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1. Introduction

For a simple graph G = (V, E), let V denote its vertex set and F its edge
set. All other notation and terminology are referred to [1].

The concept of the sum graph and the integral sum graph were introduced by
F.Harary ([2][3]). Let N denote the set of all positive integers. The sum graph
G*(8) of a finite subset S C N is the graph (S, E) with uv € E if and only if
u+v € S. A simple graph G is said to be a sum graph if it is isomorphic to the
sum graph of some S C N. We say that S gives a sum labeling for G ([7]). The
sum number o(G) of G is the smallest number of the isolated vertices, which
result in a sum graph when added to G. The integral sum graph and an integral
sum number {(G) of a graph G are also defined when § is extended from the
positive integers set N to the integer set Z. It is obvious that {(G) < o(G) for
a graph G.

To better understand the notions of the sum graph and the integral sum
graph, we give them the equivalent definitions ([7]). For a simple graph G and a
positive integer m, a labeling of GUmK| is a mapping L from V(G UmK)) to
N. A graph GUmK is called 2 sum graph if there exists a labeling L such that
uv € F if and only if there exists w € V(GUmK)) with L(w) = L(u) + L(v)
for every pair of distinct vertices u and v of G UmK;. Then L is said a sum
labeling of GUmK), and L is an optimal sum labeling if m = ¢(G). Similarly,
we also get the definitions of the integral sum labeling and the optimal integral
sum labeling.

To simplify notations, we may assume that the vertices of a sum graph and
integral sum graph are identified with their labeling throughout this paper.

As we know, it is very difficult to determine ((G) and o(G) in general. But
for special classes of graphs, their sum numbers and integral sum numbers have
still been derived, such as complete graphs, complete bipartite graph, cocktail
party graph and K,\E(K,) with r < n and so on ([2-12}), and it is sure that
all observations will be useful to the research on a (integral) sum graph.

Let K,\E(Cn-1) denote the graph in which all edges of a cycle of n — 1
vertices are deleted from a complete graph with n vertices. In this paper,
the sum number and the integral sum number of the graph K,\E(Cy-,) is
investigated and determined.

2. Main results

Let K,\F(C,-1) = (V,E), V= AUB and § = V UC, where the edge-
deleted cycle C,_; = a1a283 "+ @n-101, A= {a1,02, - ,an-1}, B= {01} and
C is the isolated vertex set (see Figure 1). Then V = {a;,a3, - ,an-1, b1} with
dg(b)) =n—1and dg(a;)=n—-3foranyi=1,2,--- ,n-1

In this paper, some special signs are used. For some vertex u; € V/, let u} and
4 denote the vertices such that u;u} € E and wu € E. Of course, according
to the structure of the graph Ko\E(Cn-1), if de(u;) = n — 1 then u; = by,
which implies u/ and »¥ do not exist at all; if dg(u;) = n — 3 then both vertices
u} and u exist.

In this section, we investigate and determine the sum numbers and the in-
tegral sum numbers of the graphs K,\E(Cy-1) for all positive integral n > 4.
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Lemma 2.1 Forn=4,5,6,7, K,\E(Cn_,) is an integral sum graph.
Proof: The integral sum labels are given respectively (see Figure 2,3,4,5).
Thus, Lemma 2.1 holds. O

Figure 2 Figure 3 Figuwre 4

Lemma 2.2 Let n > 8. Then K,\E(Cp-,) is not an integral sum graph.

Proof: Let n > 8. We argue by contradiction. Assume that K\E(Cr-1) =
(V,E) is an integral sum graph. Then a + a’ € V for any edge aa’ € E.

Assume that V = {u;,u3, -+ ,un}, where u; < up < -+ < u,. Then we
obtain at least (2n — 3) numbers u; +u; < u; +uz < < Uy +Up < U+ Uy <
Ug+Upn <+ <Up-1+Un. Let U= {uy +ug,ug+us, - ,us +up, ug+un, ug +
Un, " ,Un—1+Un}. According to the structure of the graph K,,\E(C -1), each
vertex has at most 2 non-adjacent vertices. Then in the set U there are at least
(2n — 8) — 2 — 2 numbers which must be edge sums of the graph K. \E(Cn-y).
Since Kn\E(Cn-1) is an integral sum graph, (2n—3)—2—2 < n, that is, n < 7,
but n > 8, a contradiction. Thus, Lemma 2.2 holds. O

Lemma 2.3 Let n>8. Then0¢S.

Proof: By Lemma 2.2, ((K,\E(Cn-1)) > 1, which implies the isolated set
C #0. Let c; € C. We argue by contradiction. If0 € V, then O+¢; =c¢, € S,
which implies there is an edge between the isolated vertex and a vertex in the
set V, a contradiction. Similarly, it appears a contradiction if 0 € C. Thus,
Lemma 2.3 holds. O

Lemma 2.4. Let n > 8 and K,\E(Cn-1) = (V,E). Assume ap.x be a
vertex which absolute value is maximum in the set V. Then there exists one
edge adjacent to amax such that their label sum is belong to the isolated set.
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any edge a;a; € E.

Proof: Let n > 8 and K,\E(Cn-1) = (V, E). Without loss of generality,
we may assume that A = {a;,a3,--- ,an-1} = {a},a),d},...,a,,_,} with a] <
a3 <..<ap_;. Then by +a] <by+a) <..<b +al_,.

Firstly, there is at least one edge b;a;, such that b; + a;, € C. Otherwise,
{b1 +ai,b1 +aj,...b; +a/,_;} C {a},a3,a3,...,a},_;,b1}. However, if there
was an edge sum by + @} = by, then a} = 0, which contradicts with Lemma
2.3. Then only {b + a},b1 +a},...,0n + a,_,} = {a},a},d},...,a!,_,}. Since
a1 <ay<..<ap_jand by +a} <b +aj <..<b +al_,, we have b; =0,
which is a contradiction with Lemma 2.3.

Secondly, to prove that b; + a; € C for any edge bja; € E. In fact, for
any other edge bia; € E\biay,, (b1 + ai,) +a; = (by + a;) + ai;, € S, which
implies that b; + a; € ({a;,} U {a},} U {a},}) U C, denoted (*). Then there
are at most 3 edges adjacent to b; such that their sums belong to the vertices
subset ({a;,} U {a},} U {a{,}) and others belong to the isolated set C. Since
(n—1)-1~3=n-5 > 3, there are at least 3 edges adjacent to b; besides
bia;,, denoted b; + a;,, by + aiy, b1 + ai,, Such that their sums belong to C.
Similarly (*), if there exists an edge sum adjacent to b; which does not belong to
C, then it not only belong to the vertices subset ({a;,} U{a}, }U{al.}), but also
belongs to ({a JU{al, JU{a, }), ({as, Mo{al, 1{a?,}) and ({a:, JO{al, }U{al. }).
Since ({a:,}U{a}, } U{a!,}) N ({ai,} U {al, } U ol 1) N ({ais} U {al,} U {all )
({ai,} U{ai,} U{al}) = 0. Then there is no edge adjacent to b; such that its
sum belongs to the vertices set V and all belong to the isolated set C. This
claim holds.

Finally, to prove a; + a; € C for any edge a;a; € E for n > 8. We consider
it from two cases as follows.

(I) Consider any edge a;sa; with {a;,a;} # {ala} U{alhe,}. In this case, it
shows that there is at least one element in {a;, a;} such that there is an edge with
the vertex amax. Assume a;. Since (a;+a;)+amax = (amax+ai)+a; € S, a;i+a;
has no edge with the vertex amax. S0 a; +¢; € ({Gmax} U {aha} U{aex})UC,
denoted (@).

(I.1) Case 1.1: by = amax (see Figure 6). Then ({alna} U {alhox}) = @ and
a; + a; € {amax} U C for any edge a;a; € E.

If there is one edge, denoted a;,a;, € E such that a;, + @j, = Gmax, then
others with endpoint a;, belong to the isolated set C. Since dg(a;,) € {n —
1,n—3} and n > 8, there exists at least one vertex belong to the vertices subset
V\({as,} U ({a},} U {al,})), denoted ai, such that a;,ax € E and amaxar € E.
Then a;, +ax € C and amax +ai, € C. So (@i, +ax) +aj, = (a;, +aj,) +ax =
@max +ax € S, which is a contradiction with a;, +a; € C. Thus, a; +a; # amax
for any edge aia; € E.

(I.2) Case 1.2: by # amax (see Figure 7 and Figure 8). In this case byamax €
E and by & ({@max}U{@hayx }U{aax}). Since by +a; € C for any edge bya; € E.
Then (a; + a;) + by = (by + a;) + a; € S, which implies a; + a; € {h}ucC.
Combined (@), we have a; +4a; € C.

19



L]

ar an-t ay \ 8n-1
LI o X
WS, NS oA
R SoEscR
' N

Fgse s Fowe? RPgav

(II) {ai,a;} = {@\ax} U {afhax}- Since n > 8, there is at least one vertex,
denoted a;, such that the edge dg(a;) = n — 3 and o/, ,a; € E. By the results
of (I), we have a!’,, +a; € C. Since al%,,, +a; € C and aj,y + b1 € C, (apax +
a':'::ax)+ai = (aglax"'ai)"'a:nax # S and (a;x:ax+a;;1ax)+b1 = a’;nax+(a‘:;mx+b1) &
S, then (alx + @"ay) € {ai,al,al} UC and (alox + afnax) € {b1} U C, which
implies al .y + arnax € C.

Thus, a; + a; € C for any edge a;a; € E. Thus, Lemma 2.6 holds. O

Lemma 2.7. Let n > 8 and K,\E(Cr-1) = (V, E). Then {(K,\E(Cn-1)) 2
2n—17.

Proof: Let n > 8 and K,\E(Cnr-1) = (V, E). Without loss of generality,
we may assume that V = {z1,29,%3,...,Zn}, Where z; < 73 < ... < z,, and
z, > 0 (otherwise, we just consider another integral sum labeling by using
(-1) - S instead of S ). According to Lemma 2.6, z; + z; € C for all edges
z;z; € E. On the other hand, since z; + 23 < 1 + 23 < ... < 21 +Tn <
Zg + Zn < ... < Tn-y + Tn, these 2n — 3 numbers are distinct and there are
at most 4 sums are not the sums of the edges of the graph K,\E(C,—-1). So
C(K2\E(Cn-1)) = (2n — 3) — 4, that is, {(K,\E(Cn-1)) 22~ 7. O

Lemma 2.8. For n > 8, 0(Kp\E(Cn-1)) <2n-T7.

Proof: Let K,\E(Cn-1) = (V,E) and V = {z;,z2,%3,* ,Zn} and § =
V U C, where C is the isolated set. Firstly, let z; = (¢ - 1) x 10 + 1 and
¢;=3x10+2 Then V={(i-1)x10+1:i= 1,2,...,n} and the isolated set
C={cj:j=12,..,2n-3}~{ci,, Ci, i3, ¢i, }- Thiskey is tofind c;,, ci;, ci5, €5,
and the cycles C,—1. Secondly, let us look for them and verify that this is an
optimal sum labeling in detail.

Case 1. nis odd. Let {ci,,ci;,Ciz, Cig} = {Cn—4)Cn—6)C2n-6,C2n-3}. Then
the isolated set C={c; : j = 1,2,...,2n — 3} — {cn—4,Cn-6, C2n—6,C2n—3} and
E(Cn-1) = {Z1Tn-3, T2Tn—4,T3Tn-5 " » T2z3 %21 T1Tn-5, T2Tn—6, T3Tn—7,
,a:l;_szg_é-_e,;x,,_ax,,_l,a:,._,;z,.;zn_lm,.}. In fact, we have

(1) The vertices in S are distinct.

(2) For any vertices z; € {z1,%2,%3, ' ,Tx} and cx € C, since z; + ¢k =
3(mod10), z; +cx € S.

(3) For any distinct vertices ¢;, cx € C, since ¢;+cp = 4(mod10), c;+cx € S.

(4) Let 1 < i # j < n. For any distinct vertices z;, z; € {z1,72,%3," »Zn}y
Tit+z;= (E+7-2)x10+2=cisj-2.

Since z; + T = cpeq = i+ j-2=n-4d &= it j=n-2 =
(4,5) € {(1)7"_3):(2:"'-4):(3sn—5)1"' 1(1."}§7 'ﬂ_;'l)}
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Since z; + z; = chg <= i+ —2=n—6 < i+j=n-4 =
(i,5) € {(1,n-5),(2,n - 6),(3,n - 7), -+, (252, 223}

Since z; +Tj = Cong == i+ -2=2n -6 <= i+j=2n—4
(3,5) € {(n—4,n),(n-3,n—-1)}.

Since z; +z; =cgn3 = i+j—2=2m-3 e i+j=2n—-4 (3,5) €
{(n-1,n)}. So it is an optimal sum labeling of (Kn\E(Cpn-1)) U (2r — 7)K),
where 7 is odd.

Case 2. n is even. Let {c;;,ci;,Cis 6} = {€a—17,Cn—2,C2n-6,C2n-4}

Then the isolated set C={c; : j = 1,2, ...,2n =3} —{cn-7, cn-2, €2n—6,Con—a}
and E(Cp-1) = {Z1Zn-6,T2Tn-1," , Ta8Tnza, TnceTas; T1Tn-1, T2Tn-2,
) TazeTage, TnoaZngd; Tn-3Tn—1,Tn—4aTn; Tn-2Zn}. In fact, we have

(1) The vertices in S are distinct.

(2) For any vertices z; € {21,22,%3, -+ ,%} and ¢x € C, since z; + ¢ =
3(mod10), z; +cx & S.

(8) For any distinct vertices c;, cx € C, since c;+cx = 4(mod10), ¢;+cx € S.

(4) Let 1 < i j < n. For any distinct vertices z;, z; € {1, 22,73, 1 Zn},
Ti+z; = (‘l+]-2) x104+2= Citj—2-

Since z; +Tj = ch7r <= i+j—-2=n-T &> i+j=n—-5 <
(1,]) € {(19n - 6): (2yn - 7)’ °t ’(nT—B’ n_;_?_), (%ﬁ» nT_‘i)}

Since z; + z; = cpp &= i+j-2=n-2i+j=n<> (4,j) €
{(I!n - 1)’ (2' n- 2)! Tty (nT—“s 2‘2!:.‘1), (_11-2-_2, '"—-2&)}

Since z; + T; = cgp-6 = i+ j-2=2n—-6<c>i+j=2n—-4 =
(3,7) e {(n-4,n),(n-3,n-1)}.

Since z;+z; = coapg > i+j-2=2n-4 &= i+j=2n-2= (i,j) €
{(n—2,n)}. Then it is an optimal sum labeling of (Kn\E(Cn-1))U(2n-7)K\,
where n is even. Thus, 0(K,\E(Cp-1)) <22 -7. O

Lemma 2.9. For n =4, o(K,\E(Cy-1)) = 1.

Proof: According to the definition of the sum graph, ¢(G) > 6(G) for any
graph G. When n = 4, §(K,\E(Cn_-1)) = 1. Then o(K,\E(Cr—;)) > 1. On
the other hand, Figure 9 gives one sum labeling of the graph (K;\E(C3))Ul- K.
Then o(Kn\E(Cn-1)) < 1. Thus, 6(K4\E(C3)) = 1 holds.

Lemma 2.10. For n =5, o(K,\E(Cn_1)) = 2.

Proof: According to the definition of the sum graph, o(G) > 6(G) for any
graph G. When n = 5, §(K,\E(Cn—1)) = 2. Then o(K,\E(Cn-1)) > 2. On
the other hand, Figure 10 gives one sum labeling of the graph (Ks\ E(C,))U2-K;.
Then o(K,\E(Cn-1)) < 2. Thus, o(Ks\E(C,)) =2 holds. D

1

Figure 8 : Figure 10
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Lemma 2.11. For n =6, 6(K,\E(Cn-1)) = 5.

Proof: First, Figure 11 gives one sum labeling of the graph (Ks\E(Cs)) U
5. K;. Then 6(Kp,\E(Cr-1)) < 5.

Second, we just show o(Ks\E(Cs)) = 5 in the following. Let V(Kg\E(Cs)) =
{a1,a2,a3,0a4,a5,b, } and E(Cs) = ajaza3asasa;. Then d(b;) = 5 and d(a;) = 3
for any i = 1,2,3,4,5 (see Figure 12).

Assume amax be a vertex which value is maximum in the set V. According
to the definition of sum labeling, @ + amax € C for all edges aamax € E.

Case 1. amex € {b1} (see Figurel3). According to the definition of sum
labeling, a + amax € C for all edges agmax € E and d(amax) = 5, we have
o(Ke\E(Cs)) 2 5.

Case 2. amax € V(Cs), that is, amax € {a1,a2,a3,a4,a5}. In this case,
according to the symmetry of the vertices a), a2, a3, a4, as, without loss of gen-
erality we may assume amax = as (see Figurel4). In order to improve it, Claim
1 below is very important.

Figute 12

Figue 13 Figwe 14

Claim 1. For any edge ab € E(Kg\E(Cs)), a + b € C. In fact, as amax is
a vertex which sum labeling value is maximum in the set V, @max + 1 € C and
Gmax +a; €C fori=2,3.

(i) Consider the edges sums b, +a1,b1 +a2, b1 +as, by +a4. Fori=1,23,4,
since amax + b1 € C, (Gmax + b1) + 6i = Gmax + (b1 + a;) & S, which implies
by + @; € {Gmax,a1,a4} U C, denoted (1). This shows that there is at least one
edge, which is adjacent to by, such that its sum must belong to the isolated set C.
Let {by+a1, by +a2,b1+a3,b1+a4} = {b1+a;,, by +ai,, by +ai;, b1 +ai }. Assume
that by +a;, € C. Then for any j = 2,3,4, (b1 +a;,) +ai, = (b1 +ay, ) +as; €5,
which implies that by + a;; € {as,,a},,ai } UC, denoted (2).
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Since amex and a;, are distinct, |{a;,,a};,a},} N {@max,01,a4}| < 2. Com-
bined (1) and (2), there is at least one edge in the subset {b; +a;,,b; + i, 01 +
a;,}, denoted b; + a;,, such that its sum must belong to the isolated set C.
Then for any j = 3,4, (b1 +ai,) + ai; = (b1 +a;,) +a;; € S, which implies that
by + ay; € {ai;,a},,a],} UC, denoted (3).

Since amax, @i, and a;, are distinct, [{a;;, a;, af, }N {ai,,al,, . } N{amax, a1,
a4}| < 1. Combined (1) (2) and (3), there is at least one edge in the subset
{b1 + ai;, b1 + a;,}, denoted by + a;y, such that its sum must belong to the
isolated set C. Then for any j = 4, (b1 +ai;) +ai; = (b1 +as,) +ai; € S, which
implies that b; + a;; € {a;,,a},,a},} UC, denoted (4).

Since amax, ai,, a;; and a;, are distinct, Hais, aly, 0, 30 {ay,, al,,al } N{a;,,
al;,a.} N{@max,a1,a4}| = 0. Combined (1)(2)(3)(4), b1 + ai, € C. Thus,
{b1 +a1,b1 +az,by +a3,b; +a4} CC.

(i) Consider the edges sums a; + a3 and ag + a4. Since b; +a; € C,
(b1 + a1) + a3 = by + (a1 + a3) € S, which implies a; + a3 € {d1} U C, denoted
(5). Since a3z + amax € C, (23 + Gmax) + a1 = (a1 + @3) + @max & S, which
implies a; + a3 € {a1,a4,max} U C, denoted (6). Combined (5)(6), we have
ay + a3 € C. Similarly, az + a4 € C.

(iii) Consider the edge sum @, + a4. Since b; +a; € C, (by + a;) + a4 =
by + (a1 + a4) € S, which implies ay + a4 € {5} UC. Since a; + a3 € C,
(a1 + a3) + a4 = (a1 + a4) + a3 € S, which implies a; + a4 € {a2,as,a4} UC.
Thus, only a; +a4 € C.

Up to now, we have proved that a 4 b € C for any ab € E(Ks\E(Cs)), that
is, Claim 1 holds.

Let Kg\E(Cs) = (V,E). Without loss of generality, we may assume that
V= {z;,zz,za,z,;,:vs,zs}, where 0 <z <za <T3 <24 < z5 < Tg.

According to Claim 1, z; + z; € C for all edges’ sum z;z; € E(K¢\E(Cs)).
On the other hand, since z; + zo < 21 + 23 < 71 + T4 < 1 +T5 < Ty + Tg <
To+T6 < T3+Tg < T4+ Tg < Ts+T6, these 2n—3 = 9 numbers are distinct and
there are at most 4 sums are not the sums of the edges of the graph K¢\ E(Cj).
So o(Ke\E(Cs)) > (2n — 3) — 4 =5, that is, 0(Ke\E(C5)) > 2n — 7 =5.

Thus, Lemma 2.11 holds. O

Lemma 2.12. For n =7, o(K,\E(Cp-1))=1.

Proof: Firstly, Figure 15 gives one sum labeling of the graph (K7\E(Cs))U
7. K. Then o(K7\E(Cs)) < 7.

Secondly, we just show o(K7\E(Cs)) > 7 in the following. Let V(K7\E(Cs)) =
{al,ag,aa,a4,a5,a6,b1} and E(Cs) = aj10632a3a4a5a6Q3. Then d(bl) = 6 and
d(a;) = 4 for any i = 1,2,3,4,5,6 (see Figure 16).

Assume apn, be a vertex which value is maximum in the set V. According
to the definition of the sum labeling, a + @max € C for all edges aamax € E. In
order to prove o(K7\E(Cg)) 2 7, Claim 2 below plays a key role and we will
give it the proof.

Claim 2. For any edge ab € E(K7\E(Cs)), a + b € C. In fact, we will
discuss it in the following two cases.
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Case 1. amax € {b1} (see Figurel7). Since amax is & vertex which sum
labeling value is maximum in the set V, b, + @; € C for any i = 1,2,3,4,5,6.

(i) Consider the edge sums a; + a3, a1 + a4, a1 + a5. Since (a3 +a;) + b =
(a1+b1)+a; € S, a1+a; € {b1}UC for any i = 3,4,5. Then there exists at least
two edges adjacent to a;, denoted a; + a;, and a; + a4y, such that a; +a;, €C
and a) +ai, €C.

Let {a1 + a;,,a; +aiy, a1 + ag,} = {ay +a3,a; +ag,01 + as}. At the same
time, there exists at most one edge adjacent to a; such that its edge sum equals
b,. If yes, then it must be a; + a;, such that aj + a;, = b;. Since a3 +a;, = b
and a1 +a;;, € C, by + ai; = (a1 + ay,) + ai; = (a1 +a3,) +ai, € S, but
by + ai, € S, a contradiction. Thus, a1 + a3, a; + a4,01 + a5 € C.

(ii) Consider the edge sums ag + a4, a2 + as, az + ag. The proof of (i) is also
suitable to prove az +a4, az+as, ag +ag € C. Thus, az+a4,a2+0as5,03+as € C.

(iii) Consider the edge sums a3 + as,as + ag. Since by +ag € C, (b1 +
ag) + a3 = by + (as + ag) & S, which implies a3 + ag € {b1} UC, denoted (2).
Similarly, a3 + as € {61} UC, denoted (3). Since az +ag € C, (az +as) + a3 =
as + (a3 + ag) ¢ S, which implies a3 + ag € {a1,a2,a3} U C. Combined (2),
as+ag € C. Since ag+ag € C, (a3 +ag)+as = (az+as)+as € S, which implies
as+as € {a;,as5,a6}UC. Combined (3), a3+as € C. Thus, ag+as,a3+a6 € C.

(iv) Consider the edge sums a4 +as. Since by +a4 € C, (by+a4) +as = b +
(a4 +ag) € S, which implies a4 + ag € {b1}UC, denoted (4). Since a3 +as € C,
(as + ag) + a4 = a3 + (as +as) € S, which implies a4 + a¢ € {az,a,3,a4} ucC.
Combined (4), a4 +as € C.

Case 2. amex € V(Cs), that is, amax € {a1, @2, a3, a4, @5, a6}. In this case,
without loss of generality we may assume anax = as (see Figurel8). Since amax
is a vertex which sum labeling value is maximum in the vertices set V', we have
@; + @max, b1 + @max € C for any i = 2, 3,4 with b1 + amax = b1 + as.

(i) Consider the edges ay + by,az + b1,a3 + b1,a4 + b1,05 + by. For any
i= 1v2’3:4)5’ since bl + @max € C’ (ai + bl) + Gmax = @i + (bl + amax) ¢ S’
which implies a; + by € {a1,85,amax} UC, denoted (5). Then there are at least
two edge sums in the subset {a; + by, az + b1, a3 + b1, @4 + b1, a5 + b1 }, denoted
a;, + b, and a;, + by, such that a;, + by € C and ai, + bhecC.

Let {a;, + by, ai; + b1,ai + by, ai, + by,ai + b} = {a1 + b1,a2 + by,a3 +
bi,aq + by,0a5 +51}, where a;, + bl,a,-, +beC.



Since a;, +b; € C, for any j = 3,4,5, (ai, +b;) +ai, = (ai; +b1) +a; €5,
which implies that a;; + b, € {a;,,d},,af,} UC, denoted (6).

o]
c

°
°

°
°

°
°

o
o

Fie 17 Figwe 18

Since a;, + b, € C, for any j = 3,4,5, (ai, + b1) +ay, = (ai; +b1) +a;; €8,
which implies that a;; + b; € {a;,,4;,,a},} UC, denoted (6).

Since a;, +b, € C, for any j = 3,4,5, (ai, + b;) +ai; = (a;; + b)) +a;, €5,
which implies that a;, + by € {as,,4a},,a},} UC , denoted (7).

Since amax, a;, and a;, are distinct, [{a1, as, amax}N{as,, a},, 0, }N{a,, 0l 0. }|
< 1. Combined (5)(6)(7), there are at least two edges, which belong to the sub-
set {ai; + b1, ai, + by, a5 + b1} such that their sums belong to the isolated set
C. Assume that a;, + b, € C and a;, + b, € C.

Since a;; + b, € C, (ai;, +b1) + ai, = (i +b1) +ai; € S, which implies that
ais + b1 € {ai;, a},,al,} UC, denoted (8).

Since a;, + b, € C, (a..-4 +b1)+ay = (a,-,, +b) +a;, € S, which implies that
ais + b1 € {ai,a},,a{,} UC, denoted (9).

As the above, a;, + b; satisfies (5)(6)(7)(8)(9). Since ai,,ai;,a;,, a;, are dis-
tinet, |{a;, as, amex} NMai,, a;; ’ a?; Na,, a,;a ) aﬁ',} N{as,, aéa ’ aé; Na,, a@. ' GZ H
= 0. Then a;,+b; € C. Thus, a;+b;, ag+by, a3+by, aq+by, a5+b1, amax+b € C.

(i) Consider the edge sums a; + a3, a1 + ag,a1 + as. Since a; +b; € C,
(a1 + bi)+as=b + (a1 + a3) € S, which implies a; + a3 € {bl} U C, denoted
(10). Since a3+amax € C, (a3+@max)+a1 = @max +(ay +a3) & S, which implies
ay + a3 € {a1,as5,@max} U C, denoted (11). Combined (10)(11), a; + a3 € C.
Similarly, we have a; + a4,a; + a5 € C.

(iii) Consider the edge sums a3 + aq4,az + as. Since a3 + amax € C, (a2 +
@max) + @4 = amax + (a2 + a4) € S, which implies ap + a4 € {a1,a5,amax} UC,
denoted (12). Since az + b € C, (a2 + b)) + a4 = by + (az + as) € S, which
implies a3 + a4 € {61} U C, denoted (13). Combined (12)(13), az + a4 € C.
Similarly, a; + a5 € C.

Up to now, we have proved that a + b € C for any ab € E(K7\E(Cs)) in
Case 1 and Case 2 respectively, that is, this claim holds.

Let K7\E(Cg) = (V, E). Without loss of generality, we may assume that
V = {z1,22,3,24,%s5,%6,27}, Where 0 < T} < 73 < 23 < T4 < T5 < Tg < 7.

According to Claim, z; + z; € C for all edges’ sum z;z; € E. On the other
hand, since z; +22 < T1+2z3 < T1+74 < T1+T5 < T1+T6 < Ty +T7 < Toa+T7 <
Z3+27 < T4+T7 < Ts+27 < Te+2x7, these 2n—3 = 11 numbers are distinct and



there are at most 4 sums are not the sums of the edges of the graph K\ E(Cs).
So o(K7\E(Cs)) 2 (2n — 3) — 4 =7, that is, o(K7\E(Cs)) 2 2n - 7=1T.
Thus, Lemma 2.12 holds. D

Theorem 2.1. For n > 4, o(K,\E(Cyr_1)) = and

Noto =
S 3333
A [ O
® g0 v

X
3
|
N

0, = 4’ 5, 6! 7
C(Kn\E(Cn-1)) = { -7,  n3

Proof: For n > 4, by Lemma 2.1, 2.7, 2.8, 2.9, 2.10, 2.11 and 2.12, Theorem

2.1holds. O
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