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Abstract

In this paper, we consider the total domination number, the restrained
domination number, the total restrained domination number and the con-
nected domination number of lexicographic product graphs.
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1 Introduction

Throughout this article, a graph G = (V, E) always means a finite undi-
rected graph without loops and multiple edges, where V = V(G) is the
vertex set and E = E(G) is the edge set. For a vertex v € V, N(v) denotes
the set of vertices adjacent to v. For a subset S of V, N(S) denotes the
set of all vertices adjacent to some vertex in S and N[S] = N(S)US. The
graph induced by § C V is denoted by (S). P, denotes a path with n
vertices. A set S C V is a dominating set of G if every vertex not in S is
adjacent to some vertex in S. The domination number of G, denoted by
¥(G), is the minimum cardinality of a dominating set of G. A dominating
set S is called a 7(G)-set of G if |S| = ¥(G). Let D and U be two vertex
sets of V, U is called a monitor set of D if D C N[U]. The monitor number
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of D, denoted by ¢(D), is the minimum cardinality of a monitor set of D.
Set ¢(G) = min{¢(D) : D is a ¥(G)-set of G}.

A set S C V is a total dominating set (TDS) if every vertex in V is
adjacent to some vertex in S. The total domination number of G, denoted
by v:(G), is the minimum cardinality of a TDS of G. A TDS § is called
a 7:(G)-set of G if |S| = 1(G). Clearly, v(G) < 1(G). Aset SC V is
a restrained dominating set (RDS) if every vertex not in S is adjacent to
some vertex in S and to some vertex in V' — S. The restrained domination
number of G, denoted by 7,(G), is the minimum cardinality of a RDS of
G. A RDS S is called a v.(G)-set of G if |S| = 4-(G). Clearly, v(G) <
7(G). A set S C V is a total restrained dominating set (TRDS) if every
vertex in V — S is adjacent to some vertex in S and to some vertex in
V - 8, and every vertex in S is adjacent to another vertex in S. The total
restrained domination number of G, denoted by ¥-(G), is the minimum
cardinality of a TRDS of G. A TRDS S is called a +,(G)-set of G if
IS| = %-(G). Clearly, 7(G) < 7-(G). A dominating set of G is called a
connected domination set (CDS) if the induced subgraph (S) is connected.
The connected domination number of G, denoted by 7.(G), is the minimum
cardinality of a CDS of G. A CDS S is called a v.(G)-set of G if [S| =
7¢(G). Clearly, 7(G) < 7c(G). Please refer to the related studies[1}-[5].

Let G = (W1, E;) and G2 = (V,E»2) be two graphs, where V| =
{z1,%2,...,%n,} and Vo = {y1,¥2,...,Yn,}. The lezicographic product
G1[G2) of Gy and Gy has vertex set V1 xVz and (z;, y;)(zv, y5) € E(G1 (Ga2))
if and only if either z;zi € Ey, or z; = w and y;y; € E2. The subgraph
G%* is the graph with vertex set {(z,y;)lj = 1,2,...,m2} and edge set
{(zs,¥;)(zi, yj*)|yjy;» € E2}. Clearly, G3* is isomorphic to graph G2 for
i=1,2,...,n;. From the definition of lexicographic product, it is easy to
see that G1[G2] can be obtained from G; by replacing each vertex of G;
with a copy of G, in such a way that for every edge (z:, z;) in G, contains
all possible edges from G5 to G3°.

In this paper, we will consider the total domination number, the re-
strained domination number, the total restrained domination number and
the connected domination number of lexicographic product graphs.

2 Main results

Clearly, For any two graphs G, and Gy, if G is an isolated vertex, then
G1[G2] = Ga, if G is an isolated vertex, then G1[G2) & G,. Hence we
consider that G; and G, are two graphs with at least two vertices.
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First, we consider the domination number of G [Gy).

Theorem 2.1. Let Gy = (W}, Ey) and Gy = (Vz, E,) be two graphs with
at least two vertices. If v(G2) = 1, then v(G1[G2)) = ¥(G1).

Proof. Clearly, ¥(G1{Gz2]) > 7(G1). Now we prove that v(G1[Ga]) <
7(G1). Let D; be a ¥(G1)-set of Gy, and let Dy = {y;} be a Y(G2)-
set of G5. Set D = D; x {yl} C V(G1[G2)). Let (z,y) be an arbitrary
vertex of G1[Ga).

Case 1. £ € D;. If y =y, then (z,y) € D. If y # y1, then yy, € E,
for 7(02) = 1. Thus, (1:, y)(z, yl) € E(Gl [GZD and (12, yl) € D.

Case 2. z ¢ D;. There exists a vertex z; € D; such that zz; € E;.
Thus, (z,y)(zi,11) € F(G1[G2]) and (zi,11) € D.

Therefore, every vertex in V(G1[G2])— D is adjacent to some vertex in D,
D is a dominating set of G1[G3]. Hence 7(G,[G2)) < |D| = |Dy| = 4(G,).
From above we have v(G1[G2]) = v(G1). a

Theorem 2.2. Let G, = (V1, E1) be a graph with no isolated vertez, and
let Gy = (Va, Ep) be a graph with v(G2) > 2. Then v(G1) < v(G1[G2]) <
Y(G1) +«G1).

Proof. Clearly, 7(G1[G2]) > v(G1). Now we prove that v(G1[G2]) <
7(G1) + ¢(G1). Let Dy be a y(Gy)-set such that there exists a mini-
mum monitor set U; of D, with |Uy| = «(Dy) = «(G1), and |U; N D,|
is as small as possible. Take two vertices y;,y2 € Gy and set D =
(D1 x {11}) U (U1 x {y2}) € V(G1[G2]). Let (z,y) be an arbitrary vertex
of G1 [Gz]

Case 1. z € Dy. If y = y;, then (z,y) € D. We consider the case
that y # y1. If there exists a vertex z; € D; such that zz; € E;, then
(z,y)(xi,11) € E(G1[G2)) and (zi,11) € D. Otherwise, there exists a
vertex z; € Uy such that zz; € E), since G; has no isolated vertex and
|Ur N D,y| is as small as possible. Thus, (z,y)(z;,y2) € E(G1[G2]) and
(zj,¥2) € D.

Case 2. z ¢ D;. There exists a vertex r; € D; such that zz; € E;.
Thus, (z,y)(z:,v1) € E(G1[G2]) and (z;,y1) € D.

Therefore, every vertex in V(G1[G2]) — D is adjacent to some vertex in
D, D is a dominating set of G1[G2]. Hence ¥(G1[G3)) < |D| = |D1|+|Uh| =

7(G1) + ¢Gh).
a

Remark: The lower bound and upper bound in Theorem 2.2 are sharp.
Clearly, v(Py) = 2,7(Fs) = 2,u(Ps) = 1,u(Ps) = 2, we have v(P4[Py)) =
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¥(Ps) = 2, ¥(Ps[Pa]) = v(Ps) + ¢(Ps) = 4. Thus, a domination number of
Py[P,] achieves the lower bound (see Fig.1) and a domination number of
Pg[P4] achieves the lower bound (see Fig.2).
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Fig.l. A dominating set of P4{Py);
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Fig.2. A dominating set of Ps[Py)

We study the total domination number of G4[G?] in the following theo-
rem.

Theorem 2.3. Let G; = (W1, E1) and Gg = (Va, E) be two graphs with
at least two vertices. We have v:(G1[G2]) = 7:(G1).

Proof. Clearly, 7:(G1[G2]) = 7:(G1). Now we prove that v(G1(G2]) <
7:(G1). Let D; be a 7,(Gy)-set of G1. Set D =Dy x {;n} S Vi x VW, C
V(G1|G2)) for some vertex y, € V. Let (z,y) be an arbitrary vertex of
G1[G2). Then there exists a vertex z; € D, such that zz; € E;. There-
fore (z,y)(zi,v1) € E(G1[G2]) and (zi,y1) € D. Thus, every vertex in
V(G1[G2]) is adjacent to some vertex in D, D is a total dominating set of
G1(Ga). Hence v:(G1[G2]) < |D| = |D1| = %(G1). From above we have
2(G1[Gal) = 1(Gy). =

Next, we study the restrained domination number of G1[G2).

Theorem 2.4. Let G, = (V4, E) be a graph with no isolated vertez, and
let Gy = (Va, E») be a graph with at least two vertices. Then v-(G1(G2]) =

v(G1[Ga2))-

Proof. We consider two cases.

Case 1. |V, = 2. Let V2 = {31,%2}. If G is a path with two vertices,
then v(G1[G2]) = ¥(G1) by Theorem 2.1. Let D, is a minimum dominating
set of G1, then Dy x {y;} is a dominating set of G1[G2] for any y; € V2. It
is easy to see that Dy x {y;} ia also a restrained dominating set.

If G2 is an empty graph with two vertices, then we claim that there
exists a minimum dominating set D of G1[G2] such that |[DNV(G3)| <1
for each vertex of z € V;. In fact, If |D N V(G3)| = 2 for some vertex of
z € V4, that is, (z,v1), (z,y2) € D, then there exists a vertex z; such that
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zz; € By and D' = (D—{(z,41)})U{(z:i,¥2)} is 2 minimum dominating set
of G1[G3]. Therefore, we can find a minimum dominating set D’ of G1[Gy]
such that |D’' N V(G3)| < 1 for each vertex of z € V;. Let (z,y) be any
vertex of G1[G2] — D', then one of two vertices (z;,y;) and (z:,y2) belongs
to G1[G2] — D’ for a vertex z; € V; with zz; € E;. Therefore D’ is a
restrained dominating set of G1(G2] — D’. Hence v,.(G1[G2]) = v(G1[Gz)).

Case 2. |V3| > 3. We claim that there exists a dominating set D such
that |DNV(G3)| < 2 for each vertex of z € Vj. In fact, by Theorem 2.2, we
can find a minimum dominating set of D = (D x {y1})U(U’ x {y2}), where
D is a 4(G1)-set and U’ is a subset of U; (the monitor set of D). It is easy
to see that |[D N V(G3)| < 2 for each vertex of z € V;. Let (x,y) be any
vertex of G1[G2] — D, then there exists a vertex (z;,y;) € G1[Gz] — D such
that (z,y)(zi,y;) € E(G1[G2]). Therefore D is a restrained dominating set

of Gl [GQ] — D. Hence "/,-(G] [Gz]) = 'Y(Gl [Gg])
O

It is clear that the dominating sets of P4[P,] and Ps[P,] are restrained
dominating sets in Fig.1 and Fig.2.

We will discuss the total restrained domination number of G} [G.] in the
following theorem 2.5.

Theorem 2.5. Let G; = (W4, E;) and G2 = (V,, E3) be two graphs with
at least two vertices. Then v.(G1[(G2]) £ 1~(G1).

Proof. Let D; be a ;- (G1)-set of G1. Set D = Dy x {11} C V(G1{G3)) for
some vertex y; € V,. Let (z,y) be an arbitrary vertex of G1[Ga).

Case 1. z € D;. There exists a vertex z; € D; such that zz; € E;. If
¥ =1, then (z,y) € D. We have (z,y)(zi, 1) € E(G:1[G,]) and (z;,11) €
D. If y # w1, then (z,y) ¢ D. We have (z,y)(z:,y1) € E(G1[G2]) and
(ziy91) € D, (=, y)(wi’y) € E(GI[G2]) and (z, y) ¢ D.

Case 2. z ¢ D;. Clearly, (z,y) ¢ D. Therefore there exist two vertices
z; € Dy and z; ¢ Dy such that zz;,zz; € E;. We have (z,y)(zi, 1) €
E(G\[Ga]) and (zi,31) € D, (z,y)(zj,y) € E(G1[G2]) and (zj,y) ¢ D.
Thus, every vertex in V(G1[G2]) — D is adjacent to some vertex in D and
to some vertex in V(G,[G2]) — D, and every vertex in D is adjacent to
some vertex in D, D is a total restricted dominating set of G,[G2]. Hence
7r(G1[Ga]) < ID| = [D1] = 4r(G1). From above we have er(G1[Ga]) <

Vir (Gl ) .
O

Finally, we consider the connected domination number of G, [Ga2).
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Theorem 2.6. Let G = (W1, Ey) and G2 = (Va, E3) be two graphs with
at least two vertices. If v.(G1) = 1 and v(G2) > 2, then v.(G1[G2]) = 2.
Otherwise, 7¢(G1[Gz2]) = 7.(G1).

Proof. Clearly, 7.(G1[G2]) = 7.(G1). We consider three cases.

Case 1. 4(G2) = 1. Let D; be a 7.(G1)-set of G and D = {y1} be
a y(Gz)-set of G2. Set D = D; x {1} C V(G1[Gz]). We know that D is
a dominating set of G1{G2] from the proof of Theorem 2.1. Since (D) is
connected, (D) is also connected. Thus, D is a connected dominating set
of G1[G2]. Hence 7(Gi[Ga]) < |D| = Di| = 7(Gr):

Case 2. 7(G2) > 2 and 4.(G1) = 1. It is easy to see that 7.(G1(G2]) = 2.

Case 3. 7(G2) = 2 and 7.(G1) > 2. Let D; be a v.(G1)-set of G;. Set
D = D; x {;1} C V(G1[G2]) for some vertex y; € V. Let (z,y) be an
arbitrary vertex of G1[Ga]. Since D; is a connected dominating set of Gy,
there exists a vertex z; € D, such that zz; € E;. Thus (z,y}{z:i, 1) €
E(G1[G2]) and (z:,41) € D. Hence D is a dominating set of G1(G2).
Since (D,) is connected, (D) is also connected. Thus, D is a connected
dominating set of G1[G2). Hence v.(G1(G2]) < |D| = |D1| = ¥:(G1). From
above we have v.(G1(G2]) = 7.(G1).

O
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