Some a-graphs and odd graceful graphs

M. A. SEOUD ¹, E. F. HELMI ² Department of Mathematics, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt.

Abstract

We show that if G has an odd graceful labeling f such that $\max\{f(x):f(x) \text{ is even, } x \in A\} < \min\{f(x):f(x) \text{ is odd, } x \in B\}$, then G is an α -graph, and if G is an α -graph, then $G \odot \overline{K}_w$ is odd graceful for all $w \ge 1$. Also we show that if G_1 is an α -graph and G_2 is an odd graceful, then $G_1 \cup G_2$ is odd graceful. Finally we show that some families of graphs are α -graphs and odd graceful.

0. Introduction

In 1967, Rosa [6] called a function f a β -valuation of a graph G = (V(G) E(G), with q edges if f is an injection from V(G) to the set $\{0,1,2,...,q\}$ such that, when each edge xy is assigned the label |f(x)-f(y)|, the resulting edge labels are distinct. Golomb [4] subsequently called such labelings graceful, and this is now the popular term.

Rosa [6] defined an α -labeling to be a graceful labeling with the additional property, that there exists an integer k so that, for each edge xy either $f(x) \le k < f(y)$ or $f(y) \le k < f(x)$. It follows that such a k must be the smaller of the two vertex labels that yield the edge labeled 1.

Gnanajothi [3] defined a graph G with q edges to be odd graceful if there is an injection f from V(G) to $\{0,1,2,\ldots,2q-1\}$ such that, when each edge xy is assigned the label |f(x)-f(y)|, the resulting edge labels $\operatorname{are}\{1,3,5,\ldots,2q-1\}$. She proved that the class of odd graceful graphs lies between the class of graphs with α -labelings and the class of bipartite graphs by showing that every graph with an α -labeling has an odd graceful labeling and every graph with an odd cycle is not odd graceful. She also proved the following graphs are odd graceful: P_n , C_n if and only if n is even, $K_{m,n}$, combs $P_n \odot K_I$ (graphs obtained by joining a single pendant edge to each vertex of P_n), books, crowns and $C_n \odot K_I$ (graphs obtained by joining a single pendant edge to each vertex of C_n) if and only if n is even.

m.a.a.seoud@hotmail.com

² elham.helmi@yahoo.com

Seoud and Abdel-Aal [7] determined all connected odd graceful graphs of order ≤ 6 , and they showed that if G is an odd graceful graph, then $G \cup K_{m,n}$ is odd graceful for all $m, n \geq 1$. Seoud, Diab and Elskhawi [8] showed that a connected n-partite graph is odd graceful if and only if n = 2 and that the join of any two connected graphs is not odd graceful.

A detailed account of results in the subject of graph labelings can be found in Gallian's survey [2]. Throughout this paper, we use the standard notations and conventions as in [2] and [5]. This paper is divided into two sections. Section 1, in which we show that if G has an odd graceful labeling f such that, $\max\{f(x):f(x) \text{ is even, } x \in A\} < \min\{f(x):f(x) \text{ is odd, } x \in B\}$, then G is an α -graph, and if G is an α -graph, then $G \odot \overline{K}_w$ is odd graceful for all $w \ge 1$. We also show that if G_I is an α -graph and G_2 is an odd graceful, then $G_I \cup G_2$ is odd graceful. In Section 2, we show that several families of graphs are odd graceful and α -graphs.

1. General Theorems

Theorem 1.1. Gnanajothi [3] proved the following Theorem: Every α -graph is odd graceful and every odd graceful graph is bipartite.

Theorem 1.2 Barrientos [1] proved the following Theorem: Any α -graph is odd graceful.

Proof. Let G be an α -graph of size q, as a consequence G is bipartite with partition $\{A,B\}$. Suppose that f is an α -labeling of G such that $\max\{f(x):x\in A\}<\min\{f(x):x\in B\}$. Let g be a labeling of the vertices of G defined by

 $g(x) = \begin{cases} (2 f(x)) &, x \in A \\ (2 f(x)) - 1 &, x \in B \end{cases}$

Thus, the labels assigned by g are in the set $\{0,1,2,...,2q-1\}$; furthermore, the label of the edge xy of G induced by the labeling f, where $x \in A$ and $y \in B$ is w = f(y) - f(x), so its label under the labeling g is g(y) - g(x) = [2f(y) - 1] - 2f(x) = 2[f(y) - f(x)] - 1 = 2w - 1. Since $1 \le w \le q$, we have that the label induced by g are $\{1,3,5,...,2q-1\}$. Therefore, g is an odd graceful labeling of G and $\max\{g(x):g(x) \text{ is even}, x \in A\} < \min\{g(x):g(x) \text{ is odd}, x \in B\}$.

Corollary 1.3. Any α -graph has an odd graceful labeling f such that, $\max\{f(x): f(x) \text{ is even, } x \in A\} < \min\{f(x): f(x) \text{ is even, } x \in B\}.$

Now, we give the following Theorems.

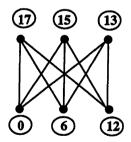
Theorem 1.4. If G has an odd graceful labeling f such that, $\max\{f(x):f(x) \text{ is even, } x \in A\} < \min\{f(x):f(x) \text{ is odd, } x \in B\}$, i.e. $\{A,B\}$ is a partition of the bipartite graph G, then G is an α -graph.

Proof. Let G = (V(G), E(G)) be an odd graceful graph with $f:V(G) \rightarrow \{0,1,2,...,2q-1\}$ labeling of size q. Hence, G is a bipartite graph with partition $\{A,B\}$, i.e. $V(G) = \{A,B\}$, such that f(x) is even, if $x \in A$ and f(x) is odd, if $x \in B$, and let $\max\{f(x): x \in A\} < \min\{f(x): x \in B\}$. Now, let g be another labeling of G, defined as follows:

$$g(x) = \begin{cases} (1/2)f(x) & , x \in A \\ (1/2)[f(x)+1] & , x \in B \end{cases}$$

Thus, the labels assigned by g will be in the set $\{0,1,2,...,q\}$. Note that g is injective, since $\max\{f(x):x\in A\}<\min\{f(x):x\in B\}$. Since the label of the edge xy due to f, is w=|f(y)-f(x)|=f(y)-f(x), where $x\in A$ and $y\in B$, the label of the edge xy given by g will be g(y)-g(x)=1/2 [f(y)+1] – 1/2 f(x)=1/2 [f(y)-f(x)+1] = 1/2 (w+1). Since $1\le w\le 2q-1$, the labels of the set of edges of G induced by g will be $\{1,2,3,...,q\}$, i.e. G is a graceful graph. It remains to find an integer k such that for any edge xy $g(x)\le k< g(y)$, where $x\in A$, $y\in B$. Now, since G is now graceful, then there exists the labeling |g(y)-g(x)|=1, and since $\max\{g(x):x\in A\}<\min\{g(y):y\in B\}$, then take k=1/2 $\max\{f(x):x\in A\}$, which is the required, and the proof is complete.

In Figure 1, we show an odd graceful labeling of a bipartite graph $K_{3,3}$, followed by the corresponding α -labeling.



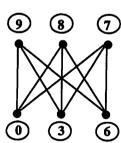


Figure 1.

Corollary 1.5. The graph G is an α -graph if and only if G has an odd graceful labeling f such that, $\max\{f(x):f(x) \text{ is even, } x \in A\} < \min\{f(y):f(y) \text{ is even, } y \in B\}$, where $\{A, B\}$ is a partition of the graph G.

Let G_1 and G_2 be two disjoint graphs. The corona $(G_1 \odot G_2)$ of G_1 and G_2 is the graph obtained by taking one copy of G_1 (which has p_1 vertices) and p_1 copies of G_2 , and then joining the j^{th} vertex of G_1 to every vertex in the j^{th} copy of G_2 .

Theorem 1.6. If G is an α -graph then the graphs $G \odot \overline{K}_w$, for $w \ge 1$, are odd graceful.

Proof. Let G be an α -graph of size q and order p. By Theorem 1.1 every α -graph has an odd graceful labeling $f:V(G) \to \{0,1,2,\ldots,2q-1\}$. Hence, G is a bipartite graph with partition $\{A,B\}$ such that

$$U_{1}(G) = \{ f(x_{1}), f(x_{2}), f(x_{3}), \dots, f(x_{s}) \}, \text{ if } f(x_{i}) \text{ is even }, x_{i} \in A, | U_{1}(G)| = s, \\ f(x_{1}) < f(x_{2}) < f(x_{3}) < \dots < f(x_{s}), \\ U_{2}(G) = \{ f(y_{1}), f(y_{2}), f(y_{3}), \dots, f(y_{t}) \}, \text{ if } f(y_{j}) \text{ is odd, } y_{j} \in B, | U_{1}(G)| = t, \\ f(y_{1}) > f(y_{2}) > f(y_{3}) > \dots > f(y_{t}) \text{ and } | V(G)| = s + t = p.$$

Now, for $\overline{K_w}$, let the copies $z^i_1, z^i_2, z^i_3, ..., z^i_s$, $1 \le i \le w$ be joined respectively from the smallest even label $f(x_i)$ to the largest even label $f(x_i)$ and the copies $h^i_1, h^i_2, h^i_3, ..., h^i_t$, $1 \le i \le w$ be joined respectively from the largest odd label $f(y_i)$ to the smallest odd label $f(y_i)$. It is clear that the number of edges of $G \odot \overline{K_w}$ is q + wp. We define the labeling function

 $\overline{f}:V(G\odot \overline{K_w}) \rightarrow \{0,1,2,...,2(q+wp)-1\}$ as follows:

$$\overline{f} \mid V(G) = \begin{cases}
f(x) & , & \text{if } f(x) \text{ is even }, x \in A \\
f(y) + 2wp & , & \text{if } f(y) \text{ is odd }, y \in B
\end{cases}$$

$$\overline{f}(z_{1}^{i}) = f(x_{1}) + 2i - 1 & , & 1 \le i \le w \\
\overline{f}(z_{2}^{i}) = f(x_{2}) + 2w + 2i - 1 & , & 1 \le i \le w \\
\overline{f}(z_{3}^{i}) = f(x_{3}) + 4w + 2i - 1 & , & 1 \le i \le w
\end{cases}$$

$$\vdots$$

$$\overline{f}(z_{3}^{i}) = f(x_{3}) + 2w (s - 1) + 2i - 1 & , & 1 \le i \le w, s = |U_{I}(G)|$$

and

$$\overline{f}(h_{1}^{i}) = f(y_{1}) + 2wt - 2i + 1
\overline{f}(h_{2}^{i}) = f(y_{2}) + 2w(t - 1) - 2i + 1
\overline{f}(h_{3}^{i}) = f(y_{3}) + 2w(t - 2) - 2i + 1
\vdots
\overline{f}(h_{i}^{i}) = f(y_{i}) + 2w - 2i + 1
, 1 \leq i \leq w
, 1 \leq i \$$

Since G is an α -graph, it is easy to show that \overline{f} is injective.

The edge labels will be as follows:

- The edges $x_j z_j^l$, $1 \le i \le w$, $1 \le j \le s$, $s = |U_l(G)|$ take the labels $\{1,3,5,...,2w-1\}$, $\{2w+1,2w+3,2w+5,...,4w-1\}$, $\{4w+1,4w+3,4w+5,...,6w-1\}$ and so on until $\{2w(s-1)+1,2w(s-1)+3,2w(s-1)+5,...,2ws-1\}$. Since s = p-t then the labels $are\{2w(p-t-1)+1,2w(p-t-1)+3,2w(p-t-1)+5,...,2w(p-t)-1\}$.
- The edges $y_j h_j^i$, $1 \le i \le w$, $1 \le j \le t$, $t = |U_2(G)|$ take the labels $\{2w \ (p-t)+1, 2w \ (p-t)+3, 2w \ (p-t)+5, ..., 2w \ (p-t+1)-1\}, \{2w \ (p-t+1)+1, 2w \ (p-t+1)+3, 2w \ (p-t+1)+5, ..., 2w \ (p-t+2)-1\}, \{2w \ (p-t+2)+1, 2w \ (p-t+2)+3, 2w \ (p-t+2)+5, ..., 2w \ (p-t+3)-1\}, and so on until <math>\{2w \ (p-1)+1, 2w \ (p-1)+3, 2w \ (p-1)+5, ..., 2w \ (p-1)+5, ...,$
- The remaining edge labels $\{2wp + 1, 2wp + 3, 2wp + 5, ..., 2wp + 2q 1\}$ of the graph $G \odot \overline{K_w}$ come from the edge labels of the graph G, since G is an α -graph and we added a constant number on its odd vertex labels.

In Figure 2, we use the odd graceful labeling obtained in Figure 1 to find an odd graceful labeling of the graph $K_{3,3} \odot \overline{K}_3$.

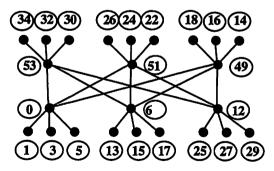


Figure 2.

Let G_1 and G_2 be two disjoint graphs. The union $(G_1 \cup G_2)$ of G_1 and G_2 is the graph having vertex set $V(G_1) \cup V(G_2)$ and edge set $E(G_1) \cup E(G_2)$.

Theorem 1.7. The graphs $G_1 \cup G_2$ are odd graceful if G_1 is an α -graph and G_2 is an odd graceful graph.

Proof. Let G_I be an α -graph of size q_I and order p_I . By the Theorem 1.1 every α -graph has an odd graceful labeling $f\colon V(G_I)\to \{\ 0,1,2,...,2q_I-1\}$, and G is a bipartite graph with partition $\{A,B\}$ such that, $\max\{f(x):f(x)\text{ is even }, x\in A\}<\min\{f(x):f(x)\text{ is odd }, x\in B\}$, there exists an integer k such that, $f(x)\leq k< f(y)$, where $x\in A$ and $y\in B$, $k=\max\{f(x):f(x)\text{ is even }, x\in A\}=\min\{f(x):f(x)\text{ is odd }, x\in B\}-1.$

Let G_2 be an odd graceful graph of size q_2 and order p_2 with labeling $f^*: V(G_2) \to \{0,1,2,\ldots, 2q_2-1\}$. Hence, G_2 is also bipartite with partition $\{C,D\}$ such that, $f^*(x)$ is even, if $x \in C$ and $f^*(x)$ is odd, if $x \in D$. Now, the number of edges of $G_1 \cup G_2$ is $q_1 + q_2$.

We define the labeling function \overline{f} : $V(G_1 \cup G_2) \rightarrow \{0,1,2,...,2 (q_1+q_2)-1\}$ as follows:

$$\overline{f}(x) = \begin{cases} f(x) & \text{, if } f(x) \text{ is even, } x \in A \\ f(x) + 2q_2 & \text{, if } f(x) \text{ is odd, } x \in B \\ f^* + (k+1) & \text{, if } x \in C \cup D \end{cases}$$

It is easy to check that \overline{f} is injective.

The edge labels will be as follows:

- The edge labels of the edge xy of G_1 under the labeling \overline{f} will be $[f(y) + 2q_2] f(x) = [f(y) f(x)] + 2q_2 = w + 2q_2$, where w is odd and $1 \le w \le 2q_1 1$. Hence, the set of edge labels of G_1 induced by \overline{f} will be $\{1+2q_2, 3+2q_2, 5+2q_2, ..., 2q_1+2q_2-1\}$.
- The remaining edge labels $\{1,3,5,\ldots,2q_2-1\}$ come from the edge labels of the graph G_2 , since G_2 is odd graceful and adding an integer k+1 to all the vertex labels does not change the edge labels.

In Figure 3, we show an α -labeling and an odd graceful labeling of the ladder $(P_5 \times P_2)$.

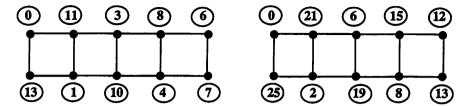


Figure 3.

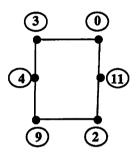


Figure 4. odd graceful labeling of the cycle C_6 .

In Figure 5, we use the odd graceful labeling obtained in Figure 3 and the odd graceful labeling in Figure 4 to find an odd graceful labeling of the graph $(P_5 \times P_2) \cup C_6$.

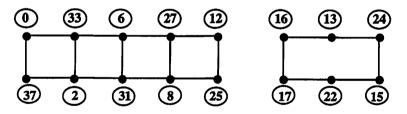


Figure 5.

Corollary 1.8. According to Theorem 1.7 numerous families of disconnected graphs are odd graceful, e.g.

- 1. $G_1 \cup G_2$, if G_1 and G_2 are α -graphs.
- 2. $C_n \cup G$, if G is odd graceful, $n \equiv 0 \pmod{4}$.

3. $T \cup G$, if G is odd graceful and T is a tree has an α -labeling.

4. $G \cup C_n$, if G is an α -graph and C_n is odd graceful for an even integer n. $(C_n$ is an α -graph if and only if $n \equiv 0 \pmod{4}$ and C_n is odd graceful for every even integer $n \geq 4$.)

2. Some Odd Graceful Graphs

A gear graph G_m is obtained from the wheel by adding a vertex between every pair of adjacent vertices of the cycle.

Theorem 2.1. A gear graph G_m for all $m \ge 3$ is an α -graph.

Proof. By Theorem 1.2, we want to show that a gear graph G_m for all $m \ge 3$ has an odd graceful labeling f such that, $\max\{f(x): f(x) \text{ is even }, x \in A\} < \min\{f(x): f(x) \text{ is odd }, x \in B\}$, when $\{A,B\}$ is a partition of the bipartite graph G_m .

• If m is even, $m \ge 4$

Let G_m be described as indicated in Figure 6.

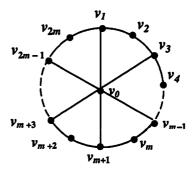


Figure 6.

The number of edges of the graph G_m is 3m. We define the labeling function $f: V(G_m) \to \{0,1,2,...,6m-1\}$ as follows: $f(v_0) = 6m-1$, $f(v_{2m}) = 2m-1$

$$f(v_i) = \begin{cases} i-1 & , & i = 1,3,5,...,2m-1\\ 4m-i+1 & , & i = 2,4,6,...,m\\ 4m-i-1 & , & \text{if } i \text{ is even and } m+2 \leq i \leq 2m-2 \end{cases}$$

The edge labels will be as follows:

- The edges v_0v_i , i = 1,3,5,..., 2m-1 take the labels $\{6m-1, 6m-3, 6m-5, ..., 4m+1\}$.
- The edges of the path $v_1v_2v_3v_4...v_mv_{m+1}$ take the labels $\{4m-1, 4m-3, 4m-5, ..., 2m+1\}$.
- The edge v_1v_{2m} takes the label 2m-1.
- The edges of the path $v_{m+1}v_{m+2}v_{m+3}v_{m+4}...v_{2m-1}v_{2m}$ take the labels $\{2m-3, 2m-5, 2m-7,...,5,3,1\}$.

Hence, G_m for m is even, $m \ge 4$ has an odd graceful labeling f and there exists $k = f(v_{2m-1}) = 2m-1$ such that, $k = \max\{f(x): f(x) \text{ is even }, x \in A\} < \min\{f(x): f(x) \text{ is odd, } x \in B\}, A = \{v_1, v_3, v_5, \ldots, v_{2m-1}\}, B = \{v_2, v_4, v_6, \ldots, v_{2m}\}.$ By Theorem 1.4, the graph G_m for m is even, $m \ge 4$ is an α -graph.

• If m is odd, $m \ge 3$

Let G_m be described as indicated in Figure 7.

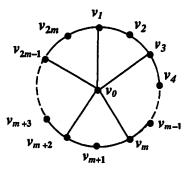


Figure7.

The number of edges of the graph G_m is 3m. We define the labeling function $f: V(G_m) \rightarrow \{0,1,2,...,6m-1\}$ as follows: $f(v_0) = 6m-3$, $f(v_1) = 0$, $f(v_2) = 6m-1$, $f(v_{2m}) = 2m+1$

$$f(v_i) = \begin{cases} i+1 & , & i = 3,5,7,..., 2m-1 \\ 4m-i+3 & , & i = 4,6,8,..., m-1 \\ 4m-i+1 & , & \text{if } i \text{ is even and } m+1 \le i \le 2m-2 \end{cases}$$

The edge labels will be as follows:

• The edges v_1v_2 , v_0v_1 , v_2v_3 take the labels 6m-1, 6m-3, 6m-5 respectively.

- The edges v_0v_i , i = 3,5,7,..., 2m-1 take the labels $\{6m-7, 6m-9, 6m-11,..., 4m-3\}$.
- The edges of the path $v_3v_4v_5v_6...v_{m-1}v_m$ take the labels $\{4m-5, 4m-7, 4m-9,..., 2m+3\}$.
- The edge v_1v_{2m} takes the label 2m + 1.
- The edges of the path $v_m v_{m+1} v_{m+2} v_{m+3} \dots v_{2m-1} v_{2m}$ take the labels $\{2m-1, 2m-3, 2m-5, \dots, 5, 3, 1\}$.

Hence G_m for m is odd, $m \ge 3$ has an odd graceful labeling f, and there exists $k = f(v_{2m-1})$, similar to the case m is even, $m \ge 4$, the result follows by Theorem 1.4, so the graph G_m for m is odd, $m \ge 3$ is an α -graph.

The **dragon** (or ballon) $D_{m,n}$ is a graph formed by identifying the end vertex of the path of m edges $(m \ge 1)$ and any vertex in the cycle $C_n (n \ge 3)$.

Theorem 2.2. The dragon is odd graceful when n is even, $n \ge 4$ and $m \ge 1$, and it is an α -graph if $n \equiv 0 \pmod{4}$, $m \ge 1$.

Proof. Let $D_{m,n}$ be described as indicated in Figure 8.

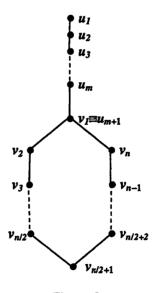


Figure 8.

The number of edges of the dragon is m + n. We define the following function $f: V(D_{mn}) \to \{0,1,2,...,2(m+n)-1\}$ as follows:

Case I.

• If m is odd and n is even,
$$n \ge 4$$

$$f(u_i) = \begin{cases} i-1 &, i = 1,3,5,..., m \\ 2(m+n)-i+1 &, i = 2,4,6,..., m+1 \end{cases}$$

• If $n \equiv 0 \pmod{4}$

If
$$n \equiv 0 \pmod{4}$$

$$f(v_j) = \begin{cases} m+j-1 & , j=2,4,6,...,n/2 \\ m+2n-j+1 & , j=3,5,7,...,n-1 \\ m+j+1 & , \text{if } j \text{ is even and } n/2+2 \le j \le n \end{cases}$$

• If $n \equiv 2 \pmod{4}$

$$f(v_j) = \begin{cases} m+j-1 & , j=2,4,6,...,n-2 \\ m+2n-j+1 & , j=3,5,7,...,n/2 \\ m+2n-j-1 & , \text{if } j \text{ is odd and } n/2 + 2 \le j \le n-1 \end{cases}$$

$$f(v_n) = m + n + 1$$

Case II.

• If m is even and n is even,
$$n \ge 4$$

$$f(u_i) = \begin{cases} i-1 & , i = 1,3,5,..., m+1 \\ 2(m+n)-i+1 & , i = 2,4,6,..., m \end{cases}$$

• If $n \equiv 0 \pmod{4}$

• If
$$n \equiv 0 \pmod{4}$$

$$f(v_j) = \begin{cases} m+j-1 & , j=3,5,7,...,n-1 \\ m+2n-j+1 & , j=2,4,6,...,n/2 \\ m+2n-j+1 & , if j \text{ is even and } n/2+2 \le j \le n \end{cases}$$
• If $n \equiv 2 \pmod{4}$

$$f(v_j) = \begin{cases} m + 2n - j + 1 &, j = 2,4,6,..., n-2 \\ m + j - 1 &, j = 3,5,7,..., n/2 \\ m + j + 1 &, \text{if } j \text{ is odd and } n/2 + 2 \le j \le n - 1 \end{cases}$$

$$f(v_n) = m + n - 1$$

The edge labels will be as follows:

- The edges of the path $u_1 u_2 u_3 \dots u_{m+1}$ take the labels ${2(m+n)-1, 2(m+n)-3, 2(m+n)-5, ..., 2n+1}.$
- The edges of the path $v_1 v_2 v_3 \dots v_{n/2+1}$ take the labels $\{2n-1, 2n-3, \dots, n/2+1\}$ 2n-5,...,n+1.
- The edge $v_1 v_n$ takes the label $\{n-1\}$.
- Finally, the edges of the path $v_{n/2+1}v_{n/2}v_{n/2-1}...v_{n-1}v_n$ take the labels $\{n-3, n-5, \ldots, 5, 3, 1\}.$

So we obtain the edge labels. Hence $D_{m,n}$ is odd graceful for $m \ge 1$, n is even, $n \ge 4$. In the case $n = 0 \pmod{4}$, m is odd, $m \ge 1$ there exists $k = f(v_n)$ such that, $k = \max\{f(x): f(x) \text{ is even }, x \in A\} < \min\{f(x): f(x) \text{ is odd, } x \in B\}$. By Theorem 1.4 the graph $D_{m,n}$ in case $n = 2 \pmod{4}$ is an α -graph similar the case $n = 0 \pmod{4}$, m is even, $m \ge 2$, there exists $k = f(v_{n-1}) = m+n-2$, the result follows by Theorem 1.4, i.e. the graph $D_{m,n}$ in this case is an α -graph.

In the following Theorems we mention only the vertex labels, the reader can fulfill the proof as we did in the previous Theorems.

The graph obtained from a gear graph G_m by attaching n pendant points to each vertex between the vertices of the rim of the wheel, will be denoted by G_{mn} .

Theorem 2.3. The graph $G_{m,n}$ is odd graceful when $m \ge 3$, $n \ge 1$. **Proof.**

• If m is even, $m \ge 4$

Let $G_{m,n}$ be described as indicated in Figure 9.

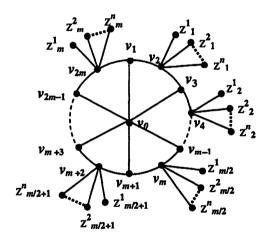


Figure 9.

The number of edges of the graph $G_{m,n}$ is 3m + mn. We define the labeling function $f: V(G_{m,n}) \to \{0,1,2,...,2 (3m+mn)-1\}$ as follows:

$$f(v_i) = \begin{cases} i-1 & , i = 1,3,5,..., 2m-1 \\ 4m+2mn-i+1 & , i = 2,4,6,..., m \\ 4m+2mn-i-1 & , if i \text{ is even and } m+2 \le i \le 2m-2 \end{cases}$$

$$f(v_0) = 6m + 2mn - 1$$
, $f(v_{2m}) = 2m + 2mn - 1$

$$\begin{split} f(z^{j}_{1}) &= f(v_{2}) - 2j + 1 &, 1 \leq j \leq n \\ f(z^{j}_{2}) &= f(v_{4}) - 2n - 2j + 1 &, 1 \leq j \leq n \\ f(z^{j}_{3}) &= f(v_{6}) - 4n - 2j + 1 &, 1 \leq j \leq n \\ f(z^{j}_{4}) &= f(v_{8}) - 6n - 2j + 1 &, 1 \leq j \leq n \\ &\vdots \\ f(z^{j}_{m}) &= f(v_{2m}) - 2n(m-1) - 2j + 1 &, 1 \leq j \leq n \\ f(z^{j}_{i}) &= f(v_{2i}) - 2n(i-1) - 2j + 1 &, 1 \leq i \leq m, 1 \leq j \leq n \end{split}$$

• If m is odd, $m \ge 3$

Let G_{mn} be described as indicated in Figure 10.

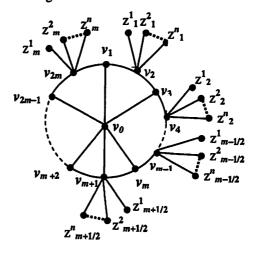


Figure 10.

The number of edges of the graph $G_{m,n}$ is 3m + mn. We define the labeling function $f: V(G_{m,n}) \to \{0,1,2,...,2 (3m+mn)-1\}$ as follows:

$$f(v_0) = 6m + 2mn - 3$$
, $f(v_i) = 0$, $f(v_2) = 6m + 2mn - 1$,

$$f(v_i) = \begin{cases} i+1 & , i=3,5,7,...,2m-1\\ 4m+2mn-i+3 & , i=4,6,8,...,m-1\\ 4m+2mn-i+1 & , if i \text{ is even and } m+1 \le i \le 2m \end{cases}$$

$$f(z^{j}_{1}) = f(v_{2}) - 2j + 1 \qquad , 1 \le j \le n$$

$$f(z^{j}_{2}) = f(v_{4}) - 2n - 2j + 1 \qquad , 1 \le j \le n$$

$$f(z^{j}_{3}) = f(v_{6}) - 4n - 2j + 1 \qquad , 1 \le j \le n$$

$$f(z^{j}_{4}) = f(v_{8}) - 6n - 2j + 1 , 1 \le j \le n$$

$$\vdots$$

$$f(z^{j}_{m}) = f(v_{2m}) - 2n(m-1) - 2j + 1 , 1 \le j \le n$$

$$f(z^{j}_{i}) = f(v_{2j}) - 2n(i-1) - 2j + 1 , 1 \le i \le m, 1 \le j \le n$$

Theorem 2.4. The graphs $C_n \odot \overline{K_w}$ are odd graceful for $w \ge 1$, n is even, $n \ge 4$. **Proof.** Let $C_n \odot \overline{K_w}$ be described as indicated in Figure 10.

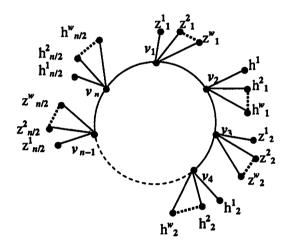


Figure 10.

The number of edges of the graph $C_n \odot \overline{K_w}$ is n + wn. We define the labeling function $f: V(C_n \odot \overline{K_w}) \rightarrow \{0,1,2,...,2 (n+wn)-1\}$ as follows:

• If n is even, $n \equiv 2 \pmod{4}$

$$f(v_i) = \begin{cases} i-1 & , i = 1,3,5,..., n/2 \\ i+1 & , if i \text{ is odd and } n/2 + 2 \le i \le n-1 \\ 2n+2wn-i+1 & , i = 2,4,6,..., n-2 \end{cases}$$

$$f(v_n) = n + 2wn - 1$$
, $f(z_1^j) = 2wn + 1$, $f(z_1^j) = 2j - 3$, $2 \le j \le w$

```
f(z_2^j) = f(v_3) + 2w + 2j - 3
                                                    1 \le j \le w
f(z^{j}_{3}) = f(v_{5}) + 4w + 2j - 3
                                                    , 1 \le j \le w
f(z_4^j) = f(v_7) + 6w + 2j - 3
                                                     1 \le j \le w
f(z_{n/2}^{j}) = f(v_{n-1}) + 2w(n/2-1) + 2j - 3
                                                    1 \le j \le w
f(z_{i}^{j}) = f(v_{2i-1}) + 2w(i-1) + 2j-3
                                                     1 \le j \le w, 2 \le i \le n/2
and
f(h_{i}^{j}) = f(v_{2}) - wn - 2j + 3
                                                     , 1 \le j \le w
f(h_2^j) = f(v_4) - wn - 2w - 2j + 3
                                                     , 1 \leq j \leq w
f(h^{j}_{3}) = f(v_{6}) - wn - 4w - 2j + 3
                                                     , 1 \leq j \leq w
f(h_4^j) = f(v_8) - wn - 6w - 2j + 3
                                                     , 1 \le j \le w
f(h_{n/2}^{j}) = f(v_n) - wn - 2w(n/2-1) - 2j + 3, 1 \le j \le w
```

• If n is even, $n \equiv 0 \pmod{4}$

Rosa [6] showed that the *n*-cycle has an α -labeling if and only if $n \equiv 0 \pmod{4}$. By Theorem 1.6 $C_n \odot \overline{K_w}$ is odd graceful, when $n \equiv 0 \pmod{4}$.

Theorem 2.5. The graph C_m^n is shown in Figure 11. It is odd graceful, when m is even and $m \ge 4$.

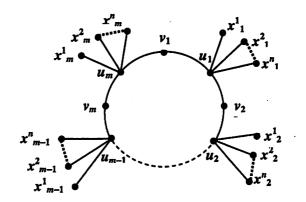


Figure 11.

Proof. The number of edges of the graph C_m is 2m + mn. We define the following function $f: V(C_m^n) \to \{0, 1, 2, 3, ..., 2(2m + mn) - 1\}$ as follows:

$$f(v_{i}) = 2i-2 , i = 1,2,3,..., m$$

$$f(u_{i}) = \begin{cases} 4m + 2mn-2 i + 1 , i = 1,2,3,..., m/2 \\ 4m + 2mn-2 i - 1 , m/2 + 1 \le i \le m \end{cases}$$

$$f(x_{1}^{i}) = 4m + 2mn - 2i , 1 \le i \le n$$

$$f(x_{2}^{i}) = 4m + 2mn - 2i - 2(n+1) , 1 \le i \le n$$

$$\vdots$$

$$\vdots$$

$$f(x_{m/2}^{i}) = 4m + 2mn - 2i - 2(m/2-1)(n+1) , 1 \le i \le n$$

$$and$$

$$f(x_{m/2+1}^{i}) = 3m + mn - 2(i+1) , 1 \le i \le n$$

$$f(x_{m/2+2}^{i}) = 3m + mn - 2(i+1) - 2(n+1) , 1 \le i \le n$$

$$f(x_{m/2+3}^{i}) = 3m + mn - 2(i+1) - 4(n+1) , 1 \le i \le n$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$f(x_{m}^{i}) = 4m + 2mn + 2n - 2i - 2m(n+1) , 1 \le i \le n$$

The graph $C_{n,m}^*$ is a graph obtained by identifying an endpoint of a star S_m with a vertex of a cycle C_n .

Theorem 2.6. The graph $C_{n,m}^*$ is odd graceful when n is even, $n \ge 4$, $m \ge 3$ and it is α -graph if $n \equiv 0 \pmod{4}$, $m \ge 3$.

Proof. Let $C_{n,m}^*$ be described as indicated in Figure 12.

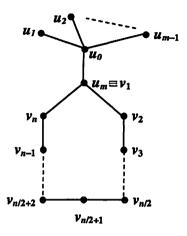


Figure 12.

The number of edges of the graph $C_{n,m}^*$ is m+n. We define the labeling function $f: V(C_{n,m}^*) \to \{0,1,2,...,2(m+n)-1\}$ as follows:

$$f(u_0) = 0$$
, $f(u_i) = 2m + 2n - 2i + 1$, $1 \le i \le m$.

• If $n \equiv 0 \pmod{4}$

$$f(\nu_j) = \begin{cases} j & \text{if } j \text{ is even and } 2 \le j \le n/2 \\ j+2 & \text{if } j \text{ is even and } n/2 + 2 \le j \le n \\ 2n-j+2 & \text{if } j \text{ is odd and } 3 \le j \le n-1 \end{cases}$$

$$f(v_j) = \begin{cases} 2n - j + 2 & \text{if } j \text{ is odd and } 3 \le j \le n - 1 \\ j & \text{if } j \text{ is even and } 2 \le j \le n - 2 \\ 2n - j + 2 & \text{if } j \text{ is odd and } 3 \le j \le n/2 \\ 2n - j & \text{if } j \text{ is odd and } 3 \le j \le n/2 \\ n + j & \text{if } j \text{ is odd and } n/2 + 2 \le j \le n - 1 \end{cases}$$

$$f(v_n) = n + 2$$

In the case $n \equiv 0 \pmod{4}$, $m \ge 3$ there exists $k = f(v_n)$ such that, $k = \max\{f(x) : x \in \mathbb{R}\}$ f(x) is even, $x \in A$ < min $\{f(x): f(x) \text{ is odd}, x \in B\}$. By Theorem 1.4, the graph C_{nm}^* is an α -graph. Similarly, for the case $n \equiv 2 \pmod{4}$.

A butterfly $BF_{n,m}$, consists of two even cycles of the same order n sharing a common vertex with an arbitrary number of pendant edge m attached at the common vertex as indicated in Figure 13.

Theorem 2.7. The butterfly graphs are odd graceful.

Proof.

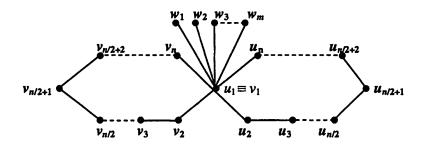


Figure 13.

The number of edges of the butterfly graph is 2n + m. We define the following function $f: V(BF_{n,m}) \to \{0,1,2,3,..., 2(2n+m)-1\}$ as follows: $f(v_i) \equiv f(u_i) = 0$, $f(w_i) = 4n + 2m - 2j + 1$, j = 1,2,3,...m

$$f(u_i) = \begin{cases} i-1\\ i+1\\ 2n-i+3 \end{cases}$$

$$i = 2,4,6,..., n/2$$

,
$$i = 2,4,6,..., n/2$$

, if *i* is even and $n/2+2 \le i \le n$

$$i = 3,5,7,...,n-1$$

$$, i = 3,5,7,..., n-1$$

$$, i = 2,4,6,..., n/2$$

, if i is even and $n/2+2 \le i \le n$

• If $n \equiv 2 \pmod{4}$

$$f(u_2) = 1$$
, $f(v_n) = 3n - 3$

$$f(u_i) = \begin{cases} i+1 \\ 2n-i+5 \\ 2n-i+3 \end{cases}$$

, if i is even and
$$4 \le i \le n$$

, if
$$i$$
 is odd and $3 \le i \le n/2$

, if i is odd and
$$n/2+2 \le i \le n-1$$

$$f(v_i) = \begin{cases} i-1 & , i = 3,5,7,..., n-1 \\ 4n-i+1 & , i = 2,4,6,..., n/2+1 \\ 4n-i-1 & , if i \text{ is even and} \end{cases}$$

$$i = 3,5,7,...,n-1$$

$$i = 2,4,6,...,n/2+1$$

, if i is even and
$$n/2+2 \le i \le n-2$$

The graph C_m^{**} consists of two cycles of the same order m joined by a bridge as shown in Figure 14.

Theorem 2.8. The graphs C_m^* are odd graceful when m is even and $m \ge 4$. **Proof.**

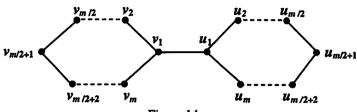


Figure 14.

The number of edges of the graph C_m^{**} is 2m + 1. We define the following function $f: V(C_m^{**}) \rightarrow \{0,1,2,3,...,4m+1\}$ as follows:

• If $m \equiv 0 \pmod{4}$

$$f(v_I)=0$$

$$f(v_i) = \begin{cases} i-1 & , i = 2,4,6,..., m/2 \\ i+1 & , \text{if } i \text{ is even and } m/2+2 \le i \le m \\ 2m-i+3 & , i = 3,5,7,...,m-1 \end{cases}$$

$$f(u_i) = \begin{cases} i & , i = 2,4,6,..., m/2 \\ i+2 & , if i \text{ is even and } m/2+2 \le i \le m \\ 4m-i+2 & , i = 1,3,5,7,..., m-1 \end{cases}$$

$$f(u_i) = \begin{cases} i & , i = 2,4,6,..., m-2 \\ 4m-i+2 & , i = 1,3,5,..., m/2 \\ 4m-i & , \text{if } i \text{ is odd and } m/2+2 \le i \le m-1 \end{cases}$$

$$f(u_m) = m+2, f(v_1) = 0, f(v_2) = 1$$

$$f(v_i) = \begin{cases} i+1 & , i = 4,6,8,..., m \\ 2m+5-i & , i = 3,5,7,..., m/2 \\ 2m+3-i & , if i \text{ is odd and } m/2+2 \le i \le m-1 \end{cases}$$

REFERENCES

- [1] Barrientos, C., Odd graceful labelings, preprint.
- [2] Gallian, J. A., A Dynamic Survey of Graph Labeling, Electronic J. Combin. Twelfth edition, January 31, (2009).
- [3] Gnanajothi, R. B., *Topics in Graph Theory*, Ph. D. Thesis, Madurai Kamaraj University, (1991).
- [4] Golomb, S. W., How to number a graph, in Graph Theory and Computing, Read, R. C. ed., Academic Press, New York (1972) 23-37.
- [5] Harary, F., Graph Theory, Addison-Wesley, Reading MA (1969).
- [6] Rosa, A., On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, July 1966), Gordon and Beach, N.Y. and Dunod Paris (1967) 349-355.
- [7] Seoud, M. A., and Abdel-Aal, M. E., On odd graceful graphs, to appear in Ars Combinatoria.
- [8] Seoud, M. A., Diab, A. T., and Elsahawi, E. A., On strongly -C harmonious relatively prime, odd graceful and cordial graphs, Proc. Math. Phys. Soc. Egypt, No. 73 (1998) 33-55.