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Abstract

Let X denote a set with g elements. Suppose £(n,q) denote the
set X™ (resp. X" U {A}) whenever ¢ = 2 (resp. g > 3). For any
two elements @ = (a1,...,as) and B = (B, ...,0n) € L(n,q), define
a < Bif and only if 8 = A or a; = B; whenever o; #0for1 <i < n.
Then £L(n, q) is a lattice, denoted by Lo(n,q). Reversing above par-
tial order, we obtain the dual of Lo(n,q), denoted by Lr(n,q). This
paper discusses their geometricity, and computes their characteristic
polynomials, determine their full automorphism groups. Moreover,
we construct a family of quasi-strongly regular graphs from the lat-

tice Lo(n,q).
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1 Introduction

We recall some terminology and definitions about finite posets and lattices.
For more theory about finite posets and lattices, we would like to refer
readers to [1].

Let P denote a finite set. A partial order on P is a binary relation <
on P such that

(i) a<aforany a € P.
(ii) a £ B and B < o implies a = B.
(ii) @« < B and B < v implies & < 7.

By a partial ordered set (or poset for short), we mean a pair (P, <) where
P is a finite set and < is a partial order on P. As usual, we write o <
whenever a < 8 and « # (. By abusing notation, we will suppress reference
to <, and just write P instead of (P, <). .

Let P be a poset and let R be a commutative ring with the identical
element. A binary function p(a, 3) on P with values in R is said to be the
Moébius function of P if

1, ifa= ﬂa
“(a, ﬂ) = 0, if ﬁ ﬂ,
- 2 /"’(as')’)a ifa<g.

aly<p

For any two elements «, 8 € P, we say a covers 3, denoted by 8 <,
if 8 < a and there exists no v € P such that 8 < v < a. If P has the
minimum (resp. maximum) element, then we denote it by L (resp. T) and

say that P is a poset with L (resp. T). Let P be a finite poset with L.
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By a rank function on P, we mean a function r from P to the set of all the

nonnegative integers such that
(i) r(1) = L.
(ii) r(a) =r(B) + 1 whenever 8 <- .

Let P be a finite poset with L and T. The polynomial
x(Pz)= 3 p(L,a)zr(D=rie)
is called the chamcterz’s?iecppolynomz’al of P, where r is the rank function of
P,

A poset P is said to be a lattice if both oV 8 := sup{e, 8} and aA S :=
inf{a, 8} exist for any two elements @, 3 € P. Let P be a finite lattice with
L. By an atom in P, we mean an element in P covering L. We say P is
atomic if any element in P\ {_} is a union of atoms. A finite atomic lattice
P is said to be a geometric lattice if P admits a rank function r satisfying

r(@AB) +r(aVB) < (@) +r(f),Ya, B P,

Let P be a lattice. A bijective map f from P to P is an automorphism

of P if f is join-preserving and meet-preserving, that is, for all o, 3 € P,
f(@VB) = f(@) v f(B)and f(a A B) = f(a) A F(B).

All the automorphisms of P form a group, called the full automorphism

group of P, denoted by Aut(P).

Let X = {0,1,...,q — 1}. Suppose L(n,q) denote the set X™ (resp.
X™U{A}) whenever g = 2 (resp. ¢ > 3). For any & = (a3, 2,...,a,) €
X™, the weight of a is the number of its non-zero entries, denoted by &,.
Note that the number of elements in X™ with weight m is () (g — 1)™.

For any two elements & = (ay,...,an) and 8 = (B4,...,6,) € L(n,q),
define o < B if and only if 8 = A or a,-‘= Bi whenever o; # 0 for
1 £ 7 < n. Then £L(n,q) is a lattice, denoted by Lo(n,q). For any two
elements a = (,...,00),8 = (B1,...,0n) € Lr(n,q), define o < B if and
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only if & = A or a; = ; whenever 8; # 0 for 1 < i < n. Then £(n,q) is a
lattice, denoted by Lg(n,q).

In a series of papers ([5, 6, 7, 8, 9, 11, 12]), Y. Huo, Y. Liu and Z. Wan
et al. constructed lattices from orbits of subspaces under finite classical
groups, computed their characteristic polynomials and discussed their ge-
ometricity. Very recently, lattices associated with distance-regular graphs
have been constructed in [3, 13]. In this paper, we discuss the geometric-
ity of the above two families of lattices, and compute their characteristic
polynomials, determine their full automorphism groups are determined.
Moreover, we construct a family of quasi-strongly regular graphs from the

lattice Lo(n,q).

2 The lattice Lo(n,q)

Since the set of all the atoms of Lo(n,q) consists of all the elements with
weight 1, Lo(n,q) is a finite atomic lattice. In this case, T = {A} and
L={(0,...,0)}.

Theorem 2.1 Lo(n,q) is a geometric lattice if and only ifn=1o0rqg=2.

Proof. In the case ¢ = 2, for any a € Lo(n, q), define r(a) = d,. In the
case ¢ > 3, for any a € Lo(n, q), define
Oas ifa#T,

n+1l, ifa=T.
Then 7 is the rank function of Lo(n, g).

r(e) =

If n =1 or ¢ = 2, it is routine to check that Lo(n, q) is geometric. Now
suppose n > 2 and g > 3. Pick a = (1,0,...,0),8=(2,0,...,0). Since
rlavB)+r(@aAB)=n+123>2=r(a)+r(B),

Lo(n,q) is not geometric. o
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In order to compute the characteristic polynomial of Lo(n, g), we need

the following lemma.

Lemma 2.2 The Mb'biui function of Lo(n,q) is

1, fa=8=T,
(—1)%o~%, fa<f#T,
plef)=¢ —2-9, ifl=a<f=T,
~2-q" %, flfa<pf=T,

0, otherwise.

\

Proof. The Mébius function of Lo(n, g) is
4

1, ifa=0=T,
) (_1)63—6‘” if .<.. ﬁ # Ta
w(e ) = - 3 pleyw), ifa<B=T,
agv<f
\ 0, otherwise.
Since
(—1)6" = (2 - Q)ﬂa
1<v<T
and
n=6, ) .
o Z M) = T (M) (a1 = (- g,
a<v i=
the desired result follows. i

Theorem 2.3 The characteristic polynomial of Lo(n,q) is
x(Lo(n,g),z) = Eo (7)(@=1)(=1)izm+1~i — (2 — g)".

i=
Proof. By Lemma, 2.2, we obtain
x(£Lo(n,q),z)
= X (LB ®

L<BLT
= (=1)%gn+1=% 4 u(1, T)
1<8<T
n . . .
= _ZE)(—I)'(',-')(q = 1)izg™H1= (2 g,
t=
as desired. (]
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3 The lattice Lg(n,q)

Since the set of all the atoms of Lr(n,q) consists of all the elements with
weight n, Lr(n,q) is a finite atomic lattice. In this case, T = {(0,...,0)}
and L = {A}.

Theorem 3.1 Lg(n,q) is a geometric lattice if and only if n =1 orq = 2.

Proof. In the case ¢ = 2, for any a € Lo(n,q), define r(a) =n —6,5. In
the case ¢ > 3, For any a € Lg(n, g), define
n+l-=358q, fa#l,

0, ifa= 1.
Then 7 is the rank function of Lr(n, g).

r(a) =

Ifn=1or g =2, Lr(n,q) is geometric. Now suppose n > 2 and ¢ > 3.
Picka =(1,1,...,1),8=(2,2,...,2). Since
rlavB)+r(anB)=n+1>3>2=r(a)+r(B),
Lpg(n,g) is not geometric. 1}
In order to compute the characteristic polynomial of Lg(n, g), we need

the following lemma.

Lemma 3.2 The Mé'biufs function of Lr(n,q) is

1, ifa=08=.1,
(~1)%~%, ifl#a<p,
we,f)={ —(2-g", ifl=a<B=T,
-(2-q)" %, fLl=a<f#T,

{ 0, otherwise.

Proof. The Mébius function of Lr(n,q) is
(

1, ifa=8=1,
ﬂ (_1)6‘:—5”1 1fJ-7éa Sﬁ,
) = 4 .
u(a, B) _-L an(_l)&u—s,g, ifl=a<p,
<vL
0, otherwise.

\
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Since
(~1)% = 2 - )",

1<v<T
and
s n—és s . P
(=178 = 3 (=1 (") (g-1)F = (295,
L<v<B#ET 1=0
the desired result follows. O

Theorem 3.3 The characteristic polynomial of Lg(n,q) is
n ‘ : 3 .
x(Erln,a),2) =2 = 30 ()a - 12 - gt
1=

Proof. By Lemma 3.2, we obtain
x(Lr(n, q), z)
= Z 'u(J_, ﬁ)x"'(T)_r(ﬁ)

1<a<T
= K’%Zd(—(? —q)"%)z% + p(L, L)z + (L, T)
= - 3 (- -
as desired. [}

4 The full automorphism group

Let S; be the symmetric group on the set X = {0,1,...,¢ — 1}. The
stabilizer of 0 is isomorphic to S,_;. Let S, be the symmetric group on
{1,2,...,n}. Let S;_11S, denote the wreath product of S,_; and S,. Then
Sq-115n acts on Lo(n,q) as the following:

(al’az’,_ .’an)(l’hng...,ﬂn;o) = ((alg_,)Pl’(a2a_‘)P2,. . _’(?na_l )Pn)’

ASe-1lSa = A
Theorem 4.1 Aut(Lo(n,q)) = Sq—11 5n.
Proof. 1t is routine to check that S;_1 1S, < Aut(Lo(n,q)).
Conversely, suppose f is any automorphism of Lo(n, q)). Then, for any

element o of Lo(n,q)), we obatin 6, = 8. It follows that f € Sq-1185n;
therefore, Aut(Lo(n,q)) < S;—11Sn. O
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5 A family of quasi-strongly regular graphs

In this section we shall construct a family of quasi-strongly regular graphs
from the lattice Lo(n, g). We first recall some concepts.

Let I' = (X, R) be a connected regular graph. For any two vertices u, v
at distance %, define

ci(u,v) = [Ti1(u) NT(v)], bi(w, v) = [Ciy1(u) NT(2)].

A connected regular graph of diameter d is said to be distance-regular if
ci(u,v) and b;(u,v) depend only on 7. For more information, the reader
may consult [2].

As a generalization of distance-regular graphs, F. Goldberg [4] intro-

duced the concept of quasi-strongly regular graphs.

Definition 5.1 ([4]) A quasi-strongly regular graph with parameters
(n,k,a;¢1,...,cp)
is a k-regular graph on n vertices such that any two adjacent vertices have

a common neighbours and any two non-adjacent vertices have ¢; common

neighbours for some 1 <7 < p.

Let T be a graph with the vertex set X™ such that two vertices oo and
B are adjacent if and only if @ < -Bor < -ain Lo(2i+1,2). ThenT is a
Hamming graph, which is distance-regular.

For 1 < i < n-—1,suppose L; = {a € Lo(2i + 1,2)|6, = ¢} and
Liy1 ={B € Lo(2i+ 1,2)|6g =i + 1}. Let A; be a graph with the vertex
set L;UL;41 such that two vertices & and § are adjacent if and only if & < 8
or 8 < a. Then A; is a doubled Odd graph, which is distance-regular.

Let 'y be a graph with the vertex set L; such that two vertices a and
B are adjacent if and only if the distance between o and 8 in A, is 2. Then
T'; is a strongly-regular graph.

For 2 <4 <n-1. Let T'; be a graph with the vertex set L; such that

two vertices a and 3 are adjacent if and only if the distance between o and
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B in A; is 2. Then I' is a quasi-strongly regular graph with parameters
((3) (g - D%itn = 9)(g = 1), (n — i~ 1)(g — 1); (n ~ §)(g - 1),4,1,0).
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