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Abstract

In this note, we determine the exact value for the second largest
eigenvalue of the derangement graph, by deriving a formula for all
the eigenvalues corresponding to the 2-part partitions. This result
is then used to obtain lower bounds for the vertex connectivity and
Cheeger constant, and an upper bound for the bipartite density. Also,
the exact value of the Shannon capacity of the derangement graph is
obtained.
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1 Introduction

Let G be a finite group and S C G\ {1} be a subset of generators closed
under inverses. The Cayley graph I'(G, S) on G with respect to S is defined
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by
V(I(G,S))=G, E(I'(G,S))={(v,sv) | veG, seS}.

Thus I'(G, S) is regular of vertex degree |S|. Let S, be the symmetric
group of permutations of X = {1,2,---,n}, and let D, := {a € 8, : () #
z,Y¥r € X} denote the derangements on X, namely the set of fixed point
free permutations of S,. Note that D, is closed under inverses, as the
inverse of a derangement is a derangement. T',, := ['(Sp, D) is called the
derangement graph on X. It is known that I', (n > 3) is connected, as S,
can be generated by D,. We denote |Dy| by Dn.

The derangement graph has been studied by many researchers. For
example, Eggleton and Wallis [4] showed that I, (n > 3) is Hamiltonian;
Deza and Frankl [3] proved that the independence number a(G) = (n—1)!;
Renteln (9] observed that the chromatic number x(G) = n and the clique
number w(G) = n. Renteln also derived several formulae for the eigenvalues
of I',, and used these to confirm a conjecture of Ku regarding the least
eigenvalue. Recently, Ku and Wales [6] investigated various bounds on the
eigenvalues of ', and obtained a simple expression for their signs.

Motivated by these studies, we obtain a simple formula for all eigen-
values of the derangement graph corresponding to 2-part partitions. The
main result of this note can be stated as follows:

Theorem 1.1 The second largest eigenvalue of the adjacency matriz of the
derangement graph T'n(n > 4) is given by
n-—1

Nn—-2,2) = 'n_'_—3Dn—2-

The rest of this note is organized as follows: In Section 2, general notation
and various lemmas are presented. In Section 3, we derive an explicit
formula for the eigenvalues of the derangement graph corresponding to all
the 2-part partitions. In Section 4, we present a proof of Theorem 1.1. In
Section 5, we present lower bounds on the vertex connectivity and Cheeger
constant and an upper bound on the bipartite density of I',. Lastly, the
exact value of the Shannon capacity of the derangement graph is obtained.
(In essence, this result was implied in [9].)
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2 Preliminaries

A partition of n of length ! is a sequence of positive integers (A1, Az, -+, Ar)
such that A; > Aiyy and Ay + A2 + -+ + N = n. Each ); is a part of the
partition. Partitions are represented by Ferrers diagrams

(4,4,3,2,1) —

||

or by multiplicity notation

(4,4,3,2,1) — 47312111,

Following Renteln [9], we introduce some terminology. For any Ferrers
diagram corresponding to partition A, we may assign zy-coordinates to
each of the boxes by defining the upper-left-most box to be (1, 1), with the
Z axis increasing to the right and the y axis increasing downwards. The
hook through the box (z,y) is the union of the boxes (z’,y) and (z,y’),
where ' > = and ¥’ > y. The hook through the box (1,1) is called the
principal hook (of A). By abuse of notation, let h denote either the principal
hook itself or its cardinality (its meaning will be clear from context). Denote
by A—h the partition obtained from A by removing the principal hook. The
first column of the Ferrers diagram corresponding to partition A is called
the principal ladder (of A), and A — 1 is the partition obtained from A by
removing its principal ladder. Next we need some lemmas from [9).

Lemma 2.1 9 For any partition A, the eigenvalues of the derangement
greph satisfy the following recurrence:

M = (=1)*(na-n + (=1)* hny—1) 1)
with initial condition ny = 1.

Lemma 2.2 9 Let A = j1"~7 denote the hook shape with first part j and
remaining parts 1. Then for1 < j <n,

Njin-i = (=1)*(1 + (=1)nD;_;). (2)
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Lemma 2.3 ¥ The derangement numbers satisfy the following properties:

(i). The first siz derangement numbers are Do = 1, Dy = 0, D2 =
1,D3 =2, Dy =9, Ds = 44.

(#). Dn = [n!/e], where [z] is the nearest integer to x. In particular,
the derangement numbers are monotonic increasing for n 2> 1.

(iii). For n > 1 the derangement numbers satisfy the following recur-

sions:

Dn = nDn-l + (_1)n7 (3)
Dy, = (n —1)(Dn-1+ Dn-2). (4)

3 The eigenvalues corresponding to 2-part par-
titions

In this section, we derive an explicit formula for the eigenvalues of the de-
rangement graph I';, corresponding to all the 2-part partitions of n. Lemma
2.2 gives an expression for the eigenvalue corresponding to partitions of the
form (n—1,1). Hence, we only need to derive a formula for the eigenvalues
corresponding to partitions A = (n—k, k)(2 < k < |n/2]), where |z] is the
largest integer less than z. The main result of this section is as follows:

Theorem 3.1
(=1)*(n — k4 1)Dp_g + (=1)"+*kDj_,

Mn~kk) = PR (5)
for 2 < k < |n/2}. In particular,
n-1
Min—2,2) = —— 3Dn—2- (6)

Proof. By Theorem 4.2 of [9], the eigenvalues corresponding to (n —
k,k)(2 < k < [n/2]) can be written

=n"
H1— H2

(-1)#1b(py;1) 1
(=1)#2b(pg;1) 1

MNn-k,k) =

where
m=Mn-k)+2-1=n-k+1,
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pe=k+2-2=k,
b(ﬂ‘l; 1) = -ﬂlel—l = -(n -k+ l)D —k
b(uz;1) = —peDyym1 = —kDj—y.

Hence
(=D (-1 *n—k+1)Dpoy 1
Mn—k,k) = n—2k+1 (_1)k+1ka_1 1
— (_1)'i _q\n—k( o ayk+
= n—ok+1 [(=1)"*(n—k+1)Dp_t — (-1)*+kDs_,)
— (“l)k(n -k+ I)Dn—k + (—'1)"+kka_1
- n—-2k+1 .
In particular,
(_1)2("' -2+ l)Dn—2 + (—1)"+22D2_1
Mn-2,2) = m—2.271
— (n — I)Dn—2 + 0
B n—3
n—1
B

The assertion holds. Il

4 Proof of Theorem 1.1

We first introduce two more results about the eigenvalues of the derange-
ment graph I';,.

Lemma 4.1 9 (i), The mazimum eigenvalue of the derangement graph T,
8 N(n) = Dn.
(i). The least eigenvalue of the derangement graph T, is Nn-1,1) =

;—fil, and it is unique for n > 5.

We divide the proof of Theorem 1.1 into four parts. First we show
Theorem 1.1 holds for all the 2-part partitions (n — k, k). Next we show
Theorem 1.1 holds for hooks and all near hooks, that is, partitions of the
form j21*~7=2, where 2 < j < n — 2. Finally, we show that it holds for all
other partitions. First note that, by direct computation using Lemma 2.1
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it is easily seen that Theorem 1.1 holds for n = 4 and n = 5. So we assume
n > 6 in the following proof. We will complete the proof by a series of

lemmas.
Lemma 4.2 Theorem 1.1 holds for all the 2-part partitions (n — k, k).
Proof. By Lemma 4.1 (ii),

MNn-1,1) < N(n-2,2)-

By Theorem 3.1 and Lemma 2.3 (iii), we have

a = |n(ﬂ—k.k) I = M(n-2,2)
(=1)¥(n — k + 1)Dp_i + (=1)"*+*kDj_, _ n—lD
n—2k+1 n—3 "2
n-k+1 k n—1
s - 9L L1 - - T ai/n—-
- (n_2k+1Dn k+n_2k+1Dk 1) n_3D 2
___n—k+1 k n—1
- (n— 2k + 1Dn-k+ ka—l) = 73" = 3)(Dn-3 + Dn—d)
n-k+4+1 k
(n— 2k + an-k + n—2k+ le"l) = (n—1)(Dn-3 + Dn-4).

If k=2, thena=0.
If 3 < k < |n/2], then

k—1<|n/2)~1<n—-|n/2|-1<n-3-1=n-4

By lemma 2.3 (ii), we have Dy, < Dp—3, Dg—1 < Dp_4.
Hence

n—k+1 k
a < (mDn—a + mDn—4) - (n- 1)(Dn—3 + Dp—4)

n—k+1 k
= [n—2k+l "("'1)] Dn-s+ [n—2k+1 '(”"1)] Dn-s
< o

The assertion holds. ll

Lemma 4.3 Theorem 1.1 holds for hooks.
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Proof. Let A = j1*7 be a hook. By Lemma 4.1 we may assume that
Jj<€n-2 (fj=n-1,then A = (n - 1,1)). By Lemmas 2.2, 2.3 and
Theorem 3.1, we have

Njin-i — N(n-2,2)

n-1

= (-1)"(1+(-1¥nD;_y) - - D, _,

-3
< (-1)*(A +(-1)"nDn_z)_1) — —

22D (-1 < (-1
n-1

= (-1)"(1+(=1)"nDn-3) = —3((n ~2)Dn_g + (-1)*7?)

- (- e o (1-221)
2

-9 -
m_gln-st (1" =3

-2 n
——3(Dn-a+(-1)")
<0 (n>5 and Lemma 2.3).

The assertion holds. Il

Lemma 4.4 Theorem 1.1 holds for near hooks.

Proof. Let A = j21"~7-2 be a near hook. By Lemma 4.2, we may assume
j<n=-3(ifj=n—2 then A= (n—2,2)).
Applying Lemmas 2.1, 2.3, 4.1 and Theorem 3.1 gives

Mj21n-i — N(n-2,2)

n— j n_ 1
= (1" (m+ (=1 (- Vn-1,9) = ——3Dn
n+j— n-1
= (-)™¥ 7~ 1)ng_1y - —3Dnz
. -D; n-1
= (—1yrti=1l(y, _ I _—

= (n-1) ((—1)"+j% B %)

= (n _ 1) ((_1)n+j (- 1)('?_-11+ Dj—?) _ (n - 3)(?::33‘*‘ Dn—4))
= (n—1)((~1)"*(Dj-1 + Dj-2) = (Dn-3 + Dn-4))

< 0
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The proof is complete. Il

Now we present a proof of Theorem 1.1.
Proof. (of Theorem 1.1). Let A = (A, Ag,---, A1) is a partition of n. By
Lemmas 4.1 - 4.4, we may assume ! > 3 and that A is neither a hook (in
which case we would have n = h), nor a near hook (in which case we would
have n = h 4+ 1). So we may assume n > h+ 2 and h > [ > 3. Then we get
the following chain of equalities and inequalities:

Il = |ma-n + (=1 hgay| (Lemma 2.1)
S |ma-rl + Rina-y]
< Dpop+hDpy (Lemma 4.1)
< (1+h)Dny (Lemma 2.3 and h > 1)
< (n—=1)Dp
< (n—=1)Du_3
= (n-1) (f"_-; - Dn_4) (Lemma 2.3 (iii))
- 2= ;D,._2 —(n—=1)Dn_s
= fn-2,2) — (N —1)Dn_4 (Theorem 3.1)
< Mn-2,2)

The proof is complete. Il

5 Some applications
In this section, we present several applications from Theorem 1.1.

Theorem 5.1 Let I, be the derangement graph. Then the vertez connec-
tivity k(') is at least
n—1

D"—n—S

Dy _a.

Proof. The Laplacian matrix of [y, is L(T'y) = Dpl — A(T'n). Then,
by Theorem 1.1, the algebraic connectivity of Iy, i.e, the second smallest
eigenvalue of L(I';), is D, — :—:%D,,_g. Now it follows from [5] that the
assertion holds. Il
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The Cheeger constant of a simple graph G is defined as follows:
. |8S)
G) = B n{ool(S), vol(C) —val(S)]’

where 8S = {(u,v) € E(G), u € S,v ¢ S} and vol(S) = ¥ ¢ d(v), where
d(v) is the degree of vertex v.

(7

Theorem 5.2 Let I, be the derangement graph. Then

l _ (n=1)Dn— < < _ (n— I)Dn—2)
(- Gt) < wos | (- i)
Proof. The normal Laplacian matrix of Ty is £L(Ts) = I — g-A(T).

Then the second smallest eigenvalue p of £(I'y) is 1 — L’('n;_%%;—’. On the
other hand, by Lemma 2.1 and Theorem 2.2 of page. 25-26 in [2], we have

£ < h(G) < v/2u. Hence the assertion holds. i

Let G be a graph and H be any bipartite subgraph of G with the maximum
number of edges. Then
|E(H)|
|E(G)]
is called the bipartite density of G (for example, see [1]).

b(G) =

Theorem 5.3 Let ', be the derangement graph. Then

n
b(G) < gy

Proof. The Laplacian matrix of I'y is DpJ — A(T'). Since the smallest
eigenvalue of T',, is "_Dl by [9], the largest eigenvalue of the Laplacian

n

matrix is -’;—Bg. By [8], for any bipartite subgraph H of G, we have

|Sn|nDy,
IEE)IS g,

But |[E(G)| = 3D,|Sy|. Hence the assertion holds. Il

Before stating the next result we recall the definition of the Shannon ca-
pacity. Let G be a graph. Denote by G' the product of ! copies of G,
i.e., the graph with vertex set {1,-.-,n}! and edge set consisting of pairs
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{(z1,---,21), (y1,+++,y1)} for which either z; = y; or z; is adjacent to y; in
G. The number

is called the Shannon capacity of G. To date there are just a few graphs
whose Shannon capacity has been determined. For example, Lovész in (7]
proved that the Shannon capacity of the cycle of order 5 is v/5. Here, we
give the exact value of the Shannon capacity of the derangement graph.
(This result was observed but left implicit in [9).)

Theorem 5.4 Let T',, be the derangement graph. Then
O,)=(n—-1).
Proof. By Theorem 9 in [7], we have

|Sn|77min
a(ly) £O(Ty) £ =———
(Ta) < ©(Tn) Dr. — Tt

where 7nin is the smallest eigenvalue of I',. By Theorem 1.1 in [9], we have
Nrmin = ﬁ-l_zil. On the other hand, by [9] a(G) = (n — 1)!. Hence

NSulftmin _ (i, _ gy,

(n - 1)! = a(r") < e(Fn) s Dy — min

Therefore, ©(T5) = (n —1)!. W
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