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Abstract

In this paper, we investigate the existence of 2-(v,8,1) designs ad-
mitting a block-transitive automorphism group G < AT'L(1,q). Using
Weil's theorem on character sums, the following theorem is proved: if a
prime power q is large enough and ¢ = 57 (mod 112) then there is always
& 2-(v,8,1) design which has a block-transitive, but non flag-transitive
automorphism group G.
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1 Introduction

A 2-(v,k,1) designs is a pair D = (X, B) where X is a v-set of points and B
is a collection of k-subset of X (call blocks) such that any 2-subset of X is
incident exactly with one block. We consider automorphisms of D as pairs of
permutations on &' and B which preserve incidence. An automorphism group
G of D is a group whose elements are automorphisms of D and call it block
transitive if it acts transitively on the block set B of D.

In recent years, different author devotes to the classification of the pair
(G, D) where G is block-transitive on a design D of a given block size k (see][l,
2,5, 6, 8, 9]). According to this classification, these pair fall into three classes,
that in which G is unsolvable and is flag-transitive (such examples are included
in [1]), that in which G < AT'L(1.q), and that in which that G is solvable and
is of small order. However, little is known about latter two classes.

In this paper, we investigate the existence of the pairs (G, D) such that D
is & 2-(v,k,1) design, G is & one-dimensional affine group acting on D as an
automorphism group block-transitively, but non flag-transitively. Using Weil’s
theorem on character sums, we prove that for the case that D is a 2-(v,8,1)
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design, a pair (G, D) always exists if g is sufficiently large. The main result is
the following theorem.

Main Theorem: Let g be a prime power with ¢ = 57 (mod 112). Sup-
pose q is sufficiently large, then there ezists a 2-(q,8,1) design D which has
a block-transitive, but non flag-transitive automorphism group G, moreover,
G < AT'L(1,9).

2 Notation and Preliminaries

In this section, we give some notation and preliminaries which will be used
throughout this paper. We always assume that ¢ is a prime power such that
g = k(k — 1) + 1 (mod 2k(k — 1)). Let GF(g) denote the finite field of ¢
elements, 0 a generating element of the multiplicative group GF(q)*. Let M =
(6%(=1)/2) L = (g*(*=1)) be two subgroups of GF(g)*, then [GF(q)* : M] =
k(k—1)/2and [M: L] =2.

Given a € L and 0 € GF(q)*, define a map gao as follows: gao : z +—
az + 0, ¥z € GF(g). Let G = GF(q)* x L denote the set of such map, then G
is a subgroup of AGL(1,q) of order (g — 1)/k(k — 1).

Let B = {B1,B2, - ,Px} be a subset of GF(g) consisting of k different
elements. Define B~ = {B; — fi|]l < i < j < k}, clearly |B~| = k(k — 1)/2. For
an element g = goo € G, define B = {5{,85,--- ,87}.

Lemma 2.1 (see [3]) M = LU(-L), where —-L ={-é|6 € L}.

Lemma 2.2 (see [3])) Let B = {B1,Ba, - ,Bx} be a k-subset of GF(q). If B~ is
a system of representative of the cosets of M in GF(q)*, then D = (GF(q), BS)
is a 2-(q, k,1) design, and G is block-transitive, but not flag-transitive on D.

Lemma 2.3 Given a finite number if polynomials ajo+a112+ - -+a1,, 2™, az0+
a1 T+ +a2n, T2, 0 Gmo A1 T +mn, "™ i Cz], if coterz+- - +cox?
is the product of those polynomials, then

8 m
S leil < [Tl + laaal + -+ + aan,])-

=0 i=1

Weil’s theorem on character sums is very impotent for our proof of the main
theorem.

Lemma 2.4 (see [7]) Let GF(r) be finite field, and ¥ a multiplicative character
of GF(r) of order m > 1. Suppose that f(z) € GF(r)[z] is a monic polynomial
of positive degree, and that f(z) is not a mth power of a polynomial. Let d
denote the number of distinct roots of f(z) in its splitting field over GF(r).
Then for any element a € GF(r),

| Tzearn¥(af(@)) IS (d - )Vr.
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3 The proof of the main theorem

In this section, we will prove our main theorem, and the methods are sim-
ilar to [3]. We always assume that q is a prime power such that ¢ = 57

(mod 112), 8 a generating element of the multiplicative group GF(g)*. Let
M= (028)1 B = {0: l,ﬂ’ﬁ2,ﬂ3,ﬂ4’ﬂ5,ﬂ6}, where B € GF(Q)X Now B~ =
{1,8,8%,8°% 64,85 8%} U {7 — B'|0 < i < j < 6}, and the elements of B~ are
listed as follows:

1 g-1 B:-1 Bge-1 Bt-1 B -1 B -1
B B(B-1) BB*-1) BB°-1) BB -1) BB -1)

B2 pAB-1) PP2-1) BB -1) p*Bi-1)

B B(B-1) p(B2-1) B(B°-1)

B BYB-1) BB -1)

B> B(B-1)

1)

Lemma 8.1 Let B = {0,1,5, 82, 5% B*, 5% B°}, where § € GF(g)* satisfies
the following conditions:

( B e MouMo-

BR(B-1)eM

BRB+1)eM

{ B'(B2-1)eM (2
BB +B+1)eM

BB -p+1)eM

BB+ +B2+B+1)eM

Then B~ is a system of representatives of the cosets of M in GF(q)*.

Proof. Let 6 be a generating element of GF(g)*, then the cosets of M in
GF(q)* are M67, where j = 1,2,---,27. If 8 € M#@ (similiarly, 8 € M8-),
then (8 — 1) € MO7,(B8 +1) € M65,(6% +1) € M6, (8% + B + 1) € MoY,
(B2—B+1)e M@, (B*+8° + 02+ B+1) € MO,

Therefore, the elements in the first column of (1) run over M64(j = 0,1,--- ,6),
the elements in the second column of (1) run over M8i(j = 7,---,12), the
elements in the third column of (1) run over M8(j = 13,---,17), the el-
ements in the forth column of (1) run over M8i(j = 18,.-. ,21), the ele-
ments in the fifth column of (1) run over M6i(j = 22,23,24), the elements
in the sixth column of (1) run over M6/(j = 22,23, 24), and finally g — 1 =
(B-1)(B*+B+1(B-1)(8% - B+1) € M6*" .0

Let Q = {B|8 € GF(q)} satisfy conditions (2). To prove our main theorem,
it suffices to show that if g is larger enough then |Q| > 0 by Lemma 2.2.

Let o = €2"/28 be a 28th unity root, for any integer j, define U(09) = od.
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Since ¢ = 57 (mod 112), ¥ is a character of order 28 on GF(g), and so ¥~
27, As usual, define ¥(0) =0, ¥°(0) = 1.
Let fi(2) = 2%z - 1), fale) = e(z +1), fofa) = 2"(s* +1), fu(g)
(22 +z+1), fs(z) = 2%5(z® —z + 1), fo(z) =¥ + 22 + 2P+ 2+ 1).
For j € {1,2,3,4,5,6}, we have

28, if fi(z)eM
1+ ¥(fi@) +- -+ T (fi(z)) =4 1, if filz)=0 .  (3)
0, otherwise

Let I = {3,5,7,9,11,13},

F(z) = 2- ¥*¥(z) - T~ %@)] [[¥() + ¥ @) - =] (4)
jel
Note that if z € M67,2|j, then ¥14(z) = U~14(z) = 1, and if z € M67 U MO~/
then ¥(z) + ¥~1(z) = o + a4. Therefore,

F(8), if zeMOuUMO~
F(z) F), if z=0 . (5)
0, otherwise

Write b = F(8). A direct calculation shows that

b= 2H(2cos - 2co8 14) ~ 62.9154.
jel
Let 6
H(z) = F(z) [J(1 + ¥(f;(=)) + - + T (£;(2)), (6)

i1

and consider the sum $ = ¥, ccp(q) H (). We partition the set GF(q) into

three disjoint parts GF(q) = QU Q, UQe, @ = {B]f;(8) = 0 for some j},
Q% = GF(q) — (AU ). Clearly, & = {0,£1, BB +1=0, B+B+1=
0,/2-B+1=0,0rpt+p%+p%+1=0}. So |9 < 13. Now

S=)_H(z)+ ), H@)+ Y H) (7)

z€N zEN, €N

We know if = € Q, then H(z) = b- 28%, if z € Q,, then H(z) = 0. Therefore,

5 =28%|0| + Y _ H(a). (8)
TEMQ
On the other hand,
S=H@O)+ Y  H() (9)
z€GF(q)*
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For z # 0, ¥(z)¥~(z) = 1 holds. Hence F(z) can be written as

F(z) = co + c1¥(z) + c202(z) + - -+ + co7 0¥ (z) (10)
and
H@)=cot Y. GUUM(f)-T%(fo)=cot . cU(a"fi* - f3°)
(n,n;,--- !"0) (”r"h'" 1"6)

then the sum in (8) becomes that

S=HO)+ Y. aw+ Y, S GUEt ). (1)

zEGF(g)* (n,n1,+ ,ne) zEGF(q)*

where ¥, f1, U(f1) denote ¥(z), f1(z), ¥(f1(x)) respectively, etc, and (n,ny, - -+ , ng)
runs over {0,1,---,27}7 — {0,-- ,0}. Equating (8) and (11), we get that

28%|Q| =co(g— 1)+ 51 + 5 (12)
where ) = H(0) - 3_,cq, H(z), and

Sa= Y o+ 3. D Ut fPe).

zEGF(q)x {n,n1, ,ng) zEGF(g)*
Note that |¥(z)| < 1, so from (6) follows that |H(z)| < 41! - 285, hence
1811 = |H(0) = 3 H(=)| < (|| +1)4' - 28°. (13)
zeM

By applying Lemma 2.3 to (4), the coefficients in (10) satisfy that |c;] < 419, =
-, 27. Notice cg # F(0), it follows from (4) that

Fz) = [2-¥%2)- 0" %)[]all(z)+ ¥ }(z) - ol —a]
= [2-0Y¥(z) - T-1(z)] HJel[\Il(z) + U~Y(z) — 2cos jmw/14]
= [2- () - T ()] - [eo + TP, e( ¥ + T
where
eo =[], 2cosmj/14 ~ —1.92388 - 10~7

€2= 35 o ugure guct 16COSTIL/14 X -+ X cosja/14 ~ 184117

€4 = X4 <iair,jael 1CO8TI1/14 X cos Wiz /14 ~ —3.19806

eg=1.
Therefore

co =2 X [eg + €2C} + e4C% + e6C3] ~ 8.98792, (14)

Now z" f* - .- fg'® has at most 14 distinct roots in any extension field of
GF(q). Applying Lemma 2.4, for (n,n;,--- ,ng) € {0,1,---,27}7 — {0,---,0},
we have

b)Y U™ f79) < lejl(14 — 11)/G < 13- 410,73,

zEGF(g)*
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Hence

121=1 S X U S <1342 (19)
(n,n1,+ ,ne) TEGF(q)*
From (12)-(15), we get
2885|Q] > co(g—1)—15-4'0.28°-13.410-287./7
> colg—1)-13-41°-287(,/3+1)
= co(@+1)(y/g—1- 12428
Therefore, if ¢ > 5.2856 - 1032, then |Q| > 0, which implies that there is
B € GF(q)* satisfying (2), as required. O
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On chromatic number of graphs without
certain induced subgraphs
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Abstract

Gyiérfas conjectured that for a given forest F, there exists an
integer function f(F,w(G)) such that x(G) < f(F,w(G)) for any F-
free graph G, where x(G) and w(G) are respectively, the chromatic
number and the clique number of G. Let G be a Cs-free graph and
k be a positive integer. We show that if G is (kP, + P;)-free for
k > 2, then x(G) < 2w*~'/w; if G is (kP, + Ps)-free for k > 1, then
x(G) < w*\/w. A graph G is k-divisible if for each induced subgraph
H of G with at least one edge, there is a partition of the vertex set
of H into k sets V4, -+, Vi such that no V; contains a clique of size
w(G). We show that a (2P, + P;)-free and Cs-free graph is 2-divisible.

Keywords: F-free graph, Perfect graph, Divisibility.

1 Introduction

All graphs considered here are finite, undirected and simple. We refer
to [1] for unexplained terminology and notation. Let G = (V(G), E(G))
be a graph, and let S be a nonempty subset of V(G). The subgraph of
G induced by S, denoted GI[S], is the subgraph of G with vertex set S, in

*Corresponding author.
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which two vertices are adjacent if and only if they are adjacent in G. If G[S]
has no edge, S is called an independent set; if G[S] is a complete graph,
then S is called a clique. The maximum cardinality of an independent
set is called the independence number of G, denoted a:(G); the maximum
cardinality of a clique is called the clique number of G, denoted w(G). The
chromatic number of G, denoted x(G), is the minimum number & such that
the vertices of G can be partitioned into k independent sets. In general,
there is no upper bound on the chromatic number of a graph in terms of
its clique number, since there are graphs containing no triangle, but having
arbitrarily large chromatic number.

A graph G is called perfect if x(H) = w(H) for each induced subgraph
H of G. There are graph classes which can be characterized by forbidden
induced subgraphs, e.g. cographs (i.e. P-free graphs), chordal graphs, split
graphs, threshold graphs. Berge conjectured that a graph G is perfect if
and only if neither G nor its complement G contains an induced odd cycle of
order at least five. This famous conjecture, known as Strong Perfect Graph
Conjecture, has recently been solved by Chudnovsky, Robertson, Seymour
and Thomas (2].

Gyérfss [4] has introduced the concept of x-bound functions. Here, a
family G of graphs is called x-bound with x-binding function f, if x(H) <
f(w(H)) holds whenever H is an induced subgraph of G € G. For a given
graph F, a graph G is F-free if it does not contain an induced subgraph
isomorphic to F. Gyérfés proposed a conjecture: if F is a forest, there exist
an integer f(F,w) such that every F-free graph with maximum clique size
w is f(F,w)-colorable. This conjecture is only proved in special cases.

Hoang and McDiarmid [5) recently introduced the notion of k-divisible
graphs. A k-division of a graph G = (V, E) is a partition of the vertex set
V into k sets Vi, -+, Vi such that no V; contains a clique of size w(G). A
graph G is k-divisible if each induced subgraph of G with at least one edge
has a k-division. The least such k is the divisibility number div(G). A
strong k-division of a graph G is a partition of the vertex set V into k sets
Vi, , Vi such that no V; contains a maximal clique of G. We shall say
that a graph is strongly k-divisible if each induced subgraph with no isolated
vertices has a strong k-division. Obviously, every strongly k-divisible graph
is k-divisible.

We denote the path on k vertices by P,. The graph with vertices a, b, c,d



and edges ab,ac will be called a co-paw. The graph with vertices a, b, c,d
and edges ab and cd is called 2K;. The graph with vertices a, b, ¢,d and
edge ab will be called a 2P, + P,. Wagon [6] proved that for any 2K,-free
graph G, x(G) < $(w(G) +1)w(G). Hoang and McDiarmid [5] showed that
for any Cs-free and co-paw free graph G, x(G) < w(G)% .

Let G be a Cs-free graph and k& be a positive integer. We show that if G
is (kP; + P,)-free for k > 2, then x(G) < 2w*~1\/w; if G is (kP; + Ps)-free
for k > 1, then x(G) < w*\/w. Gravier, Hoang and Maffray (3] showed
that any (2P, + P,)-free graph is 3-divisible. But we are interested in the
2-divisible case. Accordingly, we show that a (2P, + P,)-free and Cs-free
graph is 2-divisible in this paper.

2 Colorability

Let R(p,q) be the Ramsey function, that is the smallest m = m(p, q)
such that all graphs on m vertices contain either an independent set of
p vertices or a clique of g vertices. It was pointed out in [4] that for a
(2P, + P;)-free graph G, x(G) > 5‘-3‘—“'.‘;"—11'-1. Accordingly, (2P; + P,)-free
graphs have not linear x-binding function.

Let G be a graph. For a vertex z € V(G), N(z) denote the set of
neighbors of z and M(z) = V(G) \ ({z} U N(z)).

Theorem 2.1. Suppose a graph G contains no induced 5-cycle and no
induced 2P, + P,. Then

(1) if w(G) = 2, x(G) = w(G),

(2) if w(G) 23, x(G) < w(G)3.

Proof. We can assume that G is connected. First, we prove (1). Since
w(G) = 2, G contains no triangle. Note that the existence of an induced
odd cycle of length greater than five would imply that of 2P, + P;. Com-
bining these to the assumption that G has no odd cycle of length five, G is
bipartite, and thus x(G) = 2.

We shall prove (2) by induction on the number of vertices of G. Suppose
there is a function g(w) such that x(H) < g(w(H)) for every proper induced
subgraph H of G. The function g will be defined later.

We may assume that a > 2, for otherwise the theorem holds trivially. If
for every edge zy € E(G), N(z)\(N(y)U{y}) = 8, N(y)\ (N(z) U{z}) = 0
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and M(zy) = 0, then G must be a complete graph. If it is not, then there
are two non-adjacent vertices, say u and v, in G. Since G is connected, we
can take a neighbor, say z, of u. We consider the edge zu. If zv € E(G),
then N(z) \ (N(u) U {u}) # 0 since it contains v. If zv ¢ E(G), then
M (zu) # 0 since it contains v. A contradiction. So in this case, the result
trivially holds.

Now assume that there is an edge zy in G such that at least one of
N(z) \ (N(y) U {y}), N(y) \ (N(z) U {z}) and M(zy) is not empty. If
(N()\ (N(») U {y})) # 0, put A = (N(z) \ (N(¥) L {y})) U M(zy) and
B = {y}U(N(y)\N(z)). Otherwise, put A = (N(y)\(N(z)U{z}))UM (zy)
and B = {z} U(N(z) \ N(y)). Obviously, A, B are not empty. Without
loss of generality, it suffices to consider the case that A = (N(z) \ (N(y) U
{y})) U M(zy) and B = {y} U (N(y) \ N(z)).

Claim 1. G[A] and G[B] are cographs.

Proof. By contradiction, suppose abcd is an induced subgraph of G[A]
which is isomorphic to Py. Then G[{a,b,d, y}] is a 2P, + P2, a contradiction.
So A is Ps-free. Similarly, N(y)\(N(z)U{z}) is Ps-free, and since B\ {y} C
N(y), G[B] is Ps-free. So G[A] and G|B] are cographs. 0O

Let W’ be a maximum clique in G[4], and |W’/| =s. Fori=0,1,---s,
put X; = {u € N(zy) : |[N(u) N W'| =i},

Claim 2. XoU X;---U X;_5 is a clique.

Proof. Suppose, on the contrary, that « and v are two non-adjacent vertices
in G[Xo uX;--- UX3_2] withu € X;andv € Xj.

First assume that ¢ = j. By the definition of X;, both » and v have
exactly i neighbors in W’. If u and v are adjacent to same ¢ vertices of W’,
then for ¢ < s — 2, there are two vertices in W’ adjacent to neither u nor
v, which contradicts the assumption that G is (2P, + P;)-free. If u,v are
not adjacent to same i vertices of W', then, there exist two vertices v’ and
v’ of W' such that ' is adjacent to u and is not adjacent to v, and v’ is
adjacent to v and is not adjacent to u. However, G[{y,u,v,v’,v'}] = Cs, a
contradiction. So G[X;] is a clique for any i € {0,1,2,--+,8 —2}.

Now we consider the case i # j, and without loss of generality, let i < j.
If N(u)nW’ C N(v)NW’, and since i < j < s—2, then there exists an edge
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ab in W’ such that both a and b are adjacent to neither u nor v. Hence,
Gl{a,b,u,v}] = 2P, + P,, a contradiction. If N(u)n W’ ¢ N(v) n W,
there exists an edge ab such that G[{y, u, v, a,b}] = Cs, a contradiction. So
XoUX,:--UX,_s is a clique. (]

Claim 3. G[X,_,] is a perfect graph.

Proof. Obviously, G[X,_;] contains no induced 5-cycles by assumption,
and no induced odd cycle of length greater than five, otherwise, it must
contain an induced subgraph isomorphic to 2P, + P,. Next we prove that
the complement of G[X,-;] does not contain an induced cycle of length
at least five. Suppose, on the contrary, it does such one. Then clearly,
G[X,-1] contains an induced subgraph H isomorphic to P, + P,, and let
V(H) = {a,b,c}, bc € E(H). If N(a) N W' # N(b) n W', and since
IN@ NW| = IN®)NW’| = s~1, (N(a) \ N(b)) N W’ # 8, (N(b) \
N(@)nW' # 0. Let o’ € (N(a) \N(®))NW', b € (N(b) \ N(a)) n W".
Then G[{a,a’,¥',b,y}] = Cs. It is not possible. Hence, N(a) N W' =
N(b)nW'. Similarly, N(a)nW’ = N(c)nW’. However, iflet d € W'\ N(a),
Gl{d,a,b,c}] = 2P, + P, a contradiction. So neither G[X,-;] nor its
complement contains an odd cycle of length greater than three, G[X,-1] is
a perfect graph by strong perfect graph theorem. O

Let w(G) = w. Since y is not adjacent to any vertex in A, and by Claim
1, x(G[AU{y}]) = w(G[AU {y}]) = 5. Now, we give two different colorings
of G. First, we have
x(G) £ g1 = x(G[N(zy) U (N(y) \ N(2))]) + x(G[A U {y}]).

Note that w(G[N(zy) U (N(y) \ N(z))]) < w — 1, so by the induction hy-
pothesis,
g15g9w-1)+s.

On the other hand, since G[A] is perfect, x(G[A]) = w(G[4]) < w. Since
w(G[X,]) S w(G) - s,
X(G)<g2 = x(G[XoU---UX,_2])+ x(G[A]) + x(G[B])
+X(G[Xo]) + X(G[X,-1])
< glw-—s)+4w.
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By setting g(w) = 2w?, we have min(g1,¢2) < g(w) = 2wy/@. Indeed, if
s < 2/ then g1 < 2(w — 1)y/w + 2w < g(w) and if s > 2/w then
g2 € 2w — s)Vw — 8 + dw < 2(w — 2y/W)\/w + 4w < g(w). ]

Corollary 2.2. Suppose that the graph G contains no induced 5-cycle. We
have

(1) If G contains no induced kP, + P, for an integer k > 2, then x(G) <
%k—l\/&',

(2) If G contains no induced kP, + P3 for an integer k > 1, then x(G) <
wkVw.

Proof. The proof is made by induction on w + k.

First we prove (1). If k = 2, then kP, + P, = 2P, + P,, and by
Theorem 2.1, x(G) £ 2w+y/w. Now assume that k£ > 3 and G contains no
induced 5-cycle and no kP, + P,. Pick a vertex z from G. Then it is clear
that G[M(z)] contains no induced 5-cycle and no (k — 1)P, + P2. So by
induction hypothesis that x(G[{z} U M(z)]) < 2w*~2\/w. On the other
hand, w(G[N(z)]) € w — 1, and thus x(G[N(z)]) < 2(w — 1)*" 1w —T.
This gives
X(GIN(2)] + x(G[{z} U M(z)])

Aw - 1o —1+22/w
2w - Yk 2vw + 2w* 2w
2w*=1/w.

Now we show (2). If k = 1, kP, + P3 is known as the co-paw, and
by [5], x(G) < wy/w. Now assume k > 2, and G contains no induced 5-
cycle and no kP, + P3. Then clearly, for any vertex z € V(G), G[M(z)]
contains no induced (k — 1)P; + P3 and no induced 5-cycle, and thus by
induction hypothesis, x(G) < x(G[N(z)]) + w*~!y/w. On the other hand,
since w(G[N(z)]) € w — 1, and by induction hypothesis, x(G[N(z)]) <

(w-1)*/w=1.
x(G)

x(G)

IA N IA

x(G[N(z)] + x(G[{z} U M(z)])
(w-1) Vo -1+ Vw

(w - D* Vo + w1 w
wk@.

INIA A
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The proof is complete. O

3 Divisibility
Lemma 3.1. [5] Every Cs-free non-complete graph is strongly a-divisible.

Observe that for a subset S of the vertices of a graph G, if there exists
a subset T' C V(G) such that SNT = @ and each vertex of T is adjacent to
each vertex of § in G, then S does not contain any maximal clique of G.
In the proof of the following theorem, we frequently use this fact.

Theorem 3.2. Suppose that a graph G contains no induced 5-cycle and no
induced 2P, + Pa. Then G is strongly 2-divisible.

Proof. We assume G is connected, and S is a maximum independent set
of G. Take a vertex = from S and let y be a neighbor of . We only need
prove that G has a strong 2-division. Let us consider M(zy).

If M(zy) = 0, it is easy to see that (A, B) is a strong 2-division of G,
where A= N(y) \ N(z) and B = N(z).

Now suppose [M(zy)| = 1 and let M (zy) = {a}. We claim that at most
one of {a}U(N(z)\N(y)) and {a}U(N(y)\N(z)) contains a maximal clique
of G. Otherwise, let X and Y be maximal cliques of {a}U(N(z)\N(y)) and
{a}U(N(y)\ N(z)), respectively. Clearly, both X and Y contain {a}. Pick
a vertex =’ from X. Then it must be adjacent to each vertex of Y, since a
vertex y' € Y is not adjacent to 2/, G[{z, 2/, a,y’, y}] = Cs, a contradiction.
So, without loss of generality, assume that {a} U (N(z) \ N(y)) does not
contain a maximal clique of G. Then G has a strong 2-division A, B with
A= {a}U(N(z)\ N(v)), B = N(y).

If a £ 2, G is strongly 2-divisible by Lemma 3.1. Next we consider the
case when a > 3 and |M(zy)| > 2.

Claim 1. The following statements are true.

(1) Each vertex of (M (zy)U(N(y)\N(z)))\ S is adjacent to each vertex
of S\ {z} in G.

(2) M(zy) is a clique of G.

(3) Each vertex of N(z) \ ({y} U N(y)) is not adjacent to at most one
vertex of M(zxy) in G.
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Proof. We show (1) by contradiction. Suppose a vertex u € (M(zy) U
(N(y) \ N(z))) \ S is not adjacent to a vertex, say v, of S\ {z}. Since S
is a maximum independent set of G, v is adjacent to a vertex, say w, of S.
It is obvious that w # z, and v, w, z are not mutually adjacent since they
are elements of S. Thus G[{u,v,w,z}] & 2P, + P, a contradiction. To
see M (zy) is a clique, if two vertices u and v of M(zy) are not adjacent in
G, then G[{u,v,z,y}] = 2P, + P2, a contradiction. Now suppose that two
vertices u, v € M(zy) which are not adjacent to a vertex w € N(z) \ ({y}U
N(y)). Then G[{u,v,w,y}] = 2P; + P,, a contradiction. ]

Accordingly, S C N(y) \ N(z), or |SN M(zy)| =1 and S\ M(zy) C
N(y)\ N(z).

Claim 2. If S C N(y) \ N(z), then
(1) Each vertex of N(z) \ N(y) is adjacent to each vertex of S in G.
(2) (4, B) is a strong 2-division of G, where A = SU N(zy) and B =
M(zy) U (N(z) \ N(y)) U (N )\ 5).

Proof. We prove (1) by contradiction. Suppose a vertex u € N(z) \ N(y)
and v € S are not adjacent in G. Clearly, u # y and z # v. By Claim 1,
there exists a vertex, say w, of M(zy), which is adjacent to both « and v
in G. Then G[{z,y,v,w,u}] & Cs, a contradiction.

Let us consider (2). Since A C N(y), it contains no maximal clique of
G. By (1) of Claim 1 and (1) of Claim 2, each vertex of B is adjacent to
each vertex of S\ {z}, and thus B does not contain any maximal clique of
G either. a

Now assume that |S N M(zy)| =1 and S\ M(zy) C N(y) \ N(z). Let
M(zy)N S = {a}.

Claim 3. Set C; = N(zy) N N(a), C2 = N(zy)\ C1. Let Dy = {u € Cy:
S C N(u)}. Dy =C1\ Dy. If |[M(zy)| 2 3, then

(1) Each vertex of N(z) \ N(y) is adjacent to each vertex of S\ {a}.

(2) Each vertex of C; is adjacent to each vertex of S\ {z,a}

(3) Each vertex of D, is adjacent to each vertex of M(zy).

(4) (A, B) is a strong 2-division of G, where A = SUD; and B =
(N@)\N(») U (N \ §) U (M(zy) \ {a}) U C2 U D;.



Proof. We show (1) by contradiction. Suppose that a vertex u € N(z) \
(N(y) U {y}) is not adjacent to a vertex v € S\ {z,a}. Since |M(zy)| > 3
and Claim 1, there exists a vertex w € M(zy) \ {a}, which is adjacent to u
and v. But, G[{z, u,w,v,y}] & Cs, a contradiction.

To show (2), suppose that a vertex p € C; is not adjacent to a vertex
q € S\ {a,z}, then G[{a,q,z,p}] = 2P, + P;, a contradiction.

Now we show (3) by contradiction. Suppose a vertex v € D; is not
adjacent to a vertex w € M(zy). By definition of Do, there is a vertex
v € S\ {a,z} which is not adjacent to u. Then G[{y,s,w,qa,v}] & Cs, a
contradiction.

Now let us prove (4). Note that all vertices of B are adjacent to each
vertex of S\{z, a}. Hence B contains no any maximal clique of G. (S\{a})U
D, contains no maximal clique of G, since each vertex of (S\ {a})U D, C
N(y). It remains to see that {a} U Dy contains no maximal clique, since
each vertex of M(zy) \ {a} is adjacent to {a} U D,. o

In what follows, assume that |[M(zy)| = 2, and let b be the other element
of M(zy) different from a.

Claim 4. Assume that N(y)\(SUN(z)U{z}) = 0. Let B, = N(zy)NN(b)
and By = N(zy) \ B;. Then (A, B) is a strong 2-division of G, where
A=SUB; and B= {b}U(N(z)\ N(¥)) U B,.

Proof. First, since (S\ {a})UB; C N(y) and {a}UB; C N(b), A contains
no maximal clique of G. To prove B contains no maximal clique of G,
by the definition of By, it suffices to show that both (N(z) \ N(y)) U B,
and {b} U (N(z) \ N(y)) does not contain any maximal cliques of G. It is
easy to see that (N(z) \ N(y)) U B, contains no maximal clique of G, since
(N(z)\N(y))UB; C N(z). On the other hand, by Claim 1, S\ {z} C N(b),
and since G contains no induced Cs, N(b) N (N(z) \ N(y)) € N(z) for any
vertex z € S\ {a,z}. It follows that {b} U (N(z)\ N(y)) does not contain
any maximal cliques of G. ]

Now assume that N(y)\ (SUN(z)U{z}) # @ and we consider two cases
based on M(zy) = {a,b}.

First assume that {a,b} is a maximal clique of G. Let 4; = (N(z) \
(N(y) U {y})) N N(a), A2 = (N(z) \ (N(y) U {v})) \ A1
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Claim 5. If A; # @, then the following statements hold:
(1) each vertex of A, is adjacent to each vertex of S\ {a}.
(2) each vertex of N(zy) is adjacent to each vertex of S\ {a}.
(8) each vertex of A; is adjacent to each vertex N(y)\ (SUN(z)u{z}).
(4) each vertex of Az is adjacent to each vertex of A;.
(5) (A, B) is a strong 2-division of G with A = AU (N(y)\ S)U {y,b}
and B=SUA,.

Proof. By contradiction, suppose a vertex u € Az is not adjacent to a
vertex v € S\ {a}. Then G[{z,u,v,a}] = 2P, + P,, a contradiction. This
proves (1).

To show (2), suppose that a vertex « € N(zy) is not adjacent to a vertex
v € S\{a,z}. Then u must be adjacent to a, for otherwise, G[{u,a,v,y}] =
2P, + P;. Moreover, since {a,b} is a maximal clique, u is not adjacent to
b. So G[{y,u,v,a,b}] = Cs, a contradiction.

Now we prove (3). In fact, if a vertex u € A; is not adjacent to a vertex
v € N(y)\ (SUN(z) U {z}), then by the definition of A;, ua € E(G), and
by Claim 1, va € E(G). Hence G[{u,v,z,y,a}] = Cs, a contradiction.

Suppose (4) is not true, and a vertex u € A; is not adjacent to a vertex
v € Az. Then, since {a, b} is a maximal clique of G, u is not adjacent to b
and by the definition A2 and Claim 1, v is not adjacent to a. In this case,
Gl{z,u,v, a,b}] = Cs, a contradiction.

Finally we prove (5). By Claim 1 and (1-2) of Claim 4, each vertex of
A is adjacent to each vertex of S\ {a,z}, A does not contain any maximal
clique of G. Since S is an independent set, to see that B has not maximal
clique it suffices to show that A; U {z} has not a maximal clique of G for
each z € S. At first, by (4) of Claim 5, {z}UA, does not contain & maximal
clique. Secondly, by (3), each vertex of A; U (S'\ {z}) is adjacent to each
vertex of N(y) \ (SU N(z) U {z}), A1 U (S \ {z}) does not contain any
maximal cliques of G. a

Claim 6. Let C; = N(zy) N N(a), C2 = N(zy) \ C1. If A2 =0, then the
following statements holds:

(1) Each vertex of C, is adjacent to every vertex of S'\ {a}.

(2) Each vertex of C, is adjacent of each vertex of S\ {a}.

(3) (4, B) is a strong 2-division of G with A = (N(z) \ N(¥)) U (N(y)\
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S)U{b}UC; and B=SUC,.

Proof. Suppose (1) is not true, and let a vertex u € C; is not adjacent to
a vertex v € S\ {a}. Then G[{z,u,v,a}] = 2P, + P,, a contradiction.

We show (2) by contradiction. Suppose a vertex u € C is not adjacent
to a vertex v € S\ {a}. By the definition of C; and the assumption that
{a,b} is a maximal clique of G, ua € E(G) and ub ¢ E(G). By Claim 1,
vb € E(G). Hence G[{y,u,v,a,b}] = Cs, a contradiction. Now we conclude
that each vertex of (N(y) \ S) U {y} U C1 is adjacent to all of S\ {a}.

Now we show (3). Firstly, B has not maximal clique of G, since (S \
{a})UC2 C N(y). Next we prove that A does not contain a maximal clique.
It is easy to see that (N(z) \ N()) \ {¥D) U(N(y) \ S)U {}UC1 C N(a),
(N)\N@)\ {s}) U(N(y)\ S) U {b} UC does not contain a maximal
clique of G. It remains to show that (N(y)\ S) U {y} U C; not contain a
maximal clique of G. It suffices to prove that each vertex of C; is adjacent
of each vertex of S\ {a}. By (2), Accordingly, A has not maximal clique.

O

Claim 7. If {a,b} is not a maximal clique of G, then the following state-
ments holds.

(1) If a vertex u € N(z) \ (N(y) U {y}) is adjacent to both a and b, it
is adjacent to all of N(y) \ (N(z) U {z}). Furthermore, (4, B) is a strong
2-division of G, where A = (N(y) \ N(z)) U {a,b} and B = N(z).

(2) If each vertex of N(z) \ (N(y) U {y}) are adjacent to exactly one
vertex of {a, b}, then (A, B) is a strong 2-division of G with A = {a,b} U
(N(z)\ N(y)) and B = N(y).

Proof. We prove (1) by contradiction. Suppose that there is a vertex
v € N(y) \ (N(z) U {z}) is not adjacent to u. We consider two cases. If
v € §\ {a,z}, then by Claim 1, vb € E(G). But, G[{z,y,u,v,b}] = Cs, a
contradiction. If v € N(y) \ (N(z) US), then by Claim 1, va € E(G). But,
G[{z,y,u,v,a}] = Cs, a contradiction. It is clear that both A and B does
not a maximal clique of G.

Let us show (2). Obviously, B has not a maximal clique of G. Next we
show that A does not contain a maximal clique of G. Since y is adjacent
to neither a nor b, it only need to prove that neither N(z) \ N(y) nor
{a,b}U(N(z) \ (N(y) U{y})) contain a maximal clique of G. Since N (z)\
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N(y) € N(z), N(z) \ N(y) does not contain a maximal clique of G. To
prove N(z)\ (N(y)U{y})U{a, b} has not maximal clique it suffices to prove
both N(z) \ (N(y) U {y}) U {a} and N(z) \ (N(y) U {y}) U {b} does not
contain a maximal clique of G, since each vertex of N(z)\ (N(y)U{y}) are
adjacent to exactly one vertex of {a,b}. Suppose N(z)\ (N(y)U{y})U{a}
contains a maximal clique D. Then for each vertex z € N(y) \ (N(z) U S),
D C N(z), otherwise, G[{z,y,d, a,2}] = Cs, where d € D \ {a}.

Suppose N (z)\ (N (y)u{y})U{b} contains a maximal clique D’. Then for
each vertex w € S\ {z,a}, D' C N(w), otherwise, G{{z,y,d’,b,w}] = Cs,
where &’ € D'\ {b}. Hence A does not contain a maximal clique of G. The
proof is complete. 0
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