Domination in lexicographic product graphs* Xindong Zhang¹, Juan Liu^{1,2}, Jixiang Meng^{2†} - College of Mathematics Sciences, Xinjiang Normal University, Urumqi, Xinjiang, 830054, P.R.China - College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang, 830046, P.R.China #### Abstract In this paper, we consider the total domination number, the restrained domination number, the total restrained domination number and the connected domination number of lexicographic product graphs. Keywords: Lexicographic product; Total domination number; Restrained domination number; Connected domination number #### 1 Introduction Throughout this article, a graph G=(V,E) always means a finite undirected graph without loops and multiple edges, where V=V(G) is the vertex set and E=E(G) is the edge set. For a vertex $v\in V$, N(v) denotes the set of vertices adjacent to v. For a subset S of V, N(S) denotes the set of all vertices adjacent to some vertex in S and $N[S]=N(S)\cup S$. The graph induced by $S\subseteq V$ is denoted by $\langle S\rangle$. P_n denotes a path with n vertices. A set $S\subseteq V$ is a dominating set of G if every vertex not in S is adjacent to some vertex in S. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. A dominating set S is called a $\gamma(G)$ -set of S if S if S is called a is called a S if S is called a S is called a S if S is called a S if S is called a S is called a S if S is called a S if S is called a S is called a S if S is called a S is called a S if S is called a S is called a S is called a S if S is called a S is called a S is called a S is called a S if S is called a ^{*}The research is supported by FSRPHEXJ (No.XJNU2010S30), China Postdoctoral Science Foundation (No.20100471000), Science Foundation for The Excellent Youth Scholars of Xinjiang Normal University (No.XJNU0920) and NSFXJ (No.2010211A06). †Corresponding author. E-mail: liujuan1999@126.com. of D, denoted by $\iota(D)$, is the minimum cardinality of a monitor set of D. Set $\iota(G) = \min\{\iota(D) : D \text{ is a } \gamma(G)\text{-set of } G\}$. A set $S \subseteq V$ is a total dominating set (TDS) if every vertex in V is adjacent to some vertex in S. The total domination number of G, denoted by $\gamma_t(G)$, is the minimum cardinality of a **TDS** of G. A **TDS** S is called a $\gamma_t(G)$ -set of G if $|S| = \gamma_t(G)$. Clearly, $\gamma(G) \leq \gamma_t(G)$. A set $S \subseteq V$ is a restrained dominating set (RDS) if every vertex not in S is adjacent to some vertex in S and to some vertex in V-S. The restrained domination number of G, denoted by $\gamma_r(G)$, is the minimum cardinality of a RDS of G. A RDS S is called a $\gamma_r(G)$ -set of G if $|S| = \gamma_r(G)$. Clearly, $\gamma(G) \leq$ $\gamma_r(G)$. A set $S \subseteq V$ is a total restrained dominating set (**TRDS**) if every vertex in V-S is adjacent to some vertex in S and to some vertex in V-S, and every vertex in S is adjacent to another vertex in S. The total restrained domination number of G, denoted by $\gamma_{tr}(G)$, is the minimum cardinality of a TRDS of G. A TRDS S is called a $\gamma_{tr}(G)$ -set of G if $|S| = \gamma_{tr}(G)$. Clearly, $\gamma(G) \leq \gamma_{tr}(G)$. A dominating set of G is called a connected domination set (CDS) if the induced subgraph $\langle S \rangle$ is connected. The connected domination number of G, denoted by $\gamma_c(G)$, is the minimum cardinality of a CDS of G. A CDS S is called a $\gamma_c(G)$ -set of G if |S| = $\gamma_c(G)$. Clearly, $\gamma(G) \leq \gamma_c(G)$. Please refer to the related studies[1]-[5]. Let $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ be two graphs, where $V_1=\{x_1,x_2,\ldots,x_{n_1}\}$ and $V_2=\{y_1,y_2,\ldots,y_{n_2}\}$. The lexicographic product $G_1[G_2]$ of G_1 and G_2 has vertex set $V_1\times V_2$ and $(x_i,y_j)(x_{i'},y_{j'})\in E(G_1[G_2])$ if and only if either $x_ix_{i'}\in E_1$, or $x_i=x_{i'}$ and $y_jy_{j'}\in E_2$. The subgraph $G_2^{x_i}$ is the graph with vertex set $\{(x_i,y_j)|j=1,2,\ldots,n_2\}$ and edge set $\{(x_i,y_j)(x_i,y_{j'})|y_jy_{j'}\in E_2\}$. Clearly, $G_2^{x_i}$ is isomorphic to graph G_2 for $i=1,2,\ldots,n_1$. From the definition of lexicographic product, it is easy to see that $G_1[G_2]$ can be obtained from G_1 by replacing each vertex of G_1 with a copy of G_2 , in such a way that for every edge (x_i,x_j) in G_1 , contains all possible edges from $G_2^{x_i}$ to $G_2^{x_j}$. In this paper, we will consider the total domination number, the restrained domination number, the total restrained domination number and the connected domination number of lexicographic product graphs. ### 2 Main results Clearly, For any two graphs G_1 and G_2 , if G_1 is an isolated vertex, then $G_1[G_2] \cong G_2$, if G_2 is an isolated vertex, then $G_1[G_2] \cong G_1$. Hence we consider that G_1 and G_2 are two graphs with at least two vertices. First, we consider the domination number of $G_1[G_2]$. **Theorem 2.1.** Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs with at least two vertices. If $\gamma(G_2) = 1$, then $\gamma(G_1[G_2]) = \gamma(G_1)$. *Proof.* Clearly, $\gamma(G_1[G_2]) \geq \gamma(G_1)$. Now we prove that $\gamma(G_1[G_2]) \leq \gamma(G_1)$. Let D_1 be a $\gamma(G_1)$ -set of G_1 , and let $D_2 = \{y_1\}$ be a $\gamma(G_2)$ -set of G_2 . Set $D = D_1 \times \{y_1\} \subseteq V(G_1[G_2])$. Let (x, y) be an arbitrary vertex of $G_1[G_2]$. Case 1. $x \in D_1$. If $y = y_1$, then $(x, y) \in D$. If $y \neq y_1$, then $yy_1 \in E_2$ for $\gamma(G_2) = 1$. Thus, $(x, y)(x, y_1) \in E(G_1[G_2])$ and $(x, y_1) \in D$. Case 2. $x \notin D_1$. There exists a vertex $x_i \in D_1$ such that $xx_i \in E_1$. Thus, $(x,y)(x_i,y_1) \in E(G_1[G_2])$ and $(x_i,y_1) \in D$. Therefore, every vertex in $V(G_1[G_2])-D$ is adjacent to some vertex in D, D is a dominating set of $G_1[G_2]$. Hence $\gamma(G_1[G_2]) \leq |D| = |D_1| = \gamma(G_1)$. From above we have $\gamma(G_1[G_2]) = \gamma(G_1)$. Theorem 2.2. Let $G_1 = (V_1, E_1)$ be a graph with no isolated vertex, and let $G_2 = (V_2, E_2)$ be a graph with $\gamma(G_2) \geq 2$. Then $\gamma(G_1) \leq \gamma(G_1[G_2]) \leq \gamma(G_1) + \iota(G_1)$. Proof. Clearly, $\gamma(G_1[G_2]) \geq \gamma(G_1)$. Now we prove that $\gamma(G_1[G_2]) \leq \gamma(G_1) + \iota(G_1)$. Let D_1 be a $\gamma(G_1)$ -set such that there exists a minimum monitor set U_1 of D_1 with $|U_1| = \iota(D_1) = \iota(G_1)$, and $|U_1 \cap D_1|$ is as small as possible. Take two vertices $y_1, y_2 \in G_2$ and set $D = (D_1 \times \{y_1\}) \cup (U_1 \times \{y_2\}) \subseteq V(G_1[G_2])$. Let (x, y) be an arbitrary vertex of $G_1[G_2]$. Case 1. $x \in D_1$. If $y = y_1$, then $(x,y) \in D$. We consider the case that $y \neq y_1$. If there exists a vertex $x_i \in D_1$ such that $xx_i \in E_1$, then $(x,y)(x_i,y_1) \in E(G_1[G_2])$ and $(x_i,y_1) \in D$. Otherwise, there exists a vertex $x_j \in U_1$ such that $xx_j \in E_1$, since G_1 has no isolated vertex and $|U_1 \cap D_1|$ is as small as possible. Thus, $(x,y)(x_j,y_2) \in E(G_1[G_2])$ and $(x_j,y_2) \in D$. Case 2. $x \notin D_1$. There exists a vertex $x_i \in D_1$ such that $xx_i \in E_1$. Thus, $(x,y)(x_i,y_1) \in E(G_1[G_2])$ and $(x_i,y_1) \in D$. Therefore, every vertex in $V(G_1[G_2]) - D$ is adjacent to some vertex in D, D is a dominating set of $G_1[G_2]$. Hence $\gamma(G_1[G_2]) \leq |D| = |D_1| + |U_1| = \gamma(G_1) + \iota(G_1)$. **Remark:** The lower bound and upper bound in Theorem 2.2 are sharp. Clearly, $\gamma(P_4) = 2$, $\gamma(P_6) = 2$, $\iota(P_4) = 1$, $\iota(P_6) = 2$, we have $\gamma(P_4[P_4]) = 1$ $\gamma(P_4) = 2$, $\gamma(P_6[P_4]) = \gamma(P_6) + \iota(P_6) = 4$. Thus, a domination number of $P_4[P_4]$ achieves the lower bound (see Fig.1) and a domination number of $P_6[P_4]$ achieves the lower bound (see Fig.2). Fig.1. A dominating set of $P_4[P_4]$; Fig.2. A dominating set of $P_6[P_4]$ We study the total domination number of $G_1[G_2]$ in the following theorem. **Theorem 2.3.** Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs with at least two vertices. We have $\gamma_t(G_1[G_2]) = \gamma_t(G_1)$. Proof. Clearly, $\gamma_t(G_1[G_2]) \geq \gamma_t(G_1)$. Now we prove that $\gamma_t(G_1[G_2]) \leq \gamma_t(G_1)$. Let D_1 be a $\gamma_t(G_1)$ -set of G_1 . Set $D = D_1 \times \{y_1\} \subseteq V_1 \times V_2 \subseteq V(G_1[G_2])$ for some vertex $y_1 \in V_2$. Let (x,y) be an arbitrary vertex of $G_1[G_2]$. Then there exists a vertex $x_i \in D_1$ such that $xx_i \in E_1$. Therefore $(x,y)(x_i,y_1) \in E(G_1[G_2])$ and $(x_i,y_1) \in D$. Thus, every vertex in $V(G_1[G_2])$ is adjacent to some vertex in D, D is a total dominating set of $G_1[G_2]$. Hence $\gamma_t(G_1[G_2]) \leq |D| = |D_1| = \gamma_t(G_1)$. From above we have $\gamma_t(G_1[G_2]) = \gamma_t(G_1)$. Next, we study the restrained domination number of $G_1[G_2]$. **Theorem 2.4.** Let $G_1 = (V_1, E_1)$ be a graph with no isolated vertex, and let $G_2 = (V_2, E_2)$ be a graph with at least two vertices. Then $\gamma_r(G_1[G_2]) = \gamma(G_1[G_2])$. Proof. We consider two cases. Case 1. $|V_2| = 2$. Let $V_2 = \{y_1, y_2\}$. If G_2 is a path with two vertices, then $\gamma(G_1[G_2]) = \gamma(G_1)$ by Theorem 2.1. Let D_1 is a minimum dominating set of G_1 , then $D_1 \times \{y_i\}$ is a dominating set of $G_1[G_2]$ for any $y_i \in V_2$. It is easy to see that $D_1 \times \{y_i\}$ ia also a restrained dominating set. If G_2 is an empty graph with two vertices, then we claim that there exists a minimum dominating set D of $G_1[G_2]$ such that $|D \cap V(G_2^x)| \leq 1$ for each vertex of $x \in V_1$. In fact, If $|D \cap V(G_2^x)| = 2$ for some vertex of $x \in V_1$, that is, $(x, y_1), (x, y_2) \in D$, then there exists a vertex x_i such that $xx_i \in E_1$ and $D' = (D - \{(x, y_1)\}) \cup \{(x_i, y_2)\}$ is a minimum dominating set of $G_1[G_2]$. Therefore, we can find a minimum dominating set D' of $G_1[G_2]$ such that $|D' \cap V(G_2^x)| \leq 1$ for each vertex of $x \in V_1$. Let (x, y) be any vertex of $G_1[G_2] - D'$, then one of two vertices (x_i, y_1) and (x_i, y_2) belongs to $G_1[G_2] - D'$ for a vertex $x_i \in V_1$ with $xx_i \in E_1$. Therefore D' is a restrained dominating set of $G_1[G_2] - D'$. Hence $\gamma_r(G_1[G_2]) = \gamma(G_1[G_2])$. Case 2. $|V_2| \geq 3$. We claim that there exists a dominating set D such that $|D \cap V(G_2^x)| \leq 2$ for each vertex of $x \in V_1$. In fact, by Theorem 2.2, we can find a minimum dominating set of $D = (D_1 \times \{y_1\}) \cup (U' \times \{y_2\})$, where D_1 is a $\gamma(G_1)$ -set and U' is a subset of U_1 (the monitor set of D_1). It is easy to see that $|D \cap V(G_2^x)| \leq 2$ for each vertex of $x \in V_1$. Let (x, y) be any vertex of $G_1[G_2] - D$, then there exists a vertex $(x_i, y_j) \in G_1[G_2] - D$ such that $(x, y)(x_i, y_j) \in E(G_1[G_2])$. Therefore D is a restrained dominating set of $G_1[G_2] - D$. Hence $\gamma_r(G_1[G_2]) = \gamma(G_1[G_2])$. It is clear that the dominating sets of $P_4[P_4]$ and $P_6[P_4]$ are restrained dominating sets in Fig.1 and Fig.2. We will discuss the total restrained domination number of $G_1[G_2]$ in the following theorem 2.5. **Theorem 2.5.** Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs with at least two vertices. Then $\gamma_{tr}(G_1[G_2]) \leq \gamma_{tr}(G_1)$. *Proof.* Let D_1 be a $\gamma_{tr}(G_1)$ -set of G_1 . Set $D = D_1 \times \{y_1\} \subseteq V(G_1[G_2])$ for some vertex $y_1 \in V_2$. Let (x, y) be an arbitrary vertex of $G_1[G_2]$. Case 1. $x \in D_1$. There exists a vertex $x_i \in D_1$ such that $xx_i \in E_1$. If $y = y_1$, then $(x, y) \in D$. We have $(x, y)(x_i, y_1) \in E(G_1[G_2])$ and $(x_i, y_1) \in D$. If $y \neq y_1$, then $(x, y) \notin D$. We have $(x, y)(x_i, y_1) \in E(G_1[G_2])$ and $(x_i, y_1) \in D$, $(x, y)(x_i, y) \in E(G_1[G_2])$ and $(x_i, y) \notin D$. Case 2. $x \notin D_1$. Clearly, $(x,y) \notin D$. Therefore there exist two vertices $x_i \in D_1$ and $x_j \notin D_1$ such that $xx_i, xx_j \in E_1$. We have $(x,y)(x_i,y_1) \in E(G_1[G_2])$ and $(x_i,y_1) \in D$, $(x,y)(x_j,y) \in E(G_1[G_2])$ and $(x_j,y) \notin D$. Thus, every vertex in $V(G_1[G_2]) - D$ is adjacent to some vertex in D and to some vertex in $V(G_1[G_2]) - D$, and every vertex in D is adjacent to some vertex in D, D is a total restricted dominating set of $G_1[G_2]$. Hence $\gamma_{tr}(G_1[G_2]) \leq |D| = |D_1| = \gamma_{tr}(G_1)$. From above we have $\gamma_{tr}(G_1[G_2]) \leq \gamma_{tr}(G_1)$. Finally, we consider the connected domination number of $G_1[G_2]$. **Theorem 2.6.** Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs with at least two vertices. If $\gamma_c(G_1) = 1$ and $\gamma(G_2) \geq 2$, then $\gamma_c(G_1[G_2]) = 2$. Otherwise, $\gamma_c(G_1[G_2]) = \gamma_c(G_1)$. *Proof.* Clearly, $\gamma_c(G_1[G_2]) \geq \gamma_c(G_1)$. We consider three cases. Case 1. $\gamma(G_2)=1$. Let D_1 be a $\gamma_c(G_1)$ -set of G_1 and $D_2=\{y_1\}$ be a $\gamma(G_2)$ -set of G_2 . Set $D=D_1\times\{y_1\}\subseteq V(G_1[G_2])$. We know that D is a dominating set of $G_1[G_2]$ from the proof of Theorem 2.1. Since $\langle D_1\rangle$ is connected, $\langle D\rangle$ is also connected. Thus, D is a connected dominating set of $G_1[G_2]$. Hence $\gamma_c(G_1[G_2])\leq |D|=|D_1|=\gamma_c(G_1)$. Case 2. $\gamma(G_2) \geq 2$ and $\gamma_c(G_1) = 1$. It is easy to see that $\gamma_c(G_1[G_2]) = 2$. Case 3. $\gamma(G_2) \geq 2$ and $\gamma_c(G_1) \geq 2$. Let D_1 be a $\gamma_c(G_1)$ -set of G_1 . Set $D = D_1 \times \{y_1\} \subseteq V(G_1[G_2])$ for some vertex $y_1 \in V_2$. Let (x, y) be an arbitrary vertex of $G_1[G_2]$. Since D_1 is a connected dominating set of G_1 , there exists a vertex $x_i \in D_1$ such that $xx_i \in E_1$. Thus $(x, y)(x_i, y_1) \in E(G_1[G_2])$ and $(x_i, y_1) \in D$. Hence D is a dominating set of $G_1[G_2]$. Since $\langle D_1 \rangle$ is connected, $\langle D \rangle$ is also connected. Thus, D is a connected dominating set of $G_1[G_2]$. Hence $\gamma_c(G_1[G_2]) \leq |D| = |D_1| = \gamma_c(G_1)$. From above we have $\gamma_c(G_1[G_2]) = \gamma_c(G_1)$. ## References G. Chartrand, L. Lesniak, Graphs and Digraphs, fourth ed., Chapman and Hall, Boca Raton, FL, 2005. - [2] Xue-Gang Chen, De-Xiang Ma and Liang Sun, On Total restrained domination in graphs, Czechoslovak Math. J. 55 (130) (2005) 393-396. - [3] E.J. Cockayne, R.M. Dawes, S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219. - [4] M.A. Henning, A survey of selected recent results on total domination in graphs, Discrete Math. 309 (2009) 32-63. - [5] J.A. Telle and A. Proskurowski, Algoritms for vertex partioning problems on partial k-trees, SIAM J. Discrete Math. 10 (1997) 529-550.