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Abstract

A minimal separator of a graph is an inclusion-minimal set of ver-
tices whose removal disconnects some pair of vertices. We introduce
a new notion of minimal weak separator of a graph, whose removal
merely increases the distance between some pair of vertices. The
minimal separators of a chordal graph G have been identified with
the edges of the clique graph of G that are in some clique tree, while
we show that the minimal weak separators can be identified with
the edges that are in no clique tree. We also show that the minimal
weak separators of a chordal graph G can be identified with pairs of
minimal separators that have nonempty intersection without either
containing the other—in other words, the minimal weak separators
can be identified with the edges of the overlap graph of the minimal
separators of G.

1 Introduction

A subset S of vertices of a connected graph G is a minimal u,v-separator
of vertices u and v of G if S is inclusion-minimal such that u and v are in
different components of the subgraph induced by V(G) — S; such an S is
also called a minimal separator. (The empty set of vertices is frequently
taken to be a minimal separator of a graph that is not connected, and
that convention could have been carried through in the present paper—
but, for convenience and simplicity, separators are only being defined here
for connected graphs.) Not unsurprisingly, there are related concepts in
the literature of graph vulnerability and connectivity; [6] is an early paper
and [15] is a recent paper with updated references.

We introduce and study a new notion of ‘minimal weak separator’ (pre-
viously occurring only in Exercise 2.9 of [14]). Define a subset S of vertices
of a connected graph G to be a minimal weak u,v-separator of vertices u
and v of G if S is inclusion-minimal such that u and v are still in a common
component of the subgraph induced by V(G) — S but the distance between
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them in that subgraph is greater than the distance between them in G; also
call such an S a minimal weak separator of G. As examples, each vertex v
of Cs forms a minimal weak separator {v}, while C4 has no minimal weak
separators. Pairs of nonadjacent vertices that are in common 4-cycles form
the twelve minimal weak separators present in the 3-cube K3 x Kp x Ko.
A graph G has no minimal weak separators if and only if G is distance-
hereditary, where this means that the distance between every two vertices
in every connected induced subgraph of G is the same as it is in G; see [4].
(By contrast, G has no minimal separators if and only if it is complete.)
Our results on minimal weak separators will all be in the restricted con-
text of chordal graphs, meaning graphs with no induced cycles of length
four or more (see [4, 14] for details). This mirrors the frequent restriction
to chordal graphs in the extensive work that has been done on minimal
separators. One motivation for that restriction is that the number of min-
imal separators grows exponentially in the number of vertices in general,
but at most linearly for chordal graphs. Similarly, the number of minimal
weak separators grows exponentially in general (indeed, for hypercubes),
but at worst quadratically for chordal graphs (which will follow from Theo-
rem 5 below and the well-known fact that the number of maximal complete
subgraphs of a chordal graph is bounded by the number of vertices).
Another (historical) motivation for restricting the study of minimal sep-
arators to chordal graphs is Dirac’s well-known characterization of chordal
graphs as those in which minimal separators induce complete subgraphs.
There cannot be a similar chordal characterization property that every
minimal weak separator satisfies, since C4 has no minimal weak separators.
But Proposition 7 will be a weak separator analog of another, more recent
characterization of chordal graphs in terms of minimal separators.
References [5, 12] locate all ‘hinge vertices’—which, in our language, are
the singleton vertex subsets that are either minimal separators or minimal
weak separators—for classes that are more restrictive than chordal graphs
(namely, strongly chordal graphs and interval graphs, respectively). Theo-
rems 5 and 12 below will show ways to locate minimal weak separators of all
cardinalities for all chordal graphs. (Lemma 3 will review one well-known
way to locate all minimal separators of chordal graphs.)
Our results will include the following, for connected chordal graphs G:

o The minimal weak separators of G can be identified with the edges
of the clique graph of G that are not in any clique tree of G (clique
graphs and clique trees will be defined in section 2).

o A vertex belongs to a minimal weak separator of G if and only if it is
the degree-4 vertex of an induced ‘gem’ subgraph of G (a gem results
from a length-5 cycle by inserting additional edges from one vertex
to the two opposite vertices).
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e The minimal weak separators of G can be identified with the edges
of the separator overlap graph of G (separator overlap graphs will be
defined in section 4).

Section 2 will establish our notation and review the necessary back-
ground concerning chordal graphs and clique trees. Section 3 will show
how minimal weak separators of chordal graphs can be located using ‘clique
thickets’ (unions of all clique trees); section 4 will do the same using ‘sepa-
rator overlap graphs.” (Both methods correspond to quadratic algorithms.)

2 Notation and background

We use standard graph-theoretic notation. In particular, for any v € V(G),
N (v) denotes the set of neighbors of v in G. For any subgraph H of a graph
G—possibly a path P or a spanning tree T of the graph—V (H) and E(H)
denote, respectively, the vertex and edge sets of H. For any S C V(G),
G — S denotes the subgraph induced by V(G) — S. For any uv € E(G),
G — uv denotes the subgraph of G obtained by deleting the edge uv; if u
and v are in a common component of G but not of G — uv, then uv is a
cut-edge of G. For any u,v € V(H), du(u,v) denotes the distance between
u and v—the length of a shortest path connecting u and v—in the subgraph
H. The mazcliques of G are the inclusion-maximal subsets of V(G) that
induce complete subgraphs.

The remainder of this section reviews needed background from chordal
graph theory [14]. We begin with two simple observations that will be used
tacitly throughout the remainder of this paper.

Lemma 1 Suppose G is chordal with nonadjacent vertices u and v where
N(u) N N(v) # B. Then N(u) N N(v) is either a minimal separator or a
minimal weak separator.

Proof. Suppose G, u, and v are as stated and S = N(u)NN(v) # 8. Since
S is contained in every minimal u,v-separator, either S will be a minimal
u,v-separator or 4 and v will still be in a common component of G — S,
connected there only by paths of length three or more. In the latter case,
dg(u,v) = 2 will have increased to dg-s(u,v) > 3, making S a minimal
weak u,v-separator. (m]

Lemma 2 Suppose G is chordal with nonadjacent vertices u and v where
N(u)N N(v) # 0. Then there erist mazcliques Qy and Q, of G such that
u€EQy, vEQy, and QuNQy = N(u) NN (v).

Proof. Suppose G, u, and v are as stated and S = N(u) N N(v) # 0.
Since § is contained in every minimal u,v-separator and every minimal u,v-
separator induces a complete subgraph of G (by Dirac’s characterization of
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chordal), both SU {u} and S U {v} will induce complete subgraphs and so
will be contained in maxcliques @, and @y, respectively. So S C Q, N Q..
Conversely, any z € @, NQ, will be adjacent to both u and v, andso z € S.
Therefore, Qu NQy, = S. u]

The clique graph K(G) of a connected graph G has all the maxcliques
of G as nodes—calling the vertices of the clique graph nodes will lessen
their confusion with the vertices of G—with two nodes @ and Q' adjacent
whenever Q@ N Q' # 0. The weighted clique graph K*(G) assigns each edge
Q@' of the clique graph the weight |@ N Q’| > 0. (Weight zero edges could
have been used if disconnected graphs G had been allowed.) Suppose T is
a maximum-weight spanning tree of K¥(G). For any two nodes Q and @’
of K(G), let T[Q, Q'] denote the subgraph of T that consists of the path in
T between @ and Q’.

Figure 1 shows a graph G1, its weighted clique graph X% (G} )—where for
instance the node ‘abe’ abbreviates the maxclique {a, b, e} and the weight
of an edge is indicated using multiple edges—and one maximum spanning
tree Ty of K¥(G1); any one of the three edges from the node ef could have
been chosen. (The ‘clique thicket’ ©; will be defined at the beginning of
section 3.)

b cde abe cde abe
\\ ' / \\ bce/ Xbce//
f el
Gy IC‘"(G;) Th 6,

Figure 1: A chordal graph G; and its weighted clique graph K¥(G1), with a
clique tree T and the clique thicket O;.

Reference [14] contains the history and proof of the statements made in
the remaining part of this section.

One standard characterization of chordal graphs [14, Theorem 2.1] is
that a connected graph G is chordal if and only if, for some (or, equivalently,
for every) maximum spanning tree T of K%(G) and for every v € V(G), the
subgraph T, that is induced by those nodes that contain v is connected.

Such a tree T is called a clique tree of G. One characterization of a graph
G being chordal is that G is the intersection graph of a family of subtrees
of some tree—this is used as the definition of chordal graph in [14]—and,
indeed, a chordal graph G will always be the intersection graph of the
subtrees T;, of any clique tree T of G.

The clique trees of a connected chordal graph G can be constructed
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from K*(G) as follows: At each step, select any one of the next-largest-
weight edges that would not form a cycle with previously-chosen edges [14,
Theorem 2.3]. (This is, of course, just Kruskal’s standard greedy maximum
spanning tree algorithm.)

The following is a standard result of chordal graph theory, originating
in [2] and [11]; also see [14].

Lemma 3 Every edge in a cliqgue tree T of a connected chordal graph G
corresponds to a minimal separator of G, and every minimal separator of
G corresponds to an edge in every clique tree of G. Specifically, {QNQ’ :
QQ’ € E(T)} is the set of minimal separators of G. m]

In Figure 1, for instance, the three sets {b, e}, {c, e}, and {e} correspond
to the three edges of T and are the three minimal separators of G. Notice
that Lemma 3 also shows that the set {QN Q' : QQ’ € E(T)} is uniquely
determined by G even though, as in Figure 1, G can have more than one
clique tree T'.

3 Clique thickets and their chords

Define the clique thicket © of a chordal graph G to be the subgraph of X(G)
that is the union of all the clique trees of G. Clique thickets were introduced
and studied in [7] (where they were, against standard practice, called ‘clique
graphs’; our name ‘thicket’—an entanglement of trees—should help avoid
confusion). Thus, Lemma 3 can be restated as: Every edge of the clique
thicket © of a chordal graph G corresponds to a minimal separator of G,
and every minimal separator of G corresponds to an edge of ©.

Lemma 4 The clique thicket © of a connected chordal graph G can be
constructed from K¥(G), starting from any clique tree T of G as follows:
Include an edge QQ’ of K*(G) in © if and only if |QNQ’'| = |RN R'| for
some edge RR' in T[Q, Q').

Proof. This is a special case of a general construction from [16] for the
union of all maximum (or all minimum)spanning trees of any graph. O

Define the chords of a clique tree T or of a clique thicket © to be the
edges of K(G) that are not edges of, respectively, T or ©. In other words,
the chords of the clique thicket are the edges of K(G) that are chords of
every clique tree. Notice that if @, R, R’ and Q' are nodes in that order
along T[Q,Q’], then QN Q' C RN R’ (since T, is connected for every

veERNQ).
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Figure 2 shows another example of a chordal graph G2 and its clique
thicket ©,. There are nine chords Q@' of ©,: five with @ N Q' = {2,5},
two with @ N Q' = {5, 6}, and two with Q N Q' = {5}.

0125 —— 0256 \

5678

1245 2567

Figure 2: A chordal graph G2 and its clique thlcket 9.

Theorem 5 Every chord of the clique thicket © of a connected chordal
graph G corresponds to a minimal weak separator of G, and every minimal
weak separator of G corresponds to a chord of ©. Specifically, {@ N Q' :
QQ’ € E(K(G)) — E(©)} is the set of minimal weak separators of G.

Proof. Suppose Q@' is a chord of the clique thicket © of a chordal graph
Gand Q = Q1,Q2,...,Qr = @', k > 3, is the path T[Q,Q’] in some
clique tree T inside ©. Because each Q; is a maxclique of G, there exist
nonadjacent vertices v € Q — @2 and v’ € @’ — Qx—1 with dg(v,?') =2
(since v and v’ are common neighbors of the vertices in @ N Q' # 6).

Suppose z is any common neighbor of v and v/. Then zv € E(G)
implies that z and u are in some common maxclique of G, and so that z
is in some node of T,. Similarly, z is in some node of T,;. Therefore T}
will contain every node in T[Q,Q], and so z € Q@ N Q'. Therefore, every
common neighbor of v and v’ will be in QNQ’, and s0 dg_(gng)(v,v’) 2 3.
This makes Q N @’ a minimal weak v, v’-separator.

Conversely, suppose S is a minimal weak v, v'-separator in a chordal
graph G. Let N and N’ consist, respectively, of all the neighbors of v and
of v/ in G — S. Note that NN N’ =0 (since £ € N N N’ would imply that
w € S). Let R and R' be minimal v, v'-separators that properly contain S
and that are contained in, respectively, SU N and SU N’. Also note that
RN R = S. Suppose T is any clique tree of G. By Lemma 3, T contains
an edge @;1Q2 with @ N @2 = R and an edge Q1Q5 with Q1 N Q% = R'.
Pick Q € {@1,Q2} and Q' € {Q},Q5%} such that @), Q2, @}, and Q5 are
all nodes in the path 7@, Q’]. The minimal separators R and R’ will cor-
respond to the edges of T[Q, Q'] that are incident to, respectively, @ and
Q.SOSCRCQandSCR CQ,andsoSCQNEQ. Since QN is
contained in every node of T[Q,Q'], we have QN Q' C RN R' = S. Thus
Q and Q' are nonadjacent nodes of T—and so QQ' is a chord of T—with
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@NQ = S. Because S is properly contained in both R and R’ (and so
is properly contained in every edge of T(Q, @']), edge @@’ will not be in 8
(by Lemma 4). Hence QQ' is a chord of the clique thicket of G. o

In the example shown in Figure 1, notice that the set {e} C V(G))
corresponds to edges in the clique thicket ©@; and also to a chord of ©;.
This reflects that {e} is both a minimal a, f-separator and a minimal weak
a,d-separator in G1. Notice as well that each edge [and chord] Q@' of ©,
determines nonadjacent vertices u € @—Q’ and v € Q' —Q for which QNQ’
is a minimal [weak] u,v-separator.

Corollary 6 Every edge of the clique graph of a connected chordal graph
G corresponds to either a minimal separator or a minimal weak separator

of G. (]

Corollary 6 can also be rephrased to say that: Every edge not in a
clique tree (or the clique thicket) of a connected chordal graph G corresponds
to a minimal weak separator of G, and every minimal weak separator of
G corresponds to an edge that is not in every cligue tree (or the clique
thicket) of G. This resembles Lemma 3 with ‘minimal weak separators’
replacing ‘minimal separators’ and with the insertion of negations. There
is a similar transformation of a recent characterization of chordal graphs in
terms of minimal separators into a characterization of chordal in terms of
minimal weak separators. Reference [3] contains the following: A graph G
is chordal if and only if, for every uv € E(G), either uv is a cut-edge of G
or N(u)N N (v) # @ is @ minimal u,v-separator in G — uv. Proposition 7 is
the minimal weak separator analog.

Proposition 7 A graph G is chordal if and only if, for every uv € E(G),
either uv is a cut-edge of G or N(u) N N(v) # @ is not a minimal weak
u,v-separator in G — uv.

Proof. First suppose G is chordal and uv € E(G) is not a cut-edge of
G. Then N(u) N N(v) # 0 is a minimal u,v-separator in G — uv (by the
above-cited result from [3]), and so N(u) N N(v) cannot be a minimal weak
u,v-separator in G — uv (by the definition of minimal weak separator).
Conversely, suppose G is not chordal; say C is an induced cycle of G
of length four or more with uv € E(C). Let P be the induced u,v-path
C—uv. Then N(u)NN(v)NV(P) = 0, and so N(u)NN(v) is either empty
or is a minimal weak u,v-separator. (m]

Recall that a gem is a graph that is isomorphic to the subgraph G — { f}
shown in Figure 1.
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Theorem 8 A vertez of a chordal graph is in a minimal weak separator if
and only if it is the degree-4 vertez of an induced gem.

Proof. First suppose G is a chordal graph that has a vertex v that isin a
minimal weak separator S. By Theorem 5, $ = QNQ’ where Q@' is a chord
of the clique thicket of G. Then, for any clique tree T of G, v will be adjacent
to every vertex in every node @; along the path T[Q, Q'] = @1,Q2,...,Qk
(k > 3), each @; N Qi1 with 1 < ¢ < k will properly contain S, and
every vertex of G that is in every node of T[Q, Q'] willbe in @, NQx = S.
Therefore, there will exist j with 1 < j < k and z € (Q;-1 N Q;) — Qj+1
and y € (Qj4+1 N Qj) — Q-1 with zy € E(Q). Since the nodes of T" are the
maxcliques of G, there exist vertices w € Q-1 — Q; and z € Q41 — Qj;
so w is adjacent to z but not to y, y is adjacent to z but not to z, and w
is not adjacent to z. Thus, v is the degree-4 vertex of the gem induced by
{v,w,2,y,2}.

Conversely, suppose {v,w,z,y, 2z} induces a gem in G with v adjacent
to each vertex of the induced path w,z,y, 2. Let S = N(w) N N(z). Then
v € S and S is a minimal weak w, z-separator. n]

Corollary 9 If S is a minimal weak separator in a chordal graph G, then
S is a minimal weak u,v-separator where dg(u,v) = 2 and dg-s(u,v) = 3.

Proof. This is a direct consequence of Theorem 8, where u and v are the
simplicial vertices of a gem. ]

A graph is ptolemaic [4, 10] if it is chordal and distance-hereditary. A
graph G is trivially perfect—other names used include HT-, nested inter-
val, and quasi-threshold [4, 14]—if, for every induced subgraph G’ of G,
the cardinality of the largest independent set in G’ equals the number of
maxcliques in G’.

Corollary 10 A connected graph G is ptolemaic if and only if G is chordal
with clique thicket © = K(G).

Proof. This follows from Theorem 5 together with the result in [10] that
a graph is ptolemaic if and only if QN Q’ is a minimal separator for every
two nondisjoint mazcliques Q and @Q’'. (Theorem 5 also proves the result
from [10] that a graph is ptolemaic if and only if it is chordal and gem-
free.) n]

Corollary 11 A connected graph G is trivially perfect if and only if G is
chordal with clique thicket © complete.

Proof. This follows from Theorem 5 together with the fact that a graph is
trivially perfect if and only if QN Q' is a minimal separator for every two
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mazcligues Q and @', which itself is a straightforward consequence of the
result from (8] that a graph is trivially perfect if and only if it is chordal

and Py-free. a

4 Separator overlap graphs and their edges

Define the separator overlap graph ¥ = X(G) of a connected graph G as
follows: the nodes of £ are the minimal separators of G, with two nodes
Q and Q' adjacent if and only if both @ N Q' # ® and also Q and Q’ are
incomparable (meaning that neither @ C Q' nor Q' C Q). (This graph can
of course also be viewed as the intersection graph of the minimal separators
minus their comparability graph.) Nonempty intersection (§ # Q@ N Q') is
thus strengthened to overlap (8 # QN Q' # @,Q’). Overlap graphs date
back at least to [9], but separator overlap graphs have not been specifically
considered before now.

While much work has been done with intersection graphs (and their
maximum spanning trees) of various families of subgraphs of a graph,
see [13], similar questions concerning overlap graphs of families of sub-
graphs of a graph have not been studied. This partially reflects that, in
the most traditional case—when the family consists of the maxcliques of a
graph—the overlap graph is precisely the clique graph (since maxcliques are
always incomparable). But Theorem 12 will show that the overlap graph © -
of the family of weak separators of a chordal graph G is of interest in that
the edges of X correspond precisely to the minimal weak separators of G.
This can be viewed as an independent approach to minimal weak separa-
tors that uses overlap graphs (of minimal separators) instead of intersection
graphs (of maxcliques).

Figure 3 shows two examples of (weighted) separator overlap graphs.
For instance, the graph G shown in Figure 2 has minimal separators {0,2,5},
{1,2,5},{2,5,6}, {2,6,7}, and {6}. The weighted separator overlap graph

% shown in Figure 3 has edges corresponding to the three minimal weak
separators of G2: {2,5} (three times), {5,6} (once), and {5} (twice).

025
be ce / | \%
125 \ 256
) 567/ 6
oy oy

Figure 3: The weighted separator overlap graphs I of the graphs G; in
Figures 1 and 2 (with multiple overlap indicated by multiple edges).
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Theorem 12 Every edge of the separator overlap graph X of a connected
chordal graph G corresponds to a minimal weak separator of G and every
minimal weak separator of G corresponds to an edge of £. Specifically,
{@N Q' : QQ’ € E(T)} is the set of minimal weak separators of G.

Proof. First suppose that R and R’ are two incomparable minimal sepa-
rators of a chordal graph G with separator graph £ and that RR' € E(X).
Using Lemma 3, say R = Q1N Q2 and R’ = Q| NQ% where Q1Q2 and Q1 Q)
are edges of an arbitrary clique tree T of G and where, without loss of gen-
erality, the nodes @1, @}, @2, and @ come in that order along T[Q1, Q5]
(possibly with Q] = Q2). Because T is a clique tree, @1 NQ5 = RN R/, and
so RN R’ corresponds to the chord Q1 Q% of T'. Since T was arbitrary, RNR'
corresponds to a chord of every clique tree of G, and so, by Theorem 5,
RN R is a minimal weak separator of G.

Conversely, suppose S is a minimal weak separator of a chordal graph
G with clique thicket © and a clique tree T. Theorem 5 implies that
S = @1 N Q2 where @,Q- is a chord of ©, and so that S is properly
contained in Q N Q' for every edge Q@' along T[Q@1,Q2]. Let Qf and
Q7 be the nelghbors of, respectively, @; and Q2 along T'[Q1, Q2] (possi-
bly with @f = Q7). Because @,Q- is a chord of the clique tree T, sets
Q1 N QT and Q7 N Q2 contain @; N Q3, and Lemma 4 1mp11es that those
containments are proper containments. This makes @; N Q7 and @; NQ
incomparable (@1 N @ C Q3 N Q2 would imply @; N Qf = S). Thus,
(@1 NQY)N(Q5 NQ2) = S corresponds to an edge of I. a

ACKNOWLEDGEMENT: The author has incorporated many stylistic sugges-
tions made by an anonymous referee to improve readability.
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List-colouring the square of an
outerplanar graph

Timothy J. Hetherington, Douglas R. Woodall*

School of Mathematical Sciences, University of Nottingham,
Nottingham NG7 2RD, UK

Abstract

It is proved that if G is a K2 s-minor-free graph with maximum
degree A, then A +1 < x(G?) < ch(G?) < A+2if A > 3, and
ch(G?) = x(G?) = A + 1 if A > 6. All inequalities here are sharp,
even for outerplanar graphs.

Keywords: Choosability; Outerplanar graph; Minor-free graph;
List square colouring

1 Introduction

We use standard terminology, as defined in the references: for example (5]
or [9]. The square G? of a graph G has the same vertex-set as G, and two
vertices are adjacent in G? if they are within distance two of each other
in G.

There is great interest in discovering classes of graphs G for which the
choosability or list chromatic number ch(G) is equal to the chromatic num-
ber x(G). The list-square-colouring conjecture (LSCC) [5] is that, for every
graph G, ch(G?) = x(G?). It is clear that this conjecture holds when the
maximum degree A(G) of G is 0 or 1, and it can be deduced from the
results of [7] when A(G) = 2: see [4]. In general, it is easy to see that
A(G) +1 < x(G?) < ch(G?).

It is well known that a graph is outerplanar if and only if it is both
K-minor-free and K3 s-minor-free. Squares of K4-minor-free graphs were
considered in [4]. For K3 s-minor-free graphs we have the following result,
which is the same as for the slightly smaller class of outerplanar graphs.

*Email: pmxtjh@nottingham.ac.uk, douglas.woodall@nottingham.ac.uk
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Theorem 1. Let G be o Kj 3-minor-free graph with mazimum degree A.
Then A + 1 € x(G?) € ch(G?) < A+ 2 if A > 3, and ch(G?) = x(G?) =
A+1iAZ6.

We are indebted to the referee for telling us about reference [6}, which
led us indirectly to [1]. These papers contain alternative proofs of parts
of Theorem 1 when G is outerplanar: [6] proves most of the results for
x(G?), and [1] proves all of the results for x(G?) and also (‘as a bonus’)
that ch(G?) = A+ 1if A > 7. Both of these papers were motivated by the
conjecture of Wegner (8] that if G is a planar graph with maximum degree
A then x(G?) < A+5 if 4 < A < 7and x(G?) £3A/2+1if A>8. Our
motivation, the LSCC, is somewhat different.

When 3 € A < 5, the upper bound on ch(G2) in Theorem 1 is sharp
even for x(G2), and even for the smaller class of outerplanar graphs, as
shown by the graphs in Fig. 1. For each of the cases A = 3 and A = 4
there is an infinite family of minimal (under subgraph-inclusion) extremal
examples. One member of each family is shown in Fig. 1; in each case,
if only A + 1 colours are available, then all the vertices labelled a have
to have the same colour, which gives a contradiction on the bottom edge.
Fig. 1 also shows the smallest extremal example with A = 4 and a smallest
known extremal example with A = 5; in fact, for A = 5 we know of only
two minimal extremal examples, both of order 10.

For the case A = 6, the proof that ch(G2) = A + 1 in Theorem 1 is
exceptionally long and involved, and so we omit it from this paper, instead
proving only that ch(G?) < A+2 = 8; the proof that ch(G?) = A+1=7is



included in the first author’s doctoral thesis [3]. Since A(G)+1 < x(G?) <
ch(G?) for every graph G, in order to prove this weaker version of Theorem 1
it suffices to prove the following.

Theorem 2. Let G be a K 3-minor-free graph with mazimum degree A.
Then ch(G?) < A+2ifA >3, andch(G) S A+1ifA>T.

The rest of this paper is devoted to a proof of Theorem 2. We will need
the following simple lemma.

Lemma 1. Let G be a Ky 3-minor-free graph. Then each block of G is
either K4-minor-free (and hence outerplanar) or else isomorphic to K.

Proof. Suppose B is a block of G that has a K4 minor. Since A(K,) = 3,
it follows that B has a subgraph H homeomorphic to K. Since any graph
obtained by subdividing an edge of K4, or by adding a path joining two
vertices of K4, has a K3 3 minor, it follows that H =~ K; and B=H. O

As usual, d(v) = dg(v) will denote the degree of vertex v in graph G.

2 The start of the proof

Fix the value of A > 3, and suppose if possible that G is a Kj s-minor-free
graph with maximum degree at most A and with as few vertices as possible
such that ch(G%) > A+ 2 or A +1 as appropriate. By Lemma 1, every
block of G is outerplanar or isomorphic to K4. Clearly G is connected and
is not Kj. If G is 2-connected, let B := G and let zg be an arbitrary vertex
of G; otherwise, let B be an endblock of G with cutvertex zp. Assume
that every vertex v of G is given a list L(v) of A + 2 or A + 1 colours, as
appropriate, such that G2 has no proper colouring from these lists.

Claim 2.1. Not every vertez of B — zp is adjacent to z.

Proof. Suppose it is. Then every vertex of B — zp has degree at most A
in G2, since all its neighbours in G? are in the closed neighbourhood of 2
in G. Thus we can colour (G — (B — 2))? from its lists by the minimality
of G, and then colour all the remaining vertices. This contradiction proves
Claim 2.1. O

Claim 2.2. G does not contain three vertices u,v,w of degree 2 such that
uv,vw € E(G).

Proof. Suppose it does. Then dga(v) < 4. Let H := G — v + uw, so that
H is K3 3-minor-free and G? — v C H2. Then we can colour G2 from its
lists by first colouring G2 — v and then colouring v. This is the required
contradiction. O
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It follows from Claim 2.1 that B ¢ K>, K3 or K4; thus B is an outer-
planar graph that is 2-connected but not complete, and consists of a cycle
C with chords. (A chord is an edge that joins two nonconsecutive vertices
of the cycle.) Claim 2.2 shows that C has at least one chord.

Assume that B is embedded in the plane with C bounding the outside
face. In [2], a cap is defined to be a region R of the plane that is bounded
by a segment of C and one chord ujuz. We modify the definition slightly
here by insisting also that zp is not in the interior of this segment; so zp is
either u; or uz or is not in RB. We call u; and u; the endvertices of R. By
an abuse of terminology, the subgraph of B induced by all vertices in R will
also be referred to as a cap. We will refer to an edge of C as a trivial cap or
a 0-cap. For i > 1, an i-cap is a cap that properly contains an (i — 1)-cap
and is minimal with this property.

The proof now divides into two cases.

3 Proof that ch(G?) < A +2

In this section we assume that every vertex v of G has a list L(v) of
A + 2 colours, and G2 is not colourable from these lists, but if H is any
K3 3-minor-free graph with maximum degree at most A and fewer vertices
than G then ch(H2) < A +2.

Claim 3.1. Every l-cap in B is a triangle zujus where dg(z) = 2 and
do(w) > 4 (i=1,2).

Proof. By definition, a 1-cap is a region bounded by a chord ujus and
a segment 4173 ...Zrug of C, where dg(z;) = 2 for each i. By Claim 2.2,
r € 2. So if Claim 3.1 is false then either r = 2, or r = 1 and dg(u;) < 3 for
some j € {1,2}. But in either case G>~z; = (G—z1)? and dga(z1) < A+1,
and so we can colour G2 from its lists by first colouring (G — z1)? (by
the minimality of G) and then colouring z;. This contradiction proves
Claim 3.1. O

Claim 3.2. B has a cap that is not a 1-cap.

Proof. Suppose that every cap in B is a 1-cap. Then z is not the
endvertex of a chord, since a chord zpy bounds two caps, and if both of
these caps are 1-caps then dg(y) = 3, contrary to Claim 3.1. Also, at most
two chords of C are incident with any one vertex, since if there were three
(or more) chords incident with the same vertex then the middle one (or
more) of these chords would bound a cap that is not a 1-cap. It follows
from this and Claim 3.1 that the endvertices of every chord have degree
exactly 4 in G. The chords therefore form a cycle inside C, every edge of
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which joins vertices that are distance 2 apart around C, except possibly for
the edge e of the cycle that bounds a face of B with 2z in its boundary.
Now, a cap cannot contain 29 by definition, except as an endvertex of its
chord, which we have already shown to be impossible. Thus there is a
unique cap bounded by e, and this cap contains all the 1-caps in B and so
is not a 1-cap itself. This contradiction proves Claim 3.2. O

Claim 3.3. Every 2-cap in B looks like one of the caps in the sequence of
which Figs 2(a) and 2(b) are the first two members.

Proof. Let R be a 2-cap that is bounded by a chord u;us and a segment
of C. Since R properly contains a 1-cap and is minimal with this property,
there is at least one chord inside R, and everysuch chord cuts off a 1-cap. So
the chords inside R can be enumerated as I17q,. .., %, where the vertices

u1,ll,T1,-.-,lk,7’k,u2

occur in that order round C, but possibly u; = {3, or r; = l;4; for some 1,
or 7, = up. In fact, since d(!;) > 4 and d(r;) > 4 for each i by Claim 3.1,
necessarily u; = {j, and r; = l;4 for every i, and r; = uy, since otherwise
d(l;) = 3 or d(r;) = 3 for some i. Since, by Claim 3.1 again, every chord
l;ir; cuts off a triangle from R, the proof of Claim 3.3 is complete. O

It follows from Claims 3.2 and 3.3 that A > 4 and B contains one of
the configurations H shown in Fig. 2, where the dashed edge may or may
not be present in Fig. 2(c), and 2 is either u; or u, or is not in H.

Suppose first that B contains H as in Fig. 2(a). Then we can colour
(G — z1)? from its lists by the minimality of G, and then colour z;, since
dg2(z1) = dg(u1) + 1 < A + 1. This is the required contradiction.

Suppose next that B contains H as in Fig. 2(b). Colour the graph
(G - {=z1,72,z3,1,%2})? from its lists, and for each uncoloured vertex w
let L'(w) denote the ‘residual list’ of colours in L(w) that are not used
on any G2-neighbour of w and so are still available for use on w. Then
[L'(w)] 2 (A+2)-(A-1) =3 if we {z1,1,¥2, 23}, and |L/(z2)] >
(A +2) -2 > 4. So if we try to colour the vertices in the order

z1,Y1,Y2,23, 22, (1)
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it is only at xp that we may fail. If L'(z;) N L'(z3) # 0, give =3 and z3
the same colour; then y1, y2 and z2 can be coloured in the same order as
in (1). If however L/(z;) N L'(z3) = 0, then either [L'(z2)| > 6, or else z;,
say, has a usable colour c; not in L’(z2); in either case, the vertices can be
coloured in the order (1), with z; receiving colour c; if it exists.

Suppose finally that B contains H as in Fig. 2(c). Colour the graph
(G—(V(H)\{u1,u2}))? from its lists, and let each uncoloured vertex w have
residual list L'(w). Then |L'(w)| 2 3 if w € {z1,y1,¥3, 24}, |L'(v2)] 2 4,
and |L'(w)| > 5 if w € {z2,z3}. So if we try to colour the vertices in the
order

Y1, %4, Y3, Y2, T1, T2, T3, (2)

it is only at z3 that we may fail. If L'(31) N L'(z4) # 0, give y1 and z4 the
same colour, then colour the remaining vertices in the order (2). If however
L'(31) N L'(z4) = 0, then either |L’'(z3)| > 6, or else y; or z4 has a usable
colour ¢; not in L/(z3); in either case, the vertices can be coloured in the
order (2), with y; or x4 receiving colour ¢, if it exists.

In every case we have obtained a contradiction, and so we have proved
that ch(G?) < A+2forall A > 3.

4 Proof that ch(G?) < A+1when A>7

In this section we assume that every vertex v of G has a list L(v) of
A + 1 colours, and G2 is not colourable from these lists, but if H is any
K 3-minor-free graph with maximum degree at most A and fewer vertices
than G then ch(H?) < A + 1. To begin with we assume only that A > 6;
we will not use the fact that A > 7 until Claim 4.4.

Claim 4.1. Every verter of degree 2 in G has degree at least A +1 in G2.

Proof. Let v be a vertex of degree 2 in G with neighbours «,w, and
suppose that dg2(v) < A. Let H := G — v if uw € E(G) and let
H := G — v+ uw otherwise. Then H is K> 3-minor-free and G? — v C H?
and ch(G? —v) < ch(H?) < A+1 by the minimality of G. So we can colour
G? from its lists by first colouring G — v and then colouring v. This is the
required contradiction. 0O
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Claim 4.2, FEvery l-cap in B has the form shown in Fig. 3(a) or S(b),
where dg(uy) + de(uz) 2 A + 3 in Fig. 3(a), and dg(u1) =de(uz) = A in
Fig. 3(b).

Proof. The first part of the statement follows immediately from Claim 2.2
and the definition of a 1-cap. To prove the second part, note that, by

Claim 4.1,
A +1 < dga(z) < de(ur) + dg(ug) — 2

in Fig. 3(a), and
A+1<dg(zi) =de(w)+1  (i=1,2)
in Fig. 3(b). O

Claim 4.3. Every 2-cap in B has one of the forms shown in Fig. 4, where
the degrees of uy and uy are restricted as specified.

Proof. Let R be a 2-cap that is bounded by a chord u;u; and a segment
of C. As in the proof of Claim 3.3, the chords inside R can be enumerated
as ly7y,...,lkr,, where the vertices

ulall’rlv . ,lk,'l"k,ug

occur in that order round C, but possibly u; = I3, or r; = l;;; for some
i, or = ug. Thus every vertex of R other than u; and u; has degree
at most 4 in G. It follows from the degree conditions in Claim 4.2 that R
contains no 1-cap of the type in Fig. 3(b), and also, since A+3>9 > 2.4,
any l-cap in R of the type in Fig. 3(a) must share an endvertex with R.
Thus k=1or 2.

If k =1 then R is as in Fig. 4(a) (or its reflection). Note that if there
were no vertex Iz, just a single edge yuz, then we would have dgz2(z;) =
de(u1) < A, and if there were a further vertex z3 subdividing the edge
Zau2 then we would have dg2(z2) = 5 < A, contradicting Claim 4.1 in each
case. The degree conditions in Fig. 4(a) also follow from Claim 4.1, because
de2(z1) = do(u1) + 1 and dg2(z2) = dg(uz) + 2.
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So suppose k = 2. Then R is as in Fig. 4(b) or 4(c). Note that if there
were a further vertex w subdividing the edge 7132 in Fig. 4(c) then we
would have dg2(w) = 6 < A, contrary to Claim 4.1. The degree conditions
in the figures again follow from Claim 4.1, because dga(z;) = dg(w;) + 1
(i=1,2) in each case. O

From now on, we will assume that A > 7.
Claim 4.4. Every nontrivial cap in B is a 1-cap or a 2-cap.

Proof. Suppose this is not true. Then B contains a 3-cap. Let R be
a 3-cap in B, with endvertices u;, us. The chords inside R divide R into
faces. Let f be the face with u;up in its boundary. There are three possible
types for every other edge of f: it may be an edge of C, or a chord cutting
off a 1-cap, or a chord cutting off a 2-cap. There must be at least one
edge of f that is a chord cutting off a 2-cap, since otherwise R would itself
be a 1-cap or a 2-cap. So let u,v,w be three consecutive vertices in the
boundary of f, where uv is a chord cutting off a 2-cap. Then dg(v) < 6,
since the cap cut off by uwv, and the cap (possibly a 0-cap) cut off by vw,
each contribute at most 3 to the degree of v. Since A > 7, and in view
of the degrees indicated in Fig. 4, the only possibility is that uv cuts off
a 2-cap of the type in Fig. 4(a), and dg(v) = A — 1. But then this cap
contributes only 2 to the degree of v, so that dg(v) < 5 < A - 1. This
contradiction completes the proof of Claim 4.4. O

Claim 4.5. A(B) < 6, and if u is a vertez of B that is adjacent to zo then
de(u) < 5.

Proof. Suppose that u € V(B) and dg(u) > 7, or uzp € E(B) and
dp(u) = 6. Then there are chords uv;, uvz and uvz as shown in Fig. 5(a),
where 2g lies in the closed segment of C between u and vz that does not
contain v; and v2 (‘closed’ meaning that possibly 2o = u or 29 = v3). The
chord »v; cuts off a cap R; which, by Claim 4.4, is a 1-cap or a 2-cap. The
chord uvz cuts off a cap R that properly contains R; and so must be a
2-cap. The chord uwvg cuts off a cap that properly contains Rz and so is
neither a 1-cap nor a 2-cap. This contradicts Claim 4.4. O
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Claim 4.6. Every nontrivial cap in B is a 1-cap.

Proof. Suppose this is not true. Then, by Claim 4.4, B contains a 2-cap.
Suppose there is a 2-cap in B with endvertices u;, us, where w.l.o.g. uy # z.
Then dg(uz2) = dp(uz) < 6 by Claim 4.5, while dg(u2) > A -1 > 6 by
the degree constraints in Fig. 4. The only possibility is that dg(ug) =
A —1 = 6. This is impossible if u; = 2, since then Claim 4.5 implies that
dg(uz) € 5. So u3 # zo. But then the same argument as for ug shows that
de(w1) = A —1, which is impossible since every 2-cap in Fig. 4 has at least
one endvertex with degree A. O

Claim 4.7. A(B) < 4.

Proof. Suppose that u € V(B) and dg(u) > 5. Then there are chords
uv; and uve as shown in Fig. 5(b), where 2 lies in the closed segment of
C between u and vp that does not contain v;. The chord uv; cuts off a
cap R; which, by Claim 4.6, is a 1-cap. The chord uwvs cuts off a cap that
properly contains R; and so is not a 1-cap. This contradicts Claim 4.6. 0O

It is now easy to finish the proof. It follows from Claims 4.6 and 4.7 and
the degree conditions in Claim 4.2 that every nontrivial cap in B is a 1-cap
of the type in Fig. 3(a) with 29 as one endvertex. But then B consists of a
quadrilateral zgzyzzy with one chord 2y, and this contradicts Claim 2.1.
This finally completes the proof of Theorem 2.
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