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Abstract

In this paper, we study invariant sequences by umbral method, and
give some identities which are similar with the identities of Bernoulli
numbers,
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1. Introduction

The umbral calculus originated with Blissard in the nineteenth century
in informal calculations involving the “lowering” and “raising” of indices.
Although widely used, the umbral calculus was nothing more than a “magic
rule”. Rota [2] first used operators methods to free umbral calculus from
its mystery. After more than twenty years, Rota and Taylor [3] gave a
rigorous, simple presentation of umbral calculus by a linear functional.

We work in a formal power series ring K[a][[z]], where K[o] is a poly-
nomial ring of one variable umbrae a. And we have a linear functional
eval : K[a]([z]] — K][[z]]. We use the ~ symbol to stress equivalent un-
der linear functional eval. For example, if eval(a™) = a,, then we have
a™ =~ a,. If we have to deal with several umbrae together, we use the
symbol eval to present many different such functionals.

Sun [4] and Wang [5] studied the invariant sequences which are the
sequences {a,} satisfying

i(-l)k (:)ak =a, (1)

k=0

* E-mail address : fangqin80@gmail.com(Q. Fang)

ARS COMBINATORIA 101(2011), pp. 257-264



and the inverse invariant sequences which are the sequences {a,} satisfying

Z( 1)"( )ak = —an. 2)
k=0
For example, {g+}, {(—1)"Bn}, {Ln} are invariant sequences, where By,
denote Bernoulli numbers and L,, denote Lucas numbers; the Fibonacci
sequence {F,} is an inverse invariant sequence.

If we use the umbrae o to represent the sequences {a,}, i.e., a” = ayn,
then {a,} is an invariant sequence if and only if (1 — @) ~ a", and {a,}
is an inverse invariant sequence if and only if (1 — a)® >~ —a". Using the
classical umbral method, Wang (5] proved the following identity:

En:( )(fk—( 1)""‘2( )fs)an_;c =0, (3)

k=0 8=0
where {f»} is a sequence and {a,} is an invariant sequence. In this paper,
using umbral calculus, we recreate some other results presented by Sun [4]
and Wang [5), and give some interesting identities which are similar with
the identities of Bernoulli numbers.

2. The generating functions and transformation formulas

We say that the formal power series -, a»z" is the ordinary generat-
ing function of sequence {a, }, and denote A,ra(z) = Y or( anz". Similarly,
the formal power series ) .-, anz"/n! is called the exponential generating
function of sequence {a,}, and we write Aezp(z) = Y e @az™/nl.

The next two theorems are the relationship of the generating function
of invariant sequences.

Theorem 1 ([4, Theorem 3.1]). {an} is an invariant sequence (resp., an
inverse invariant sequence) if and only if Aora(5Z7) = (1—2)Aorda(x) (resp.,
Aord(35) = —(1 — z)Aora(z)).

Proof. Let a™ ~ a,. Then

i n
> o[ )(-1)far = £a, <= (1 - )" = £a"
k=0 (k) (477 a [0 4 (a4

[} [~} 1
~ n.n ., ) =~
= Am-d(a:)_Za z _Z:l:(l a)"z il—(l-a)w'

n=0 n=0

Moreover, we have

z" 11—z
Aord( )—Z (m_l)n=1_(1-—a)x'D

n=0
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Theorem 2 ([4, Theorem 3.2]). {an} is an invariant sequence (resp., an
inverse invariant sequence) if and only if Aezp(z)e~% is an even function
(resp., an odd function).

Proof. Let a™ ~ a,. Then

n

Z (:) (-1)*ax = £a, <= (1 - a)" =~ +o™

=0

= Aep(a) ZOI - = Z +(1- a)" = 9T v fell-)z

n=0 n=0
= Aerp(z)e > e("""i)z ~ teld-o)z o :I:Ae,,,(—:z:)e’f‘. O
The following theorem is an equivalent form of invariant sequences.

Theorem 3 ([5, Theorem 2.4]). The sequences{an} satisfy 3" r_o(%) (—1)*ax
= %a, if and only if there exist a sequence {A,} such that

on = 304} £ 20 (@
k=0
Proof. Let a™ =~ a,,. Suppose that 31 (})(-1)*ax = an. Then
(1-a)* ~+a".
We denote A\, ~ 8" ~ %a". So we have

- n kl k 1 n 1 n 1 n 1 n 1 n n
;;22(:,(’“)(_1) e :i:§a —E(l—a) :!:Ea _:!:Ea :|:-2-a = +o”,

Conversely, we have

(-ay =3 (7) -y

i=0

Z( )y (Z( )0 29

i=0

R

n

= Y (7)evia-pEm=a-a-prea-s
i=0
= ff+(1-8)"~xa™ O

Sun (4] gave some transformation formulas using generating functions.
We recreate two of them by umbral calculus directly.
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Theorem 4 ([4, Theorem 5. 1]) Let {an}, {bn} and {c,} be three nonzero
sequences salisfying ¢, = n+1 Yok oakb,,_;c (n=0,1,---). If {an} is an
invariant sequence, we have {b,} is an invariant sequence if and only if
{en} is en invariant sequence.

Proof. Let a® ~ a,, f™ =~ by, and v" ~ c,. Suppose {b,} is an invariant
sequence. Then we have (1 — a)" ~ o™ and (1 — 8)" =~ 8". So
z": kﬁn—k 1 ﬁ"+1 — ot
n+l fB-a

k=0
Moreover, we have

. 2 /n ;1 ﬁi+1_ai+l
1= —g(i)(—l)i+l A-a

1 Kfn+1l ,ﬂ"”—a"”
- n_4-1§(i+1)( V=g

+ .
= e ﬁ)z( )( PE - o)

n+1 ,

e ﬁ)z( )@ -
_ 1 (1—ﬂ)"+1—(1—a)"+1~ 1 ﬂn+1_an+l~ n
= 771 (0-f-(-a) “~n+l B-a T

Conversely, if {c,} is an invariant sequence, then (1 — )" ~+". And we
have

1 ﬁfH-l — aontl N 1 (1 _ ﬂ)n+1 - (1 _ a)n+1
n+l f-a T n+l (1-8-(1-0)
1 (1 —- ﬂ)n-f-l —ant!
n+l (1-f)-a
By induction on n, we derive that (1 — 8)**! ~ g+l O

Theorem 5 ([4, Theorem 5.2]). Let {an}, {bn} and {c.} be three nonzero
sequences satisfying cn = 3= 3 pg (R)@kbn-k (n =0,1,---). If {an} is
an invariant sequence, we have {b,} is an invariant sequence if and only if
{cn} is an inveriant sequence.

Proof. Let o ~ a,, f" ~ b,, and " ~ ¢,,. Then

oo Z, (3)em* = gmtasnr.
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Suppose {b,} is an invariant sequence. Then we have

(1—7)"':2()( 1)' Sa+p)y=(1- "‘”)
i=0

1—a+1_ﬂn__ n . AN
~ (1————-—2 ) —2,,(“+ﬁ) =7

Conversely, if {c,} is an invariant sequence, then (1 — 4)* ~ 4™. So we
have

1=y = (1—"‘*”) ~(1- —‘—‘2‘“‘—")"

= (a+1- )"~7"~—(a+ﬁ)"

By induction on n, we derive that (1 - 8)" ~g*. O
3. Some identities of invariant sequences

In this section, using umbral calculus, we derive some identities of in-
variant sequences which cannot be found in Sun[4] and Wang[5]. When the
invariant sequences are Bernoulli numbers, we get the remarkable identities
of Bernoulli numbers.

Let o™ ~ (1 — a)", and f(z) be a one variable polynomial or a formal
power series. Obviously, we have f(a) =~ f(1 — o). By selecting different
f(z), we get the following formulas.

Theorem 6. If {a,} is an invariant sequence, then

> (7)o =3 (7)-Vamee -

i=0 =0

Proof. Let f(z) = z™(z — 1)® and a® ~ a,. Then (1 — a)® =~ o™ and
f(1-a)~ f(a). We have

fl-a)=(1-a)"a" = i ('zn) ()™,

and i =
fla)=a™(a-1)"= Z_: (":)(_l)n—iam+i'
Then " =
; ( )( 1Mot ‘Z; ( )( —1)nmigmH,

261



Moreover, we get (5). O
Because {(—1)"B,} is an invariant sequence, we have:

Corollary 1.

gz (T) Brti = ('1)m+"jz::o (:l) Brms+s: )

Similarly, we can get the following theorem.

Theorem 7. If {an} is an inverse invariant sequence, then

Z( )( l)an+,=—2( )( —1)'amai- (7)

=0 i=0

Theorem 8. If {a,} is an invariant sequence, then

g(nﬂ)(mﬂw)( 1)'amyi = —§(m+l)( 1)’(n+1+z)a,.(+,)
8

Proof. Let ga) = (z™*i(z - 1)™) = (n + 1)z™(z = )™ + (m +
1)z"t1(z — 1)™ and o™ ~ a,,. Then we have (1 - a)" ~ o™ and g(1 —a) ~
g(a). Moreover, we get
g(1-0a)=(n+ 1)1 - )" (=)™ + (m+1)(1 - &)"* (—)™
n+l

= X ("3 mr 1 i-amriant,
—rd J
7
and
g(e) = (n+ 1o (a-1)" + (m+ 1o a-1)™
m+1
= 3 ("1 nmat,
j=o \ 7
So we have
n+1
Z (n+ 1) (m+1+4)(— l)m+3am+3
j=o \ 7
m+1

R
]

(m;- 1) (n+ 14 5)(=1)™F1-ign+i,
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Consequently, we derive (8). O
Corollary 2. (see [1])
m 1 n
-npm3 (m; )(n+k+1)Bn+k ==Y (" ;’ 1) (m+k+1)Brm.i,
k=0 k=0
(9)
where m +n > 0.

Proof. We take a, = (—1)"B,, in Theorem 8, and note that Byryy = 0
fork>1. 0O

If we take m = n in Theorem 8, then we get:

Corollary 3.

n+l
> ("7t -Venu =0 (10)
=0

For Bernoulli numbers, we have:

Corollary 4.
=\ /n+1
E (n+k+1)Bpyi =0. (11)

k=0 k
Similarly, we have following theorem for inverse invariant sequences.

Theorem 9. If {a,} is an inverse invariant sequence, then

n+1 ml
; (n—:— 1) (Mm+148)(=1) amsi = ; (m;l—-l)(_l)i(n_*_l_'_i)an:i.)
12
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