Domination in lexicographic product graphs*

Xindong Zhang¹, Juan Liu^{1,2}, Jixiang Meng^{2†}

- College of Mathematics Sciences, Xinjiang Normal University, Urumqi, Xinjiang, 830054, P.R.China
- College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang, 830046, P.R.China

Abstract

In this paper, we consider the total domination number, the restrained domination number, the total restrained domination number and the connected domination number of lexicographic product graphs.

Keywords: Lexicographic product; Total domination number; Restrained domination number; Connected domination number

1 Introduction

Throughout this article, a graph G=(V,E) always means a finite undirected graph without loops and multiple edges, where V=V(G) is the vertex set and E=E(G) is the edge set. For a vertex $v\in V$, N(v) denotes the set of vertices adjacent to v. For a subset S of V, N(S) denotes the set of all vertices adjacent to some vertex in S and $N[S]=N(S)\cup S$. The graph induced by $S\subseteq V$ is denoted by $\langle S\rangle$. P_n denotes a path with n vertices. A set $S\subseteq V$ is a dominating set of G if every vertex not in S is adjacent to some vertex in S. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. A dominating set S is called a $\gamma(G)$ -set of S if S if S is called a S is called a S if S is called a S is called a S if S is called a S if S is called a S is called a S if S is called a S if S is called a S is called a S if S is called a S is called a S if S is called a S is called a S is called a S if S is called a S is called a S is called a S is called a S if S is called a S

^{*}The research is supported by FSRPHEXJ (No.XJNU2010S30), China Postdoctoral Science Foundation (No.20100471000), Science Foundation for The Excellent Youth Scholars of Xinjiang Normal University (No.XJNU0920) and NSFXJ (No.2010211A06). †Corresponding author. E-mail: liujuan1999@126.com.

of D, denoted by $\iota(D)$, is the minimum cardinality of a monitor set of D. Set $\iota(G) = \min\{\iota(D) : D \text{ is a } \gamma(G)\text{-set of } G\}$.

A set $S \subseteq V$ is a total dominating set (TDS) if every vertex in V is adjacent to some vertex in S. The total domination number of G, denoted by $\gamma_t(G)$, is the minimum cardinality of a **TDS** of G. A **TDS** S is called a $\gamma_t(G)$ -set of G if $|S| = \gamma_t(G)$. Clearly, $\gamma(G) \leq \gamma_t(G)$. A set $S \subseteq V$ is a restrained dominating set (RDS) if every vertex not in S is adjacent to some vertex in S and to some vertex in V-S. The restrained domination number of G, denoted by $\gamma_r(G)$, is the minimum cardinality of a RDS of G. A RDS S is called a $\gamma_r(G)$ -set of G if $|S| = \gamma_r(G)$. Clearly, $\gamma(G) \leq$ $\gamma_r(G)$. A set $S \subseteq V$ is a total restrained dominating set (**TRDS**) if every vertex in V-S is adjacent to some vertex in S and to some vertex in V-S, and every vertex in S is adjacent to another vertex in S. The total restrained domination number of G, denoted by $\gamma_{tr}(G)$, is the minimum cardinality of a TRDS of G. A TRDS S is called a $\gamma_{tr}(G)$ -set of G if $|S| = \gamma_{tr}(G)$. Clearly, $\gamma(G) \leq \gamma_{tr}(G)$. A dominating set of G is called a connected domination set (CDS) if the induced subgraph $\langle S \rangle$ is connected. The connected domination number of G, denoted by $\gamma_c(G)$, is the minimum cardinality of a CDS of G. A CDS S is called a $\gamma_c(G)$ -set of G if |S| = $\gamma_c(G)$. Clearly, $\gamma(G) \leq \gamma_c(G)$. Please refer to the related studies[1]-[5].

Let $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ be two graphs, where $V_1=\{x_1,x_2,\ldots,x_{n_1}\}$ and $V_2=\{y_1,y_2,\ldots,y_{n_2}\}$. The lexicographic product $G_1[G_2]$ of G_1 and G_2 has vertex set $V_1\times V_2$ and $(x_i,y_j)(x_{i'},y_{j'})\in E(G_1[G_2])$ if and only if either $x_ix_{i'}\in E_1$, or $x_i=x_{i'}$ and $y_jy_{j'}\in E_2$. The subgraph $G_2^{x_i}$ is the graph with vertex set $\{(x_i,y_j)|j=1,2,\ldots,n_2\}$ and edge set $\{(x_i,y_j)(x_i,y_{j'})|y_jy_{j'}\in E_2\}$. Clearly, $G_2^{x_i}$ is isomorphic to graph G_2 for $i=1,2,\ldots,n_1$. From the definition of lexicographic product, it is easy to see that $G_1[G_2]$ can be obtained from G_1 by replacing each vertex of G_1 with a copy of G_2 , in such a way that for every edge (x_i,x_j) in G_1 , contains all possible edges from $G_2^{x_i}$ to $G_2^{x_j}$.

In this paper, we will consider the total domination number, the restrained domination number, the total restrained domination number and the connected domination number of lexicographic product graphs.

2 Main results

Clearly, For any two graphs G_1 and G_2 , if G_1 is an isolated vertex, then $G_1[G_2] \cong G_2$, if G_2 is an isolated vertex, then $G_1[G_2] \cong G_1$. Hence we consider that G_1 and G_2 are two graphs with at least two vertices.

First, we consider the domination number of $G_1[G_2]$.

Theorem 2.1. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs with at least two vertices. If $\gamma(G_2) = 1$, then $\gamma(G_1[G_2]) = \gamma(G_1)$.

Proof. Clearly, $\gamma(G_1[G_2]) \geq \gamma(G_1)$. Now we prove that $\gamma(G_1[G_2]) \leq \gamma(G_1)$. Let D_1 be a $\gamma(G_1)$ -set of G_1 , and let $D_2 = \{y_1\}$ be a $\gamma(G_2)$ -set of G_2 . Set $D = D_1 \times \{y_1\} \subseteq V(G_1[G_2])$. Let (x, y) be an arbitrary vertex of $G_1[G_2]$.

Case 1. $x \in D_1$. If $y = y_1$, then $(x, y) \in D$. If $y \neq y_1$, then $yy_1 \in E_2$ for $\gamma(G_2) = 1$. Thus, $(x, y)(x, y_1) \in E(G_1[G_2])$ and $(x, y_1) \in D$.

Case 2. $x \notin D_1$. There exists a vertex $x_i \in D_1$ such that $xx_i \in E_1$. Thus, $(x,y)(x_i,y_1) \in E(G_1[G_2])$ and $(x_i,y_1) \in D$.

Therefore, every vertex in $V(G_1[G_2])-D$ is adjacent to some vertex in D, D is a dominating set of $G_1[G_2]$. Hence $\gamma(G_1[G_2]) \leq |D| = |D_1| = \gamma(G_1)$. From above we have $\gamma(G_1[G_2]) = \gamma(G_1)$.

Theorem 2.2. Let $G_1 = (V_1, E_1)$ be a graph with no isolated vertex, and let $G_2 = (V_2, E_2)$ be a graph with $\gamma(G_2) \geq 2$. Then $\gamma(G_1) \leq \gamma(G_1[G_2]) \leq \gamma(G_1) + \iota(G_1)$.

Proof. Clearly, $\gamma(G_1[G_2]) \geq \gamma(G_1)$. Now we prove that $\gamma(G_1[G_2]) \leq \gamma(G_1) + \iota(G_1)$. Let D_1 be a $\gamma(G_1)$ -set such that there exists a minimum monitor set U_1 of D_1 with $|U_1| = \iota(D_1) = \iota(G_1)$, and $|U_1 \cap D_1|$ is as small as possible. Take two vertices $y_1, y_2 \in G_2$ and set $D = (D_1 \times \{y_1\}) \cup (U_1 \times \{y_2\}) \subseteq V(G_1[G_2])$. Let (x, y) be an arbitrary vertex of $G_1[G_2]$.

Case 1. $x \in D_1$. If $y = y_1$, then $(x,y) \in D$. We consider the case that $y \neq y_1$. If there exists a vertex $x_i \in D_1$ such that $xx_i \in E_1$, then $(x,y)(x_i,y_1) \in E(G_1[G_2])$ and $(x_i,y_1) \in D$. Otherwise, there exists a vertex $x_j \in U_1$ such that $xx_j \in E_1$, since G_1 has no isolated vertex and $|U_1 \cap D_1|$ is as small as possible. Thus, $(x,y)(x_j,y_2) \in E(G_1[G_2])$ and $(x_j,y_2) \in D$.

Case 2. $x \notin D_1$. There exists a vertex $x_i \in D_1$ such that $xx_i \in E_1$. Thus, $(x,y)(x_i,y_1) \in E(G_1[G_2])$ and $(x_i,y_1) \in D$.

Therefore, every vertex in $V(G_1[G_2]) - D$ is adjacent to some vertex in D, D is a dominating set of $G_1[G_2]$. Hence $\gamma(G_1[G_2]) \leq |D| = |D_1| + |U_1| = \gamma(G_1) + \iota(G_1)$.

Remark: The lower bound and upper bound in Theorem 2.2 are sharp. Clearly, $\gamma(P_4) = 2$, $\gamma(P_6) = 2$, $\iota(P_4) = 1$, $\iota(P_6) = 2$, we have $\gamma(P_4[P_4]) = 1$

 $\gamma(P_4) = 2$, $\gamma(P_6[P_4]) = \gamma(P_6) + \iota(P_6) = 4$. Thus, a domination number of $P_4[P_4]$ achieves the lower bound (see Fig.1) and a domination number of $P_6[P_4]$ achieves the lower bound (see Fig.2).

Fig.1. A dominating set of $P_4[P_4]$;

Fig.2. A dominating set of $P_6[P_4]$

We study the total domination number of $G_1[G_2]$ in the following theorem.

Theorem 2.3. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs with at least two vertices. We have $\gamma_t(G_1[G_2]) = \gamma_t(G_1)$.

Proof. Clearly, $\gamma_t(G_1[G_2]) \geq \gamma_t(G_1)$. Now we prove that $\gamma_t(G_1[G_2]) \leq \gamma_t(G_1)$. Let D_1 be a $\gamma_t(G_1)$ -set of G_1 . Set $D = D_1 \times \{y_1\} \subseteq V_1 \times V_2 \subseteq V(G_1[G_2])$ for some vertex $y_1 \in V_2$. Let (x,y) be an arbitrary vertex of $G_1[G_2]$. Then there exists a vertex $x_i \in D_1$ such that $xx_i \in E_1$. Therefore $(x,y)(x_i,y_1) \in E(G_1[G_2])$ and $(x_i,y_1) \in D$. Thus, every vertex in $V(G_1[G_2])$ is adjacent to some vertex in D, D is a total dominating set of $G_1[G_2]$. Hence $\gamma_t(G_1[G_2]) \leq |D| = |D_1| = \gamma_t(G_1)$. From above we have $\gamma_t(G_1[G_2]) = \gamma_t(G_1)$.

Next, we study the restrained domination number of $G_1[G_2]$.

Theorem 2.4. Let $G_1 = (V_1, E_1)$ be a graph with no isolated vertex, and let $G_2 = (V_2, E_2)$ be a graph with at least two vertices. Then $\gamma_r(G_1[G_2]) = \gamma(G_1[G_2])$.

Proof. We consider two cases.

Case 1. $|V_2| = 2$. Let $V_2 = \{y_1, y_2\}$. If G_2 is a path with two vertices, then $\gamma(G_1[G_2]) = \gamma(G_1)$ by Theorem 2.1. Let D_1 is a minimum dominating set of G_1 , then $D_1 \times \{y_i\}$ is a dominating set of $G_1[G_2]$ for any $y_i \in V_2$. It is easy to see that $D_1 \times \{y_i\}$ ia also a restrained dominating set.

If G_2 is an empty graph with two vertices, then we claim that there exists a minimum dominating set D of $G_1[G_2]$ such that $|D \cap V(G_2^x)| \leq 1$ for each vertex of $x \in V_1$. In fact, If $|D \cap V(G_2^x)| = 2$ for some vertex of $x \in V_1$, that is, $(x, y_1), (x, y_2) \in D$, then there exists a vertex x_i such that

 $xx_i \in E_1$ and $D' = (D - \{(x, y_1)\}) \cup \{(x_i, y_2)\}$ is a minimum dominating set of $G_1[G_2]$. Therefore, we can find a minimum dominating set D' of $G_1[G_2]$ such that $|D' \cap V(G_2^x)| \leq 1$ for each vertex of $x \in V_1$. Let (x, y) be any vertex of $G_1[G_2] - D'$, then one of two vertices (x_i, y_1) and (x_i, y_2) belongs to $G_1[G_2] - D'$ for a vertex $x_i \in V_1$ with $xx_i \in E_1$. Therefore D' is a restrained dominating set of $G_1[G_2] - D'$. Hence $\gamma_r(G_1[G_2]) = \gamma(G_1[G_2])$.

Case 2. $|V_2| \geq 3$. We claim that there exists a dominating set D such that $|D \cap V(G_2^x)| \leq 2$ for each vertex of $x \in V_1$. In fact, by Theorem 2.2, we can find a minimum dominating set of $D = (D_1 \times \{y_1\}) \cup (U' \times \{y_2\})$, where D_1 is a $\gamma(G_1)$ -set and U' is a subset of U_1 (the monitor set of D_1). It is easy to see that $|D \cap V(G_2^x)| \leq 2$ for each vertex of $x \in V_1$. Let (x, y) be any vertex of $G_1[G_2] - D$, then there exists a vertex $(x_i, y_j) \in G_1[G_2] - D$ such that $(x, y)(x_i, y_j) \in E(G_1[G_2])$. Therefore D is a restrained dominating set of $G_1[G_2] - D$. Hence $\gamma_r(G_1[G_2]) = \gamma(G_1[G_2])$.

It is clear that the dominating sets of $P_4[P_4]$ and $P_6[P_4]$ are restrained dominating sets in Fig.1 and Fig.2.

We will discuss the total restrained domination number of $G_1[G_2]$ in the following theorem 2.5.

Theorem 2.5. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs with at least two vertices. Then $\gamma_{tr}(G_1[G_2]) \leq \gamma_{tr}(G_1)$.

Proof. Let D_1 be a $\gamma_{tr}(G_1)$ -set of G_1 . Set $D = D_1 \times \{y_1\} \subseteq V(G_1[G_2])$ for some vertex $y_1 \in V_2$. Let (x, y) be an arbitrary vertex of $G_1[G_2]$.

Case 1. $x \in D_1$. There exists a vertex $x_i \in D_1$ such that $xx_i \in E_1$. If $y = y_1$, then $(x, y) \in D$. We have $(x, y)(x_i, y_1) \in E(G_1[G_2])$ and $(x_i, y_1) \in D$. If $y \neq y_1$, then $(x, y) \notin D$. We have $(x, y)(x_i, y_1) \in E(G_1[G_2])$ and $(x_i, y_1) \in D$, $(x, y)(x_i, y) \in E(G_1[G_2])$ and $(x_i, y) \notin D$.

Case 2. $x \notin D_1$. Clearly, $(x,y) \notin D$. Therefore there exist two vertices $x_i \in D_1$ and $x_j \notin D_1$ such that $xx_i, xx_j \in E_1$. We have $(x,y)(x_i,y_1) \in E(G_1[G_2])$ and $(x_i,y_1) \in D$, $(x,y)(x_j,y) \in E(G_1[G_2])$ and $(x_j,y) \notin D$. Thus, every vertex in $V(G_1[G_2]) - D$ is adjacent to some vertex in D and to some vertex in $V(G_1[G_2]) - D$, and every vertex in D is adjacent to some vertex in D, D is a total restricted dominating set of $G_1[G_2]$. Hence $\gamma_{tr}(G_1[G_2]) \leq |D| = |D_1| = \gamma_{tr}(G_1)$. From above we have $\gamma_{tr}(G_1[G_2]) \leq \gamma_{tr}(G_1)$.

Finally, we consider the connected domination number of $G_1[G_2]$.

Theorem 2.6. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs with at least two vertices. If $\gamma_c(G_1) = 1$ and $\gamma(G_2) \geq 2$, then $\gamma_c(G_1[G_2]) = 2$. Otherwise, $\gamma_c(G_1[G_2]) = \gamma_c(G_1)$.

Proof. Clearly, $\gamma_c(G_1[G_2]) \geq \gamma_c(G_1)$. We consider three cases.

Case 1. $\gamma(G_2)=1$. Let D_1 be a $\gamma_c(G_1)$ -set of G_1 and $D_2=\{y_1\}$ be a $\gamma(G_2)$ -set of G_2 . Set $D=D_1\times\{y_1\}\subseteq V(G_1[G_2])$. We know that D is a dominating set of $G_1[G_2]$ from the proof of Theorem 2.1. Since $\langle D_1\rangle$ is connected, $\langle D\rangle$ is also connected. Thus, D is a connected dominating set of $G_1[G_2]$. Hence $\gamma_c(G_1[G_2])\leq |D|=|D_1|=\gamma_c(G_1)$.

Case 2. $\gamma(G_2) \geq 2$ and $\gamma_c(G_1) = 1$. It is easy to see that $\gamma_c(G_1[G_2]) = 2$. Case 3. $\gamma(G_2) \geq 2$ and $\gamma_c(G_1) \geq 2$. Let D_1 be a $\gamma_c(G_1)$ -set of G_1 . Set $D = D_1 \times \{y_1\} \subseteq V(G_1[G_2])$ for some vertex $y_1 \in V_2$. Let (x, y) be an arbitrary vertex of $G_1[G_2]$. Since D_1 is a connected dominating set of G_1 , there exists a vertex $x_i \in D_1$ such that $xx_i \in E_1$. Thus $(x, y)(x_i, y_1) \in E(G_1[G_2])$ and $(x_i, y_1) \in D$. Hence D is a dominating set of $G_1[G_2]$. Since $\langle D_1 \rangle$ is connected, $\langle D \rangle$ is also connected. Thus, D is a connected dominating set of $G_1[G_2]$. Hence $\gamma_c(G_1[G_2]) \leq |D| = |D_1| = \gamma_c(G_1)$. From above we have $\gamma_c(G_1[G_2]) = \gamma_c(G_1)$.

References

 G. Chartrand, L. Lesniak, Graphs and Digraphs, fourth ed., Chapman and Hall, Boca Raton, FL, 2005.

- [2] Xue-Gang Chen, De-Xiang Ma and Liang Sun, On Total restrained domination in graphs, Czechoslovak Math. J. 55 (130) (2005) 393-396.
- [3] E.J. Cockayne, R.M. Dawes, S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219.
- [4] M.A. Henning, A survey of selected recent results on total domination in graphs, Discrete Math. 309 (2009) 32-63.
- [5] J.A. Telle and A. Proskurowski, Algoritms for vertex partioning problems on partial k-trees, SIAM J. Discrete Math. 10 (1997) 529-550.