € [L,4] or j € [i + 1,n — 4].

From Lemma 2.6, the value of §(a;) should be 1, otherwise the nonorientable
genus will be more than 2. So A1 = a;A%,5 € [l,i]or j € [i +1,n —4].
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when Ag; = a;A%;,7 € [1,14), by using Relation 2 twice, we have
ai-"+az-*-* alAla;_za,-A'gla;_sAzzaiH s an_sa.,._gB
~ @i @j10n-2A707 - a;_lA’na;,:;AzzaHl -+-@n-3an-2Baja;
~ @i~ *Qj+18n_3"* -ai'_,_lAz_gan_sA'ﬁaj_l -+-a1A1Ban_2an_20j0;
According to Lemmas 1.4, 1.2, we have that
Qi+ Gj410,_ 3"+ 011 A20an-34210-1 - 61A1Ben-28n-28;8; ~ Q2 &
Gn_4- 831 A ~00 and ai---aj414585-1---a1A1B ~ Op

By Lemma 2.2, the number of Klein bottles is i l-(lil—TJ)&i—Q, when
An = a;A, 5 € (1,1, =

With a similar argument, we can get that the number of Klein bottles is
zf;‘ (i+1)(j — i)(n — j — 3), when Az = a;Aby, 5 € [i + L,n —4].
:Jstwhen 8(an-3) =1, i.e., a; - -a1A10,_,A21an-3A220i41 - Gn-3an-2B.

By Relation 2,
ai---a1d16,_2A210n-3A4220i11 - @n-3Gn-2B
~ @ai-a1di1e,_gA20,_ 4 ;11 Ap8n-2Ban_3an_3
According to Lemmas 1.4, 2.6, we get that
@i a1 Aian_gAna, 4 051 Apan-2Ban-san-3s ~ Q2 &

Bai e (MA] ~ Q1 and Agla;_4 e a;HAg_g ~ Og
or
Ba;---a1A1 ~0Op and Aza,_;---a; 1A ~ G
By Lemmas 2.1, 2.7, the number of Klein bottles is
i(i+1)2(n-8-4)  (i+1){n—-i-4)(n—3i—23)?
2 + )
(i +1)(n —i— 3)(n? — 2in — Tn + 2i(4 + i) + 12)
B .

Summarizing the above,

2(T87%) = go(TF ™) +90(T8™*) + 52(T5°)

n—4

# ML L § gy -9)
i=1 J=itl
+(i+ 1)(n — i — 3)(n? — 2in — Tn + 2i(4 + 1) + 12)
2

= GT8 %+ %(i + 1)(6(2n3 — 170 + 49n — 48)
—i(27n® — 167n + 262) — i%(92 — 28n) — 12i3).
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2
With a similar argument, we have gz(Ts“) = '—(ﬂul—*ﬁl , then we can get that

BT = ﬁ%ll X (em‘ — (28 + 9i)n® + (99 + 70i + 143%)n?

—(158 + 183i + 78i% + 12i*)n + 2(48 + 79i + 53¢> + 18:° + 3i4)).

Subcase 2.2 a, ,€ B
-2
;- -a148i41+  an-2B ~ a;--- 014641 -an-3an-2B1a,_,B; = Tj,

With a similar argument in Subcase 2.1, we can get that
Go(Tg?) = (BisBOD) (2(45 + 451 + 24i% + 65 + %)
— (141 + 96i + 34i% + 4i®)n + 2(41 + 174 + 3i%)n? — (21 + 4i)n® + 2 )

The number of Klein bottles in Case 2 is §2(T5, %) + §2(T, "‘2)
Summarizing Cases 1,2, we get that

Go(TP %) = Lll)("g-_":__ll x (n* = (7 +20)n® + (17 + 123 + 3%)n?

—(17+ 28 + 12 + 2%)n + (1 +4)%(6 + 2i +i’)).

Lemma 2.12 The number of nonorientable surfaces of genus 4 in surface set
TP~! = (a102++-an—14) is

Go(rp1y = (p= (e =8)(n - 2)(;0;01)#(61"2 — 55n — 74)

Proof The argument is similar to that of Lemma 2.7, and we adopt the same
notations as that in Lemma 2.7.

According to Lemmas 1.4, 2.1, we have §4(T7,"') = (n — 1)§s(T7"2).

It is easy to get that §o(T7, ') = §a(T7?).

As for set T*~!, by Lemma 1.4, we know that

12,2
ar---a;j1A18541 a,,,_zAzajan_mj_a,',_, ~Q e
ay-:-aj-1A10541 " an—242 ~ Qa.
With the application of Lemma 2.11, for j € [1,n — 2], we can get

(n ~4)(n —3)(n —2)(n—- 1)n(bn — 4)(9n—19)
2520

94 (Tn—l
As for set T"~!, by Lemma 1.4, we know that

13,3

a1+ aj-1A7 Gj41 - An2A20n-18n-1aj0; ~ Qs &
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@1+ j-1A10j41+ Gn_2A2 ~ Q2 OF a1::'aj-141841 - An-2A2~O1
With the application of Lemmas 2.11, 2.4, we get that

(n — 4)(n — 3)(n — 2)(n = 1)n(37n — 99n + 46)
1680

3a(Th) =
Summarizing the above, we have
(TP = (1)

(n - 4)(n - 3)(n — 2)(n — 1)(488n> — 1483n? + 1137n — 210)
5040

With the same way, we can calculate §4(7}) = 140. So we can get that

(n — 4)(n — 3)(n — 2)(n — 1)n?(61n> — 55n — 74)
5040

Gga(T Y =

3. The numbers of embeddings of W,, on torus and
double torus
According to the classification of F(W,) in section 2, we know that |Fp(Wa; k)|
=2 E ("7 gx(M;), k > 0. From (8], it is easy to get that |F,(Wa;0)| =2, i.e.,

there are two distinct embeddings of Wy, on the plane. In this section, we get
[Fp(Wa; 1)| and |Fp(Wn;2)|, t.e, the numbers of distinct embeddings of Wn on
torus and double torus.

Theorem 3.1 The numbers of embeddings of Wy, on torus and double torus are

(n—2)(n+ 1))

|Fp(Wn;1)| = n(n —1) (2"'2 + -

and
[Fo(Wn;2)| = —(n-3)(n—-2)(n—-1)n

192
« (2 - D(a-+2) + AR VO —n = 0)),

respectively.
Proof According to the classification of .7-' (Wh), we can get that | Fp(Wa;1)| =
2 Z ("7Hg1(Ms), and |Fp(Wn; 2)| = 2 Z ("7} g2(M:). In order to get

I.F,,(W.., 1)} and |Fp(Wh;2)|, we will dlscuss g1(M;) and g2(M;), 0<i<n—1,
Because we discuss the embeddings on the orientable surfaces, from Lemma 1.1,
the indices assignment § = (8o, -- ,0n-1) =0.

For M; = {ai---@1@0Gi41+ - an_189 A},0 < i <n -2,

@i+ G1G0Gi+1 " On_18g A ~  @i--:Q1808i+1'"*Gn-28n-10g A10,_; A2

~ @i 0141041 Gn-2A200an-105 G5y
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According to Lemmas 1.3, 2.2 and 2.4, we can get that, for 0 < i <n —2,

a(M;) = go(T3™%) = (i + 1) (n - i - 1),

o(M:) = q(T3™?) 4
214-(11 -2)(n—1)(n—i—1)(i + 1)(n® — (2i + 3)n + 2 + 4).

For Mn-1 = {an-1+--a100ag5 A} , @n-1---a18085 A ~ @n_1 -+ a1 A, by Oper-
ation 1. According to Lemmas 2.3, 2.5, we can get that

91 (Mnoy) = o (TPY) = (n=2)(n ;41)n(n+ 1) ’

92(Mn-1) = 92(T1'1)

= e~ D(n=3)(n - ~ Ya(n + (3 ~n —6).

So the number of embeddings of W, on torus is

n-2 n—1 .
[Fo(Wn;1)] = 2(2( i )yl(M)+< )gx(Mn-z))

i=0
(n—-2)(n-n(n+1)
12 )

And the number of embeddings of W,, on double torus is

n—-2 n—
[Fo(Wni2)] = 2(2( ; )gz(M‘)+( )92(Mn-1))

= 2" nn-1)+

i=0
= —n-3)(n-2)n-1)n

192
X (2"(n -1(n+2)+ (n—4)(n+ 11)5(3"' —n- 6))

Thus the theorem is obtained.

Examples

According to theorem 3.1, one can calculate the numbers of embeddings of W,
on torus and double torus easily, give these numbers |F, (Why; 1)|, | Fp(Wa; 2)[,3 <
n < 11 as follows:

Wl Wal Ws | Ws W2 Ws Wo Wio Wi
[Fp(Wa; 1)|] 14| 58 1?0_ 550 1484 3836 9636 23700 57310
|Fo(Wni2)]] O | 36 576 | 4968 | 31178 | 160538 721602 2935842 11062326

4. The numbers of embeddings of W,, on nonorientable
surfaces of genus 1,2,3,4
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According to the classification of F(Wy), |[Fq(Wa; k)| = 2 E ("7H k(M) (k >

1). In this section, we get | Fq(Whn; k)|, (1 < k < 4) i.e., the numbers of embeddings
of Wy, on nonorientable surfaces of genus 1,2, 3, 4.

Theorem 4.1 The numbers of embeddings of W, on nonorientable surfaces of
genus 1,2,3, and 4 are

[Fo(Wa;1)] = 2% + (n — 1)n,

Ifq(Wn;2)| = n(n - 1) (3 X 2n—2 + n(n - 2))’

3
(n—2)(n - 1)n(2"15(19n 1) +2(n — 3)(41n2 - 9n — 20))
|F9(Wnl 3)' = 720
and
. (n=3)(n—-2)(n—-1n
x (2"7(1577# — 48n — 85) + 4(n — 4)n(61n? — 55n — 74)),
respectively.

Proof According to the classification of F(W,), we can get that |Fo(Wn; k)| =
-1

2"2 (*71)dx(M:), In order to get |Fo(Wnik)|, 1 < k < 4, we will discuss
i=0

§k(—M,~) in which 1 € k € 4,0 € i € n — 1. Because we discuss the embed-
dings on the nonorientable surfaces, from Lemma 1.1, the indices assignment

8 = (80, ,6n-1) #0.

Casel d(ao)=1
In this case, for M; = {a:i---a100@i+1 - -@n-_1a04}(0 < i < n — 1), by Relation
2, we have

Qi+ 01G0Gi+1 " ** An=1G0A ~ @i - - @1Qn-1 -+ Ai+1AG0G0

Case 2 4(ao) =0
Subcase 2.1 M; = {a:-:-a100Gi41 - @n—2an-1ag A1an-142}, (0 £ i < n-2).
By Relation 2, we have
Qi+ @180Qi+1 ** * Grn—20n—1ag A10n-142
~ @i Q180Gi4+1 " Gn-24] G0A20n_1Gn-1
~ ai---a1A18,_g a'i_+1A2a0aoan—lan—1
Subcase 2.2 M; = {a::- a1008i41 " Gn-2an-1ag5 A10,_;A2},(0<i <n-2).
By Relation 1, we have
Qi+ G1008i+1 **Gn—28n—1Gg A1a,_1 A2

~ @i alAlai+1 v an—2A2aoan—1a(Ta;—l
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Subcase 2.8 Mn_1 = {an-1---a1a0a5 A}
By Operation 3, we have

-1
Gn-1'--160@) A~ an_y- - -a1A.

The following arguments based on Lemma 1.4, and some Lemmas in Section 2

are applied.
a) For the number of embeddings of W,, on projective plane.
The number of Case 1 is

n-—1 n-1

) ( ; )go(Tx"-l) =2""h

£ i

i=0

There is no embedding on projective plane in Subcases 2.1 and 2.2. And the
number in Subcase 2.3 is

n—-1\_ -1y _ (n=1n
(n _ 1) gl(Tl ) - 2 N
So the number embeddings of W, on projective plane is
. _ n—1 (n' - l)n
|Fo(Was 1) = 2(277" + 2220),

b) For the number of embeddings of Wy on Klein bottle.

n-1 n—1
The number of Case 1is Y, ("7)a(Ty ™) = T ("7} &5 = on-tozln,
i=0 i=0

n—2

The number of Subcase 2.1is 3 ("7!)a1(T3~?) = 2" 3(n — 1)n.
=0

There is no embedding on Kleitn= bottle in Subcase 2.2. .
And the number in Subcase 2.3 is (*21)g2(TP"1) = 2=ln(n=d)
So the number of embeddings of W, on Klein bottle is

|fq(Wn;2)| = n(n - 1)(3 x 9n—2 + n(na- 2))‘

¢) For the number of embeddings of Wy on nonorientable surface of genus 3.
The number of Case 1 is

n—-1
2 (ﬂ: 1) (gz(T,“") +91(T{"1)) = gn-4 (n~2)(n —31)11(511, +1) '

i=0

n

-2
The number of Subcase 2.1 is Y, (")) a1 (Ty™?) =2"8(n—2)(n—)n(3n—1).
=0

The number of Subcase2.2 is s::;ne to Subcase 2.1.
The number of Subcase2.3 is

(z _ i) GBI ) = %(n - 3)(n — 2)(n - 1)n(41n® - 9n — 20).
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So the number of embeddings of W, on the nonorientable surface of genus 3 is

(n—2)(n - 1)n(2“15(19n —1) +2(n — 3)(41n? — 9n — 20))
o Wai 3] = e .
d) For the number of embeddings of W, on nonorientable surface of genus 4.

-1
The number of Case 1 is nz ("7HasTh).
=0

—2
The number of Subcase 2.1 is "2 ) (§2(T§"2) +o (T5"'2)) .
i=0

—2
The number of Subcase 2.2 is nz ("7H)gA(TE2).

i=0
The number of Subcase 2.3 is (*21)a(T7™").
So the number of embeddings of Wy, on the nonorientable surface of genus 4 is

|Fq(Wa; 4)]

(n=3)(n—2)(n—1)n (2"7(157n2 — 48n — 85) + 4(n — 4)n(61n? — 55n — 74)
= 10080 '

Thus the theorem is obtained.

Examples

According to theorem 4.1, one can calculate the numbers of embeddings of
W, on nonorientable surfaces of genus 1,2,3 and 4 easily, give these numbers
[Fo(Wai 1], 1F(Wa; 2)|, [Fo(Wa; 3)|, |Fo(Wn;4)],3 < n < 10 as follows:

Wi | Wy Ws Ws Wz Ws Wp Wio
FoWeai )] | 14 | 28 52 94 170 312 584 1114
Fo(Wai2)| | 42 | 176 | 680 | 1680 46522 11648 20160 | 71520
FolWn;3)| | 56 | 640 | 4080 | 10482 | 78414 | 282408 | 040968 | 2058900 |
Foq(Wa; d) 0 | 596 | 9880 | 87536 | 660686 | 2033248 | 13353528 | 54900960 |

5. Application

Let Dn(n > 2), is a dipole graph with 2 vertices, n multiple edges. Kwak and
Lee obtained the genus polynomials of dipoles on orientable surfaces in [5], and
got total embedding polynomials of dipoles in [6], but we can't get the numbers
of embeddings on nonorientable surfaces from their results easily. In this section,
by applying some lemmas in Section 2, we can get the numbers of embedding of
D,, on nonorientable surface of genus 1,2, 3 and 4 in explicit expressions.

Theorem 5.1 The numbers of embedding of dipole graph Dy on nonorientable
surfaces of genus 1,2, 3, and 4 are
(n—1n

|Fa(Dni D] = (n = B,

‘fq(Dn;2)| = (n - 1)!_("‘;_2)_(:__1_)"'_2'



|Fo(Dni3)| = (n — 1):721,3(1; —3)(n — 2)(n — 1)n(41n® — 9n — 20)
and
(n — 1)n?(61n% — 55n — 74)
5040 !

|Fq(Dn;4)| = (n = 1) (n—4)(n—3)(n—2)

respectively.

Proof When we fix the rotation of one vertex of them, say v;, then the asso-
ciate surfaces of D, can be written as {@a1a2---an—1A4} = T{""!, and there are
(n — 1)! different rotations of v;. Therefore, we have that

|Fo(Dni 1)l = (n = DIG1(T7™),  |Fo(Dn;2)| = (n — 1)1g2(T7)

1Fo(Dn;3)] = (n = D)!Gs(TT™), | Fo(Dnid)l = (n - DIGa(TTY)
By Lemmas 2.7, 2.9 and 2.12, the theorem is obtained.
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