Two Families of Lattices

Zengti Li*

Department of Mathematics

Langfang Normal College

Langfang, 065000, Hebei, P.R. China.

Fengru Deng Basic Division

North China Institute of Areospace Engineering Langfang 065000, Hebei, P.R. China.

Abstract

Let X denote a set with q elements. Suppose $\mathcal{L}(n,q)$ denote the set X^n (resp. $X^n \cup \{\Delta\}$) whenever q = 2 (resp. $q \geq 3$). For any two elements $\alpha = (\alpha_1, \ldots, \alpha_n)$ and $\beta = (\beta_1, \ldots, \beta_n) \in \mathcal{L}(n,q)$, define $\alpha \leq \beta$ if and only if $\beta = \Delta$ or $\alpha_i = \beta_i$ whenever $\alpha_i \neq 0$ for $1 \leq i \leq n$. Then $\mathcal{L}(n,q)$ is a lattice, denoted by $\mathcal{L}_O(n,q)$. Reversing above partial order, we obtain the dual of $\mathcal{L}_O(n,q)$, denoted by $\mathcal{L}_R(n,q)$. This paper discusses their geometricity, and computes their characteristic polynomials, determine their full automorphism groups. Moreover, we construct a family of quasi-strongly regular graphs from the lattice $\mathcal{L}_O(n,q)$.

MSC(2000): 05B35

^{*}E-mail address: lizengti@126.com

Keywords: Lattice, geometricity, characteristic polynomial, quasistrongly regular graph.

1 Introduction

We recall some terminology and definitions about finite posets and lattices. For more theory about finite posets and lattices, we would like to refer readers to [1].

Let P denote a finite set. A partial order on P is a binary relation \leq on P such that

- (i) $\alpha \leq \alpha$ for any $\alpha \in P$.
- (ii) $\alpha \leq \beta$ and $\beta \leq \alpha$ implies $\alpha = \beta$.
- (iii) $\alpha \leq \beta$ and $\beta \leq \gamma$ implies $\alpha \leq \gamma$.

By a partial ordered set (or poset for short), we mean a pair (P, \leq) where P is a finite set and \leq is a partial order on P. As usual, we write $\alpha < \beta$ whenever $\alpha \leq \beta$ and $\alpha \neq \beta$. By abusing notation, we will suppress reference to \leq , and just write P instead of (P, \leq) .

Let P be a poset and let R be a commutative ring with the identical element. A binary function $\mu(\alpha, \beta)$ on P with values in R is said to be the Möbius function of P if

$$\mu(\alpha, \beta) = \begin{cases} 1, & \text{if } \alpha = \beta, \\ 0, & \text{if } \alpha \nleq \beta, \\ -\sum_{\alpha \leq \gamma < \beta} \mu(\alpha, \gamma), & \text{if } \alpha < \beta. \end{cases}$$

For any two elements $\alpha, \beta \in P$, we say α covers β , denoted by $\beta < \alpha$, if $\beta < \alpha$ and there exists no $\gamma \in P$ such that $\beta < \gamma < \alpha$. If P has the minimum (resp. maximum) element, then we denote it by \bot (resp. \top) and say that P is a poset with \bot (resp. \top). Let P be a finite poset with \bot .

By a rank function on P, we mean a function r from P to the set of all the nonnegative integers such that

- (i) $r(\perp) = \perp$.
- (ii) $r(\alpha) = r(\beta) + 1$ whenever $\beta < \cdot \alpha$.

Let P be a finite poset with \bot and \top . The polynomial

$$\chi(P,x) = \sum_{\alpha \in P} \mu(\perp,\alpha) x^{r(\top)-r(\alpha)}$$

 $\chi(P,x) = \sum_{\alpha \in P} \mu(\bot,\alpha) x^{r(\top)-r(\alpha)}$ is called the *characteristic polynomial* of P, where r is the rank function of Р.

A poset P is said to be a *lattice* if both $\alpha \vee \beta := \sup \{\alpha, \beta\}$ and $\alpha \wedge \beta :=$ $\inf\{\alpha,\beta\}$ exist for any two elements $\alpha,\beta\in P$. Let P be a finite lattice with \perp . By an atom in P, we mean an element in P covering \perp . We say P is atomic if any element in $P \setminus \{\bot\}$ is a union of atoms. A finite atomic lattice P is said to be a geometric lattice if P admits a rank function r satisfying

$$r(\alpha \land \beta) + r(\alpha \lor \beta) \le r(\alpha) + r(\beta), \forall \alpha, \beta \in P.$$

Let P be a lattice. A bijective map f from P to P is an automorphism of P if f is join-preserving and meet-preserving, that is, for all $\alpha, \beta \in P$,

$$f(\alpha \vee \beta) = f(\alpha) \vee f(\beta)$$
 and $f(\alpha \wedge \beta) = f(\alpha) \wedge f(\beta)$.

All the automorphisms of P form a group, called the full automorphism group of P, denoted by Aut(P).

Let $X = \{0, 1, ..., q - 1\}$. Suppose $\mathcal{L}(n, q)$ denote the set X^n (resp. $X^n \cup \{\Delta\}$) whenever q = 2 (resp. $q \ge 3$). For any $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in$ X^n , the weight of α is the number of its non-zero entries, denoted by δ_{α} . Note that the number of elements in X^n with weight m is $\binom{n}{m}(q-1)^m$.

For any two elements $\alpha = (\alpha_1, \ldots, \alpha_n)$ and $\beta = (\beta_1, \ldots, \beta_n) \in \mathcal{L}(n, q)$, define $\alpha \leq \beta$ if and only if $\beta = \Delta$ or $\alpha_i = \beta_i$ whenever $\alpha_i \neq 0$ for $1 \leq i \leq n$. Then $\mathcal{L}(n,q)$ is a lattice, denoted by $\mathcal{L}_O(n,q)$. For any two elements $\alpha = (\alpha_1, \dots, \alpha_n), \beta = (\beta_1, \dots, \beta_n) \in \mathcal{L}_R(n, q)$, define $\alpha \leq \beta$ if and

only if $\alpha = \Delta$ or $\alpha_i = \beta_i$ whenever $\beta_i \neq 0$ for $1 \leq i \leq n$. Then $\mathcal{L}(n,q)$ is a lattice, denoted by $\mathcal{L}_R(n,q)$.

In a series of papers ([5, 6, 7, 8, 9, 11, 12]), Y. Huo, Y. Liu and Z. Wan et al. constructed lattices from orbits of subspaces under finite classical groups, computed their characteristic polynomials and discussed their geometricity. Very recently, lattices associated with distance-regular graphs have been constructed in [3, 13]. In this paper, we discuss the geometricity of the above two families of lattices, and compute their characteristic polynomials, determine their full automorphism groups are determined. Moreover, we construct a family of quasi-strongly regular graphs from the lattice $\mathcal{L}_O(n,q)$.

2 The lattice $\mathcal{L}_O(n,q)$

Since the set of all the atoms of $\mathcal{L}_O(n,q)$ consists of all the elements with weight 1, $\mathcal{L}_O(n,q)$ is a finite atomic lattice. In this case, $\top = \{\Delta\}$ and $\bot = \{(0,\ldots,0)\}.$

Theorem 2.1 $\mathcal{L}_O(n,q)$ is a geometric lattice if and only if n=1 or q=2.

Proof. In the case q=2, for any $\alpha \in \mathcal{L}_O(n,q)$, define $r(\alpha)=\delta_\alpha$. In the case $q\geq 3$, for any $\alpha\in \mathcal{L}_O(n,q)$, define

$$r(\alpha) = \begin{cases} \delta_{\alpha}, & \text{if } \alpha \neq \top, \\ n+1, & \text{if } \alpha = \top. \end{cases}$$

Then r is the rank function of $\mathcal{L}_O(n,q)$

If n=1 or q=2, it is routine to check that $\mathcal{L}_O(n,q)$ is geometric. Now suppose $n\geq 2$ and $q\geq 3$. Pick $\alpha=(1,0,\ldots,0),\beta=(2,0,\ldots,0)$. Since

$$r(\alpha \vee \beta) + r(\alpha \wedge \beta) = n + 1 \ge 3 > 2 = r(\alpha) + r(\beta),$$

 $\mathcal{L}_O(n,q)$ is not geometric.

In order to compute the characteristic polynomial of $\mathcal{L}_O(n,q)$, we need the following lemma.

Lemma 2.2 The Möbius function of $\mathcal{L}_O(n,q)$ is

$$\mu(\alpha,\beta) = \begin{cases} 1, & \text{if } \alpha = \beta = \top, \\ (-1)^{\delta_{\beta} - \delta_{\alpha}}, & \text{if } \alpha \leq \beta \neq \top, \\ -(2-q)^{n}, & \text{if } \bot = \alpha < \beta = \top, \\ -(2-q)^{n-\delta_{\alpha}}, & \text{if } \bot \neq \alpha < \beta = \top, \\ 0, & \text{otherwise.} \end{cases}$$

Proof. The Möbius function of $\mathcal{L}_{\mathcal{O}}(n,q)$ is

$$\mu(\alpha,\beta) = \begin{cases} 1, & \text{if } \alpha = \beta = \top, \\ (-1)^{\delta_{\beta} - \delta_{\alpha}}, & \text{if } \alpha \leq \beta \neq \top, \\ -\sum_{\alpha \leq v < \beta} \mu(\alpha,v), & \text{if } \alpha < \beta = \top, \\ 0, & \text{otherwise.} \end{cases}$$

Since

$$\sum_{\perp \leq v < \top} (-1)^{\delta_v} = (2-q)^n,$$

and

$$\sum_{\substack{1 \neq \alpha \leq v < \top \\ \text{the desired result follows.}}} \mu(\alpha, v) = \sum_{i=0}^{n-\delta_{\alpha}} (-1)^{i} \binom{n-\delta_{\alpha}}{i} (q-1)^{i} = (2-q)^{n-\delta_{\alpha}},$$

Theorem 2.3 The characteristic polynomial of $\mathcal{L}_O(n,q)$ is

$$\chi(\mathcal{L}_O(n,q),x) = \sum_{i=0}^n \binom{n}{i} (q-1)^i (-1)^i x^{n+1-i} - (2-q)^n.$$

Proof. By Lemma 2.2, we obtain

$$\chi(\mathcal{L}_O(n,q),x)$$

$$= \sum_{\substack{\perp \leq \beta \leq \top \\ \perp \leq \beta < \top}} \mu(\perp,\beta) x^{r(\top)-r(\beta)}$$

$$= \sum_{\substack{\perp \leq \beta < \top \\ i=0}} (-1)^{\delta_{\beta}} x^{n+1-\delta_{\beta}} + \mu(\perp,\top)$$

$$= \sum_{i=0}^{n} (-1)^{i} {n \choose i} (q-1)^{i} x^{n+1-i} - (2-q)^{n},$$

as desired.

3 The lattice $\mathcal{L}_R(n,q)$

Since the set of all the atoms of $\mathcal{L}_R(n,q)$ consists of all the elements with weight n, $\mathcal{L}_R(n,q)$ is a finite atomic lattice. In this case, $\top = \{(0,\ldots,0)\}$ and $\perp = \{\Delta\}$.

Theorem 3.1 $\mathcal{L}_R(n,q)$ is a geometric lattice if and only if n=1 or q=2.

In the case q=2, for any $\alpha \in \mathcal{L}_O(n,q)$, define $r(\alpha)=n-\delta_{\alpha}$. In the case $q \geq 3$, For any $\alpha \in \mathcal{L}_R(n,q)$, defin

$$r(\alpha) = \begin{cases} n+1-\delta_{\alpha}, & \text{if } \alpha \neq \bot, \\ 0, & \text{if } \alpha = \bot. \end{cases}$$

Then r is the rank function of $\mathcal{L}_R(r)$

If n = 1 or q = 2, $\mathcal{L}_R(n, q)$ is geometric. Now suppose $n \ge 2$ and $q \ge 3$.

Pick $\alpha = (1, 1, ..., 1), \beta = (2, 2, ..., 2)$. Since

$$r(\alpha \lor \beta) + r(\alpha \land \beta) = n + 1 \ge 3 > 2 = r(\alpha) + r(\beta),$$

 $\mathcal{L}_R(n,q)$ is not geometric.

In order to compute the characteristic polynomial of $\mathcal{L}_R(n,q)$, we need the following lemma.

$$\mu(\alpha,\beta) = \begin{cases} 1, & \text{if } \alpha = \beta = \bot, \\ (-1)^{\delta_{\alpha} - \delta_{\beta}}, & \text{if } \bot \neq \alpha \leq \beta, \\ -(2-q)^n, & \text{if } \bot = \alpha < \beta = \top, \\ -(2-q)^{n-\delta_{\beta}}, & \text{if } \bot = \alpha < \beta \neq \top, \\ 0, & \text{otherwise.} \end{cases}$$

The Möbius function of $\mathcal{L}_R(n,$ Proof.

$$\mu(\alpha,\beta) = \begin{cases} 1, & \text{if } \alpha = \beta = \bot, \\ (-1)^{\delta_{\alpha} - \delta_{\beta}}, & \text{if } \bot \neq \alpha \leq \beta, \\ -\sum_{\bot < \nu \leq \beta} (-1)^{\delta_{\nu} - \delta_{\beta}}, & \text{if } \bot = \alpha < \beta, \\ 0, & \text{otherwise.} \end{cases}$$

Since

$$\sum_{\perp < v \le \top} (-1)^{\delta_{\gamma}} = (2-q)^n,$$

and

$$\sum_{\substack{1 < v \le \beta \ne \top \\ \text{the desired result follows.}}} (-1)^{\delta_v - \delta_\beta} = \sum_{i=0}^{n - \delta_\beta} (-1)^i \binom{n - \delta_\beta}{i} (q - 1)^i = (2 - q)^{n - \delta_\beta},$$

Theorem 3.3 The characteristic polynomial of $\mathcal{L}_R(n,q)$ is

$$\chi(\mathcal{L}_{R}(n,q),x) = x^{n+1} - \sum_{i=0}^{n} \binom{n}{i} (q-1)^{i} (2-q)^{n-i} x^{i}.$$

Proof. By Lemma 3.2, we obtain

$$\chi(\mathcal{L}_{R}(n,q),x) = \sum_{\substack{\perp \leq \beta \leq \top}} \mu(\perp,\beta) x^{r(\top)-r(\beta)}$$

$$= \sum_{\substack{\perp < \beta < \top}} (-(2-q)^{n-\delta_{\beta}}) x^{\delta_{\beta}} + \mu(\perp,\perp) x^{n+1} + \mu(\perp,\top)$$

$$= x^{n+1} - \sum_{i=0}^{n} {n \choose i} (q-1)^{i} (2-q)^{n-i} x^{i},$$

as desired.

4 The full automorphism group

Let S_q be the symmetric group on the set $X = \{0, 1, ..., q-1\}$. The stabilizer of 0 is isomorphic to S_{q-1} . Let S_n be the symmetric group on $\{1, 2, ..., n\}$. Let $S_{q-1} \wr S_n$ denote the wreath product of S_{q-1} and S_n . Then $S_{q-1} \wr S_n$ acts on $\mathcal{L}_O(n, q)$ as the following:

$$(\alpha_{1}, \alpha_{2}, \dots, \alpha_{n})^{(\rho_{1}, \rho_{2}, \dots, \rho_{n}; \theta)} = ((\alpha_{1\theta^{-1}})^{\rho_{1}}, (\alpha_{2\theta^{-1}})^{\rho_{2}}, \dots, (\alpha_{n\theta^{-1}})^{\rho_{n}}),$$

$$\Delta^{S_{q-1} \wr S_{n}} = \Delta.$$

Theorem 4.1 Aut $(\mathcal{L}_O(n,q)) = S_{q-1} \wr S_n$.

Proof. It is routine to check that $S_{q-1} \wr S_n \leq \operatorname{Aut}(\mathcal{L}_O(n,q))$.

Conversely, suppose f is any automorphism of $L_O(n,q)$). Then, for any element α of $L_O(n,q)$), we obtain $\delta_{\alpha} = \delta_{\alpha f}$. It follows that $f \in S_{q-1} \wr S_n$; therefore, $\operatorname{Aut}(\mathcal{L}_O(n,q)) \leq S_{q-1} \wr S_n$.

5 A family of quasi-strongly regular graphs

In this section we shall construct a family of quasi-strongly regular graphs from the lattice $\mathcal{L}_O(n,q)$. We first recall some concepts.

Let $\Gamma = (X, R)$ be a connected regular graph. For any two vertices u, v at distance i, define

$$c_i(u,v) = |\Gamma_{i-1}(u) \cap \Gamma(v)|, b_i(u,v) = |\Gamma_{i+1}(u) \cap \Gamma(v)|.$$

A connected regular graph of diameter d is said to be distance-regular if $c_i(u, v)$ and $b_i(u, v)$ depend only on i. For more information, the reader may consult [2].

As a generalization of distance-regular graphs, F. Goldberg [4] introduced the concept of quasi-strongly regular graphs.

Definition 5.1 ([4]) A quasi-strongly regular graph with parameters $(n, k, a; c_1, \ldots, c_p)$

is a k-regular graph on n vertices such that any two adjacent vertices have a common neighbours and any two non-adjacent vertices have c_i common neighbours for some $1 \le i \le p$.

Let Γ be a graph with the vertex set X^n such that two vertices α and β are adjacent if and only if $\alpha < \beta$ or $\beta < \alpha$ in $\mathcal{L}_O(2i+1,2)$. Then Γ is a Hamming graph, which is distance-regular.

For $1 \leq i \leq n-1$, suppose $L_i = \{\alpha \in \mathcal{L}_O(2i+1,2) | \delta_\alpha = i\}$ and $L_{i+1} = \{\beta \in \mathcal{L}_O(2i+1,2) | \delta_\beta = i+1\}$. Let Δ_i be a graph with the vertex set $L_i \cup L_{i+1}$ such that two vertices α and β are adjacent if and only if $\alpha < \beta$ or $\beta < \alpha$. Then Δ_i is a doubled Odd graph, which is distance-regular.

Let Γ_1 be a graph with the vertex set L_1 such that two vertices α and β are adjacent if and only if the distance between α and β in Δ_1 is 2. Then Γ_1 is a strongly-regular graph.

For $2 \le i \le n-1$. Let Γ_i be a graph with the vertex set L_i such that two vertices α and β are adjacent if and only if the distance between α and

 β in Δ_i is 2. Then Γ is a quasi-strongly regular graph with parameters $\binom{n}{i}(q-1)^i, i(n-i)(q-1), (n-i-1)(q-1); (n-i)(q-1), 4, 1, 0$.

Acknowledgement This research is supported by Natural Science Foundation of Langfang Normal College(LSAY200701).

References

- [1] M. Aigner, Combinatorial Theory, Springer-Verlag, Berlin, 1979.
- [2] A.E. Brouwer, A.M. Cohen and A. Neumaier, Distance-Regular Graphs, Springer Verlag, Berlin, Heidelberg, 1989.
- [3] S. Gao, J. Guo and W. Liu, Lattices generated by strongly closed subgraphs in d-bounded distance-regular graphs, to appear in Europ. J. Combin.
- [4] F. Goldberg, On quasi-strongly regular graphs, Linear and Multilinear Algebra 54 (2006) 437-451.
- [5] Y. Huo, Y. Liu and Z. Wan, Lattices generated by transitive sets of subspaces under finite classical groups I, Comm. Algebra 20 (1992), 1123-1144.
- [6] Y. Huo, Y. Liu and Z. Wan, Lattices generated by transitive sets of subspaces under finite classical groups II, the orthogonal case of odd characteristicistic, Comm. Algebra 20 (1992), 2685-2727.
- [7] Y. Huo, Y. Liu and Z. Wan, Lattices generated by transitive sets of subspaces under finite classical groups III, orthogonal case of even characteristicistic, Comm. Algebra 21 (1993), 2351-2393.

- [8] Y. Huo and Z. Wan, Lattices generated by transitive sets of subspaces under finite pseudo-symplectic groups, Comm. Algebra 23 (1995), 3753-3777.
- [9] Y. Huo and Z. Wan, On the geometricity of lattices generated by orbits of subspaces under finite classical groups, J. Algebra 243 (2001), 339-359.
- [10] Z. Wan, Geometry of Classical Groups over Finite Fields, 2nd edition, Science Press, Beijing/New York, 2002.
- [11] K. Wang and Y. Feng, Lattices generated by orbits of flats under affine groups, Comm. in Algebra, 34 (2006), 1691-1697.
- [12] K. Wang and J. Guo, Lattices Generated by Orbits of Totally Isotropic Flats under Finite Affine-classical Groups, to appear in Finite Fields and Their Applications.
- [13] K. Wang and Z. Li, Lattices associated with distance-regular graphs, to appear in Europ. J. Combin.