The existence of block-transitive 2-(q, 8, 1) designs with q a prime power *

Luozhong Gong a and Weijun Liu b

School of Mathematics and Computing, Hunan University of Science and Engineering, Yongzhou, Hunan, 425100, P. R. China
 School of science, Nantong University, Nantong, Jiangsu, 226007,

P. R. China

Abstract

In this paper, we investigate the existence of 2-(v,8,1) designs admitting a block-transitive automorphism group $G \leq A\Gamma L(1,q)$. Using Weil's theorem on character sums, the following theorem is proved: if a prime power q is large enough and $q \equiv 57 \pmod{112}$ then there is always a 2-(v,8,1) design which has a block-transitive, but non flag-transitive automorphism group G.

2000 Mathematics Subject Classification: 05B05, 20B25 Keywords: Design; block-transitive; Weil's theorem

1 Introduction

A 2-(v, k, 1) designs is a pair $\mathcal{D} = (\mathcal{X}, \mathcal{B})$ where \mathcal{X} is a v-set of points and \mathcal{B} is a collection of k-subset of \mathcal{X} (call blocks) such that any 2-subset of \mathcal{X} is incident exactly with one block. We consider automorphisms of \mathcal{D} as pairs of permutations on \mathcal{X} and \mathcal{B} which preserve incidence. An automorphism group G of \mathcal{D} is a group whose elements are automorphisms of \mathcal{D} and call it block transitive if it acts transitively on the block set \mathcal{B} of \mathcal{D} .

In recent years, different author devotes to the classification of the pair (G, \mathcal{D}) where G is block-transitive on a design \mathcal{D} of a given block size k (see[1, 2, 5, 6, 8, 9]). According to this classification, these pair fall into three classes, that in which G is unsolvable and is flag-transitive (such examples are included in [1]), that in which $G \leq A\Gamma L(1.q)$, and that in which that G is solvable and is of small order. However, little is known about latter two classes.

In this paper, we investigate the existence of the pairs (G, \mathcal{D}) such that \mathcal{D} is a 2-(v, k, 1) design, G is a one-dimensional affine group acting on \mathcal{D} as an automorphism group block-transitively, but non flag-transitively. Using Weil's theorem on character sums, we prove that for the case that \mathcal{D} is a 2-(v, 8, 1)

^{*}Supported by the Nation Nature Science Foundation China (Grant No. 10871205 and 10971252).

[†]Corresponding author: E-mail address: wjliu6210@126.com

design, a pair (G, \mathcal{D}) always exists if q is sufficiently large. The main result is the following theorem.

Main Theorem: Let q be a prime power with $q \equiv 57 \pmod{112}$. Suppose q is sufficiently large, then there exists a 2-(q, 8, 1) design \mathcal{D} which has a block-transitive, but non flag-transitive automorphism group G, moreover, $G \leq A\Gamma L(1, q)$.

2 Notation and Preliminaries

In this section, we give some notation and preliminaries which will be used throughout this paper. We always assume that q is a prime power such that $q \equiv k(k-1)+1 \pmod{2k(k-1)}$. Let GF(q) denote the finite field of q elements, θ a generating element of the multiplicative group $GF(q)^{\times}$. Let $M=(\theta^{k(k-1)/2})$, $L=(\theta^{k(k-1)})$ be two subgroups of $GF(q)^{\times}$, then $[GF(q)^{\times}:M]=k(k-1)/2$ and [M:L]=2.

Given $\alpha \in L$ and $\sigma \in GF(q)^{\times}$, define a map $g_{\alpha\sigma}$ as follows: $g_{\alpha\sigma}: x \mapsto \alpha x + \sigma$, $\forall x \in GF(q)$. Let $G = GF(q)^{+} \rtimes L$ denote the set of such map, then G is a subgroup of AGL(1,q) of order q(q-1)/k(k-1).

Let $B = \{\beta_1, \beta_2, \dots, \beta_k\}$ be a subset of GF(q) consisting of k different elements. Define $B^- = \{\beta_j - \beta_i | 1 \le i < j \le k\}$, clearly $|B^-| = k(k-1)/2$. For an element $g = g_{\alpha\sigma} \in G$, define $B^g = \{\beta_1^g, \beta_2^g, \dots, \beta_k^g\}$.

Lemma 2.1 (see [3]) $M = L \cup (-L)$, where $-L = \{-\delta | \delta \in L\}$.

Lemma 2.2 (see [3]) Let $B = \{\beta_1, \beta_2, \dots, \beta_k\}$ be a k-subset of GF(q). If B^- is a system of representative of the cosets of M in $GF(q)^{\times}$, then $\mathcal{D} = (GF(q), B^G)$ is a 2-(q, k, 1) design, and G is block-transitive, but not flag-transitive on \mathcal{D} .

Lemma 2.3 Given a finite number if polynomials $a_{10}+a_{11}x+\cdots+a_{1n_1}x^{n_1}$, $a_{20}+a_{21}x+\cdots+a_{2n_2}x^{n_2}$, \cdots , $a_{m0}+a_{m1}x+\cdots+a_{mn_m}x^{n_m}$ in C[x], if $c_0+c_1x+\cdots+c_sx^s$ is the product of those polynomials, then

$$\sum_{j=0}^{s} |c_j| \le \prod_{i=1}^{m} (|a_{i0}| + |a_{i1}| + \dots + a_{in_i}|).$$

Weil's theorem on character sums is very impotent for our proof of the main theorem.

Lemma 2.4 (see [7]) Let GF(r) be finite field, and Ψ a multiplicative character of GF(r) of order m > 1. Suppose that $f(x) \in GF(r)[x]$ is a monic polynomial of positive degree, and that f(x) is not a mth power of a polynomial. Let d denote the number of distinct roots of f(x) in its splitting field over GF(r). Then for any element $\alpha \in GF(r)$,

$$\mid \Sigma_{x \in GF(r)} \Psi(\alpha f(x)) \mid \leq (d-1)\sqrt{r}$$
.

3 The proof of the main theorem

In this section, we will prove our main theorem, and the methods are similar to [3]. We always assume that q is a prime power such that $q \equiv 57 \pmod{112}$, θ a generating element of the multiplicative group $GF(q)^{\times}$. Let $M = \langle \theta^{28} \rangle$, $B = \{0,1,\beta,\beta^2,\beta^3,\beta^4,\beta^5,\beta^6\}$, where $\beta \in GF(q)^{\times}$. Now $B^- = \{1,\beta,\beta^2,\beta^3,\beta^4,\beta^5,\beta^6\} \cup \{\beta^j-\beta^i|0 \le i < j \le 6\}$, and the elements of B^- are listed as follows:

Lemma 3.1 Let $B = \{0, 1, \beta, \beta^2, \beta^3, \beta^4, \beta^5, \beta^6\}$, where $\beta \in GF(q)^{\times}$ satisfies the following conditions:

$$\begin{cases} \beta \in M\theta \cup M\theta^{-} \\ \beta^{21}(\beta - 1) \in M \\ \beta^{22}(\beta + 1) \in M \\ \beta^{7}(\beta^{2} - 1) \in M \\ \beta^{17}(\beta^{2} + \beta + 1) \in M \\ \beta^{25}(\beta^{2} - \beta + 1) \in M \\ \beta^{10}(\beta^{4} + \beta^{3} + \beta^{2} + \beta + 1) \in M \end{cases}$$

$$(2)$$

Then B^- is a system of representatives of the cosets of M in $GF(q)^{\times}$.

Proof. Let θ be a generating element of $GF(q)^{\times}$, then the cosets of M in $GF(q)^{\times}$ are $M\theta^{j}$, where $j=1,2,\cdots,27$. If $\beta\in M\theta$ (similarly, $\beta\in M\theta^{-}$), then $(\beta-1)\in M\theta^{7}, (\beta+1)\in M\theta^{6}, (\beta^{2}+1)\in M\theta^{8}, (\beta^{2}+\beta+1)\in M\theta^{11}, (\beta^{2}-\beta+1)\in M\theta^{3}, (\beta^{4}+\beta^{3}+\beta^{2}+\beta+1)\in M\theta^{18}$.

Therefore, the elements in the first column of (1) run over $M\theta^j (j=0,1,\cdots,6)$, the elements in the second column of (1) run over $M\theta^j (j=7,\cdots,12)$, the elements in the third column of (1) run over $M\theta^j (j=13,\cdots,17)$, the elements in the forth column of (1) run over $M\theta^j (j=18,\cdots,21)$, the elements in the fifth column of (1) run over $M\theta^j (j=22,23,24)$, the elements in the sixth column of (1) run over $M\theta^j (j=22,23,24)$, and finally $\beta^6-1=(\beta-1)(\beta^2+\beta+1(\beta-1)(\beta^2-\beta+1)\in M\theta^{27}$.

Let $\Omega = \{\beta | \beta \in GF(q)\}$ satisfy conditions (2). To prove our main theorem, it suffices to show that if q is larger enough then $|\Omega| > 0$ by Lemma 2.2.

Let $\alpha = e^{2\pi/28}$ be a 28th unity root, for any integer j, define $\Psi(\theta^j) = \alpha^j$.

Since $q \equiv 57 \pmod{112}$, Ψ is a character of order 28 on GF(q), and so $\Psi^- = \Psi^{27}$. As usual, define $\Psi(0) = 0$, $\Psi^0(0) = 1$.

Let $f_1(x) = x^{21}(x-1)$, $f_2(x) = x^{22}(x+1)$, $f_3(x) = x^7(x^2+1)$, $f_4(x) = x^{17}(x^2+x+1)$, $f_5(x) = x^{25}(x^2-x+1)$, $f_6(x) = x^{10}(x^4+x^3+x^2+x+1)$. For $j \in \{1, 2, 3, 4, 5, 6\}$, we have

$$1 + \Psi(f_j(x)) + \dots + \Psi^{27}(f_j(x)) = \begin{cases} 28, & \text{if} \quad f_j(x) \in M \\ 1, & \text{if} \quad f_j(x) = 0 \\ 0, & \text{otherwise} \end{cases}$$
 (3)

Let $\mathbb{I} = \{3, 5, 7, 9, 11, 13\},\$

$$F(x) = [2 - \Psi^{14}(x) - \Psi^{-14}(x)] \prod_{i \in I} [\Psi(x) + \Psi^{-1}(x) - \alpha^j - \alpha^{-j}]. \tag{4}$$

Note that if $x \in M\theta^j$, 2|j, then $\Psi^{14}(x) = \Psi^{-14}(x) = 1$, and if $x \in M\theta^j \cup M\theta^{-j}$ then $\Psi(x) + \Psi^{-1}(x) = \alpha^j + \alpha^{-j}$. Therefore,

$$F(x) = \begin{cases} F(\theta), & \text{if } x \in M\theta \cup M\theta^{-} \\ F(0), & \text{if } x = 0 \\ 0, & \text{otherwise} \end{cases}$$
 (5)

Write $b = F(\theta)$. A direct calculation shows that

$$b = 2 \prod_{j \in I} (2\cos\frac{\pi}{14} - 2\cos\frac{j\pi}{14}) \approx 62.9154.$$

Let

$$H(x) = F(x) \prod_{j=1}^{6} [1 + \Psi(f_j(x)) + \dots + \Psi^{27}(f_j(x))], \tag{6}$$

and consider the sum $S=\sum_{x\in GF(q)}H(x)$. We partition the set GF(q) into three disjoint parts $GF(q)=\Omega\cup\Omega_1\cup\Omega_2,\ \Omega_1=\{\beta|f_j(\beta)=0\ \text{for some}\ j\},\ \Omega_2=GF(q)-(\Omega\cup\Omega_1).$ Clearly, $\Omega_1=\{0,\pm 1,\beta|\beta^2+1=0,\beta^2+\beta+1=0,\beta^2+\beta+1=0\}$. So $|\Omega|\leq 13$. Now

$$S = \sum_{x \in \Omega} H(x) + \sum_{x \in \Omega_1} H(x) + \sum_{x \in \Omega_2} H(x). \tag{7}$$

We know if $x \in \Omega$, then $H(x) = b \cdot 28^6$, if $x \in \Omega_2$, then H(x) = 0. Therefore,

$$S = 28^{6}b|\Omega| + \sum_{x \in \Omega} H(x).$$
 (8)

On the other hand,

$$S = H(0) + \sum_{x \in GF(q)^{\times}} H(x). \tag{9}$$

For $x \neq 0, \Psi(x)\Psi^{-}(x) \equiv 1$ holds. Hence F(x) can be written as

$$F(x) = c_0 + c_1 \Psi(x) + c_2 \Psi^2(x) + \dots + c_{27} \Psi^{27}(x)$$
 (10)

and

$$H(x) = c_0 + \sum_{(n,n_1,\cdots,n_6)} c_j \Psi^n \Psi^{n_1}(f_1) \cdots \Psi^{n_6}(f_6) = c_0 + \sum_{(n,n_1,\cdots,n_6)} c_j \Psi(x^n f_1^{n_1} \cdots f_6^{n_6})$$

then the sum in (8) becomes that

$$S = H(0) + \sum_{x \in GF(q)^{\times}} c_0 + \sum_{(n,n_1,\dots,n_6)} \sum_{x \in GF(q)^{\times}} c_j \Psi(x^n f_1^{n_1} \dots f_6^{n_6}).$$
 (11)

where $\Psi, f_1, \Psi(f_1)$ denote $\Psi(x), f_1(x), \Psi(f_1(x))$ respectively, etc, and (n, n_1, \dots, n_6) runs over $\{0, 1, \dots, 27\}^7 - \{0, \dots, 0\}$. Equating (8) and (11), we get that

$$28^{6}b|\Omega| = c_0(q-1) + S_1 + S_2 \tag{12}$$

where $S_1 = H(0) - \sum_{x \in \Omega_1} H(x)$, and

$$S_2 = \sum_{x \in GF(q)^{\times}} c_0 + \sum_{(n,n_1,\cdots,n_6)} \sum_{x \in GF(q)^{\times}} c_j \Psi(x^n f_1^{n_1} \cdots f_6^{n_6}).$$

Note that $|\Psi(x)| \leq 1$, so from (6) follows that $|H(x)| \leq 4^{11} \cdot 28^6$, hence

$$|S_1| = |H(0) - \sum_{x \in \Omega_1} H(x)| \le (|\Omega_1| + 1)4^{10} \cdot 28^6.$$
 (13)

By applying Lemma 2.3 to (4), the coefficients in (10) satisfy that $|c_i| \le 4^{10}$, i =

$$\begin{array}{ll} \text{2.5 spp.} & \text{and 2.5 states} & \text{2.5 states} & \text{3.5 states} & \text{4.5 states} & \text{4.$$

where

ere
$$\begin{array}{l} e_0 = \prod_{j \in \mathbf{I}} 2\cos \pi j / 14 \approx -1.92388 \cdot 10^{-7} \\ e_2 = \sum_{j_1 < \dots < j_4; j_1, \dots, j_4 \in \mathbf{I}} 16\cos \pi j_1 / 14 \times \dots \times \cos \pi j_4 / 14 \approx 1.84117 \\ e_4 = \sum_{j_1 < j_2; j_1, j_2 \in \mathbf{I}} 4\cos \pi j_1 / 14 \times \cos \pi j_2 / 14 \approx -3.19806 \\ e_6 = 1. \end{array}$$

Therefore

$$c_0 = 2 \times [e_0 + e_2 C_2^1 + e_4 C_4^2 + e_6 C_6^3] \approx 8.98792, \tag{14}$$

Now $x^n f_1^{n_1} \cdots f_6^{n_6}$ has at most 14 distinct roots in any extension field of GF(q). Applying Lemma 2.4, for $(n, n_1, \dots, n_6) \in \{0, 1, \dots, 27\}^7 - \{0, \dots, 0\}$, we have

$$|\sum_{x \in GF(q)^{\times}} c_j \Psi(x^n f_1^{n_1} \cdots f_6^{n_6})| \le |c_j| (14 - 11) \sqrt{q} \le 13 \cdot 4^{10} \sqrt{q}.$$

Hence

$$|S_2| = |\sum_{(n,n_1,\dots,n_6)} \sum_{x \in GF(q)^{\times}} c_j \Psi(x^n f_1^{n_1} \cdots f_6^{n_6})| \le 13 \cdot 4^{10} \cdot 28^7 \sqrt{q}.$$
 (15)

From (12)-(15), we get

$$\begin{array}{ll} \text{n (12)-(15), we get} \\ 28^6 b |\Omega| & \geq c_0(q-1) - 15 \cdot 4^{10} \cdot 28^6 - 13 \cdot 4^{10} \cdot 28^7 \sqrt{q} \\ & > c_0(q-1) - 13 \cdot 4^{10} \cdot 28^7 (\sqrt{q} + 1) \\ & = c_0(\sqrt{q} + 1)(\sqrt{q} - 1 - \frac{13 \cdot 4^{10} \cdot 28^7}{c_0}) \end{array}$$

Therefore, if $q > 5.2856 \cdot 10^{32}$, then $|\Omega| > 0$, which implies that there is $\beta \in GF(q)^{\times}$ satisfying (2), as required. \square

References

- F. Buekenhout, A. Delandtsheer, J. Doyen, P. Kleidman, M. Liebeck, J. Saxl, Linear spaces with flag-transitive automorphism groups, Geom. Dedicata, 36(1990), 89-94.
- [2] A. Camina, J. Siemons, Block transitive automorphism groups of 2-(v, k, 1) block designs, J. Combin. Theory, Ser A, 51(1989), 268-276.
- [3] S. F. Ding, The existence and contruction of family of block-transitive 2-(v, 6, 1) designs, J. Combin. Theory Ser. A, 116(2009), 215-222.
- [4] S. F. Ding, The existence of family of block-transitive 2-(v,7,1) designs. Submitted.
- [5] G. Han, H. Li, Unsolvable block transitive automorphism groups of 2-(v, k, 1) designs, J. Combin. Theory, Ser A, 114 (2007), 77-96.
- [6] H. Li, On block-transitive 2-(v, 4, 1) designs, J. Combin. Theory, Ser A, 69(1995), 115-124.
- [7] R. Liedl, H. Niederreiter, Finite Fields, Cambridge University Press, 1997.
- [8] W. Liu, H. Li, C. Ma, Soluble block-transitive automorphism groups of 2- (v, 6, 1) designs, Acta. Math. Sinica, 43(2000), 157-162.
- [9] W. W. Tong, H. L. Li, Solvable transitive automorphism groups of 2-(v, 5, 1) de-signs, Discrete. Math. 260(2003), 267-273.

On chromatic number of graphs without certain induced subgraphs

Fang Duan and Baoyindureng Wu*

College of Mathematic and System Sciences, Xinjiang University,

Urumqi, Xinjiang 830046, P. R. China

Email: baoyin@xju.edu.cn

Mathematics Subject Classifications: 05C15

Abstract

Gyárfás conjectured that for a given forest F, there exists an integer function $f(F,\omega(G))$ such that $\chi(G) \leq f(F,\omega(G))$ for any F-free graph G, where $\chi(G)$ and $\omega(G)$ are respectively, the chromatic number and the clique number of G. Let G be a C_5 -free graph and k be a positive integer. We show that if G is (kP_1+P_2) -free for $k\geq 2$, then $\chi(G)\leq 2\omega^{k-1}\sqrt{\omega}$; if G is (kP_1+P_3) -free for $k\geq 1$, then $\chi(G)\leq \omega^k\sqrt{\omega}$. A graph G is k-divisible if for each induced subgraph G of G with at least one edge, there is a partition of the vertex set of G into G into G is G into G into G into G into G is G into G into

Keywords: F-free graph, Perfect graph, Divisibility.

1 Introduction

All graphs considered here are finite, undirected and simple. We refer to [1] for unexplained terminology and notation. Let G = (V(G), E(G)) be a graph, and let S be a nonempty subset of V(G). The subgraph of G induced by S, denoted G[S], is the subgraph of G with vertex set S, in

^{*}Corresponding author.

which two vertices are adjacent if and only if they are adjacent in G. If G[S] has no edge, S is called an independent set; if G[S] is a complete graph, then S is called a clique. The maximum cardinality of an independent set is called the independence number of G, denoted $\alpha(G)$; the maximum cardinality of a clique is called the clique number of G, denoted $\omega(G)$. The chromatic number of G, denoted $\chi(G)$, is the minimum number K such that the vertices of G can be partitioned into K independent sets. In general, there is no upper bound on the chromatic number of a graph in terms of its clique number, since there are graphs containing no triangle, but having arbitrarily large chromatic number.

A graph G is called perfect if $\chi(H) = \omega(H)$ for each induced subgraph H of G. There are graph classes which can be characterized by forbidden induced subgraphs, e.g. cographs (i.e. P_4 -free graphs), chordal graphs, split graphs, threshold graphs. Berge conjectured that a graph G is perfect if and only if neither G nor its complement \overline{G} contains an induced odd cycle of order at least five. This famous conjecture, known as Strong Perfect Graph Conjecture, has recently been solved by Chudnovsky, Robertson, Seymour and Thomas [2].

Gyárfás [4] has introduced the concept of χ -bound functions. Here, a family G of graphs is called χ -bound with χ -binding function f, if $\chi(H) \leq f(\omega(H))$ holds whenever H is an induced subgraph of $G \in G$. For a given graph F, a graph G is F-free if it does not contain an induced subgraph isomorphic to F. Gyárfás proposed a conjecture: if F is a forest, there exist an integer $f(F,\omega)$ such that every F-free graph with maximum clique size ω is $f(F,\omega)$ -colorable. This conjecture is only proved in special cases.

Hoàng and McDiarmid [5] recently introduced the notion of k-divisible graphs. A k-division of a graph G = (V, E) is a partition of the vertex set V into k sets V_1, \dots, V_k such that no V_i contains a clique of size $\omega(G)$. A graph G is k-divisible if each induced subgraph of G with at least one edge has a k-division. The least such k is the divisibility number div(G). A strong k-division of a graph G is a partition of the vertex set V into k sets V_1, \dots, V_k such that no V_i contains a maximal clique of G. We shall say that a graph is strongly k-divisible if each induced subgraph with no isolated vertices has a strong k-division. Obviously, every strongly k-divisible graph is k-divisible.

We denote the path on k vertices by P_k . The graph with vertices a, b, c, d

and edges ab,ac will be called a co-paw. The graph with vertices a,b,c,d and edges ab and cd is called $2K_2$. The graph with vertices a,b,c,d and edge ab will be called a $2P_1 + P_2$. Wagon [6] proved that for any $2K_2$ -free graph $G, \chi(G) \leq \frac{1}{2}(\omega(G)+1)\omega(G)$. Hoàng and McDiarmid [5] showed that for any C_5 -free and co-paw free graph $G, \chi(G) \leq \omega(G)^{\frac{3}{2}}$.

Let G be a C_5 -free graph and k be a positive integer. We show that if G is (kP_1+P_2) -free for $k\geq 2$, then $\chi(G)\leq 2\omega^{k-1}\sqrt{\omega}$; if G is (kP_1+P_3) -free for $k\geq 1$, then $\chi(G)\leq \omega^k\sqrt{\omega}$. Gravier, Hoàng and Maffray [3] showed that any $(2P_1+P_2)$ -free graph is 3-divisible. But we are interested in the 2-divisible case. Accordingly, we show that a $(2P_1+P_2)$ -free and C_5 -free graph is 2-divisible in this paper.

2 Colorability

Let R(p,q) be the Ramsey function, that is the smallest m=m(p,q) such that all graphs on m vertices contain either an independent set of p vertices or a clique of q vertices. It was pointed out in [4] that for a $(2P_1+P_2)$ -free graph $G, \chi(G) \geq \frac{R(3,\omega+1)-1}{2}$. Accordingly, $(2P_1+P_2)$ -free graphs have not linear χ -binding function.

Let G be a graph. For a vertex $x \in V(G)$, N(x) denote the set of neighbors of x and $M(x) = V(G) \setminus (\{x\} \cup N(x))$.

Theorem 2.1. Suppose a graph G contains no induced 5-cycle and no induced $2P_1 + P_2$. Then

- (1) if $\omega(G) = 2$, $\chi(G) = \omega(G)$,
- (2) if $\omega(G) \ge 3$, $\chi(G) \le 2\omega(G)^{\frac{3}{2}}$.

Proof. We can assume that G is connected. First, we prove (1). Since $\omega(G)=2$, G contains no triangle. Note that the existence of an induced odd cycle of length greater than five would imply that of $2P_1+P_2$. Combining these to the assumption that G has no odd cycle of length five, G is bipartite, and thus $\chi(G)=2$.

We shall prove (2) by induction on the number of vertices of G. Suppose there is a function $g(\omega)$ such that $\chi(H) \leq g(\omega(H))$ for every proper induced subgraph H of G. The function g will be defined later.

We may assume that $\alpha \geq 2$, for otherwise the theorem holds trivially. If for every edge $xy \in E(G)$, $N(x) \setminus (N(y) \cup \{y\}) = \emptyset$, $N(y) \setminus (N(x) \cup \{x\}) = \emptyset$

and $M(xy) = \emptyset$, then G must be a complete graph. If it is not, then there are two non-adjacent vertices, say u and v, in G. Since G is connected, we can take a neighbor, say x, of u. We consider the edge xu. If $xv \in E(G)$, then $N(x) \setminus (N(u) \cup \{u\}) \neq \emptyset$ since it contains v. If $xv \notin E(G)$, then $M(xu) \neq \emptyset$ since it contains v. A contradiction. So in this case, the result trivially holds.

Now assume that there is an edge xy in G such that at least one of $N(x)\setminus (N(y)\cup \{y\}),\ N(y)\setminus (N(x)\cup \{x\})$ and M(xy) is not empty. If $(N(x)\setminus (N(y)\cup \{y\}))\neq \emptyset$, put $A=(N(x)\setminus (N(y)\cup \{y\}))\cup M(xy)$ and $B=\{y\}\cup (N(y)\setminus N(x)).$ Otherwise, put $A=(N(y)\setminus (N(x)\cup \{x\}))\cup M(xy)$ and $B=\{x\}\cup (N(x)\setminus N(y)).$ Obviously, A,B are not empty. Without loss of generality, it suffices to consider the case that $A=(N(x)\setminus (N(y)\cup \{y\}))\cup M(xy)$ and $B=\{y\}\cup (N(y)\setminus N(x)).$

Claim 1. G[A] and G[B] are cographs.

Proof. By contradiction, suppose abcd is an induced subgraph of G[A] which is isomorphic to P_4 . Then $G[\{a,b,d,y\}]$ is a $2P_1+P_2$, a contradiction. So A is P_4 -free. Similarly, $N(y)\setminus (N(x)\cup \{x\})$ is P_4 -free, and since $B\setminus \{y\}\subseteq N(y)$, G[B] is P_4 -free. So G[A] and G[B] are cographs.

Let W' be a maximum clique in G[A], and |W'| = s. For $i = 0, 1, \dots s$, put $X_i = \{u \in N(xy) : |N(u) \cap W'| = i\}$.

Claim 2. $X_0 \cup X_1 \cdots \cup X_{s-2}$ is a clique.

Proof. Suppose, on the contrary, that u and v are two non-adjacent vertices in $G[X_0 \cup X_1 \cdots \cup X_{s-2}]$ with $u \in X_i$ and $v \in X_j$.

First assume that i=j. By the definition of X_i , both u and v have exactly i neighbors in W'. If u and v are adjacent to same i vertices of W', then for $i \leq s-2$, there are two vertices in W' adjacent to neither u nor v, which contradicts the assumption that G is $(2P_1+P_2)$ -free. If u,v are not adjacent to same i vertices of W', then, there exist two vertices u' and v' of W' such that u' is adjacent to u and is not adjacent to v, and v' is adjacent to v and is not adjacent to v. However, $G[\{y,u,v,u',v'\}] \cong C_5$, a contradiction. So $G[X_i]$ is a clique for any $i \in \{0,1,2,\cdots,s-2\}$.

Now we consider the case $i \neq j$, and without loss of generality, let i < j. If $N(u) \cap W' \subset N(v) \cap W'$, and since $i < j \le s-2$, then there exists an edge

ab in W' such that both a and b are adjacent to neither u nor v. Hence, $G[\{a,b,u,v\}] \cong 2P_1 + P_2$, a contradiction. If $N(u) \cap W' \subsetneq N(v) \cap W'$, there exists an edge ab such that $G[\{y,u,v,a,b\}] \cong C_5$, a contradiction. So $X_0 \cup X_1 \cdots \cup X_{s-2}$ is a clique.

Claim 3. $G[X_{s-1}]$ is a perfect graph.

Proof. Obviously, $G[X_{s-1}]$ contains no induced 5-cycles by assumption, and no induced odd cycle of length greater than five, otherwise, it must contain an induced subgraph isomorphic to $2P_1 + P_2$. Next we prove that the complement of $G[X_{s-1}]$ does not contain an induced cycle of length at least five. Suppose, on the contrary, it does such one. Then clearly, $G[X_{s-1}]$ contains an induced subgraph H isomorphic to $P_1 + P_2$, and let $V(H) = \{a, b, c\}, bc \in E(H)$. If $N(a) \cap W' \neq N(b) \cap W'$, and since $|N(a) \cap W'| = |N(b) \cap W'| = s - 1$, $(N(a) \setminus N(b)) \cap W' \neq \emptyset$, $(N(b) \setminus N(a)) \cap W' \neq \emptyset$. Let $a' \in (N(a) \setminus N(b)) \cap W'$, $b' \in (N(b) \setminus N(a)) \cap W'$. Then $G[\{a, a', b', b, y\}] \cong C_5$. It is not possible. Hence, $N(a) \cap W' = N(b) \cap W'$. Similarly, $N(a) \cap W' = N(c) \cap W'$. However, if let $d \in W' \setminus N(a)$, $G[\{d, a, b, c\}] \cong 2P_1 + P_2$, a contradiction. So neither $G[X_{s-1}]$ nor its complement contains an odd cycle of length greater than three, $G[X_{s-1}]$ is a perfect graph by strong perfect graph theorem.

Let $\omega(G) = \omega$. Since y is not adjacent to any vertex in A, and by Claim $1, \chi(G[A \cup \{y\}]) = \omega(G[A \cup \{y\}]) = s$. Now, we give two different colorings of G. First, we have

$$\chi(G) \le g_1 = \chi(G[N(xy) \cup (N(y) \setminus N(x))]) + \chi(G[A \cup \{y\}]).$$

Note that $\omega(G[N(xy) \cup (N(y) \setminus N(x))]) \leq \omega - 1$, so by the induction hypothesis,

$$g_1 \leq g(\omega - 1) + s$$
.

On the other hand, since G[A] is perfect, $\chi(G[A]) = \omega(G[A]) \leq \omega$. Since $\omega(G[X_s]) \leq \omega(G) - s$,

$$\chi(G) \leq g_2 = \chi(G[X_0 \cup \dots \cup X_{s-2}]) + \chi(G[A]) + \chi(G[B])
+ \chi(G[X_s]) + \chi(G[X_{s-1}])
\leq g(\omega - s) + 4\omega.$$

By setting $g(\omega) = 2\omega^{\frac{3}{2}}$, we have $min(g_1, g_2) \leq g(\omega) = 2\omega\sqrt{\omega}$. Indeed, if $s \leq 2\sqrt{\omega}$ then $g_1 \leq 2(\omega - 1)\sqrt{\omega} + 2\sqrt{\omega} \leq g(\omega)$ and if $s > 2\sqrt{\omega}$ then $g_2 \leq 2(\omega - s)\sqrt{\omega - s} + 4\omega \leq 2(\omega - 2\sqrt{\omega})\sqrt{\omega} + 4\omega \leq g(\omega)$.

Corollary 2.2. Suppose that the graph G contains no induced 5-cycle. We have

- (1) If G contains no induced kP_1+P_2 for an integer $k \geq 2$, then $\chi(G) \leq 2\omega^{k-1}\sqrt{\omega}$,
- (2) If G contains no induced $kP_1 + P_3$ for an integer $k \geq 1$, then $\chi(G) \leq \omega^k \sqrt{\omega}$.

Proof. The proof is made by induction on $\omega + k$.

First we prove (1). If k=2, then $kP_1+P_2=2P_1+P_2$, and by Theorem 2.1, $\chi(G)\leq 2\omega\sqrt{\omega}$. Now assume that $k\geq 3$ and G contains no induced 5-cycle and no kP_1+P_2 . Pick a vertex x from G. Then it is clear that G[M(x)] contains no induced 5-cycle and no $(k-1)P_1+P_2$. So by induction hypothesis that $\chi(G[\{x\}\cup M(x)])\leq 2\omega^{k-2}\sqrt{\omega}$. On the other hand, $\omega(G[N(x)])\leq \omega-1$, and thus $\chi(G[N(x)])\leq 2(\omega-1)^{k-1}\sqrt{\omega-1}$. This gives

$$\chi(G) = \chi(G[N(x)] + \chi(G[\{x\} \cup M(x)])$$

$$\leq 2(\omega - 1)^{k-1}\sqrt{\omega - 1} + 2\omega^{k-2}\sqrt{\omega}$$

$$\leq 2(\omega - 1)\omega^{k-2}\sqrt{\omega} + 2\omega^{k-2}\sqrt{\omega}$$

$$\leq 2\omega^{k-1}\sqrt{\omega}.$$

Now we show (2). If k=1, kP_1+P_3 is known as the co-paw, and by [5], $\chi(G) \leq \omega \sqrt{\omega}$. Now assume $k \geq 2$, and G contains no induced 5-cycle and no kP_1+P_3 . Then clearly, for any vertex $x \in V(G)$, G[M(x)] contains no induced $(k-1)P_1+P_3$ and no induced 5-cycle, and thus by induction hypothesis, $\chi(G) \leq \chi(G[N(x)]) + \omega^{k-1}\sqrt{\omega}$. On the other hand, since $\omega(G[N(x)]) \leq \omega - 1$, and by induction hypothesis, $\chi(G[N(x)]) \leq (\omega - 1)^k\sqrt{\omega - 1}$.

$$\begin{split} \chi(G) &= \chi(G[N(x)] + \chi(G[\{x\} \cup M(x)]) \\ &\leq (\omega - 1)^k \sqrt{\omega - 1} + \omega^{k-1} \sqrt{\omega} \\ &\leq (\omega - 1)\omega^{k-1} \sqrt{\omega} + \omega^{k-1} \sqrt{\omega} \\ &\leq \omega^k \sqrt{\omega}. \end{split}$$

3 Divisibility

Lemma 3.1. [5] Every C_5 -free non-complete graph is strongly α -divisible.

Observe that for a subset S of the vertices of a graph G, if there exists a subset $T \subseteq V(G)$ such that $S \cap T = \emptyset$ and each vertex of T is adjacent to each vertex of S in G, then S does not contain any maximal clique of G. In the proof of the following theorem, we frequently use this fact.

Theorem 3.2. Suppose that a graph G contains no induced 5-cycle and no induced $2P_1 + P_2$. Then G is strongly 2-divisible.

Proof. We assume G is connected, and S is a maximum independent set of G. Take a vertex x from S and let y be a neighbor of x. We only need prove that G has a strong 2-division. Let us consider M(xy).

If $M(xy) = \emptyset$, it is easy to see that (A, B) is a strong 2-division of G, where $A = N(y) \setminus N(x)$ and B = N(x).

Now suppose |M(xy)| = 1 and let $M(xy) = \{a\}$. We claim that at most one of $\{a\} \cup (N(x) \setminus N(y))$ and $\{a\} \cup (N(y) \setminus N(x))$ contains a maximal clique of G. Otherwise, let X and Y be maximal cliques of $\{a\} \cup (N(x) \setminus N(y))$ and $\{a\} \cup (N(y) \setminus N(x))$, respectively. Clearly, both X and Y contain $\{a\}$. Pick a vertex x' from X. Then it must be adjacent to each vertex of Y, since a vertex $y' \in Y$ is not adjacent to x', $G[\{x, x', a, y', y\}] \cong C_5$, a contradiction. So, without loss of generality, assume that $\{a\} \cup (N(x) \setminus N(y))$ does not contain a maximal clique of G. Then G has a strong 2-division A, B with $A = \{a\} \cup (N(x) \setminus N(y))$, B = N(y).

If $\alpha \leq 2$, G is strongly 2-divisible by Lemma 3.1. Next we consider the case when $\alpha \geq 3$ and $|M(xy)| \geq 2$.

Claim 1. The following statements are true.

- (1) Each vertex of $(M(xy) \cup (N(y) \setminus N(x))) \setminus S$ is adjacent to each vertex of $S \setminus \{x\}$ in G.
 - (2) M(xy) is a clique of G.
- (3) Each vertex of $N(x) \setminus (\{y\} \cup N(y))$ is not adjacent to at most one vertex of M(xy) in G.

Proof. We show (1) by contradiction. Suppose a vertex $u \in (M(xy) \cup (N(y) \setminus N(x))) \setminus S$ is not adjacent to a vertex, say v, of $S \setminus \{x\}$. Since S is a maximum independent set of G, v is adjacent to a vertex, say w, of S. It is obvious that $w \neq x$, and v, w, x are not mutually adjacent since they are elements of S. Thus $G[\{u, v, w, x\}] \cong 2P_1 + P_2$, a contradiction. To see M(xy) is a clique, if two vertices u and v of M(xy) are not adjacent in G, then $G[\{u, v, x, y\}] \cong 2P_1 + P_2$, a contradiction. Now suppose that two vertices $u, v \in M(xy)$ which are not adjacent to a vertex $w \in N(x) \setminus (\{y\} \cup N(y))$. Then $G[\{u, v, w, y\}] \cong 2P_1 + P_2$, a contradiction. \square

Accordingly, $S \subseteq N(y) \setminus N(x)$, or $|S \cap M(xy)| = 1$ and $S \setminus M(xy) \subseteq N(y) \setminus N(x)$.

Claim 2. If $S \subseteq N(y) \setminus N(x)$, then

- (1) Each vertex of $N(x) \setminus N(y)$ is adjacent to each vertex of S in G.
- (2) (A, B) is a strong 2-division of G, where $A = S \cup N(xy)$ and $B = M(xy) \cup (N(x) \setminus N(y)) \cup (N(y) \setminus S)$.

Proof. We prove (1) by contradiction. Suppose a vertex $u \in N(x) \setminus N(y)$ and $v \in S$ are not adjacent in G. Clearly, $u \neq y$ and $x \neq v$. By Claim 1, there exists a vertex, say w, of M(xy), which is adjacent to both u and v in G. Then $G[\{x, y, v, w, u\}] \cong C_5$, a contradiction.

Let us consider (2). Since $A \subseteq N(y)$, it contains no maximal clique of G. By (1) of Claim 1 and (1) of Claim 2, each vertex of B is adjacent to each vertex of $S \setminus \{x\}$, and thus B does not contain any maximal clique of G either.

Now assume that $|S \cap M(xy)| = 1$ and $S \setminus M(xy) \subseteq N(y) \setminus N(x)$. Let $M(xy) \cap S = \{a\}$.

Claim 3. Set $C_1 = N(xy) \cap N(a)$, $C_2 = N(xy) \setminus C_1$. Let $D_1 = \{u \in C_1 : S \subseteq N(u)\}$. $D_2 = C_1 \setminus D_1$. If $|M(xy)| \ge 3$, then

- (1) Each vertex of $N(x) \setminus N(y)$ is adjacent to each vertex of $S \setminus \{a\}$.
- (2) Each vertex of C_2 is adjacent to each vertex of $S \setminus \{x, a\}$
- (3) Each vertex of D_2 is adjacent to each vertex of M(xy).
- (4) (A, B) is a strong 2-division of G, where $A = S \cup D_2$ and $B = (N(x) \setminus N(y)) \cup (N(y) \setminus S) \cup (M(xy) \setminus \{a\}) \cup C_2 \cup D_1$.

Proof. We show (1) by contradiction. Suppose that a vertex $u \in N(x) \setminus (N(y) \cup \{y\})$ is not adjacent to a vertex $v \in S \setminus \{x, a\}$. Since $|M(xy)| \geq 3$ and Claim 1, there exists a vertex $w \in M(xy) \setminus \{a\}$, which is adjacent to u and v. But, $G[\{x, u, w, v, y\}] \cong C_5$, a contradiction.

To show (2), suppose that a vertex $p \in C_2$ is not adjacent to a vertex $q \in S \setminus \{a, x\}$, then $G[\{a, q, x, p\}] \cong 2P_1 + P_2$, a contradiction.

Now we show (3) by contradiction. Suppose a vertex $u \in D_2$ is not adjacent to a vertex $w \in M(xy)$. By definition of D_2 , there is a vertex $v \in S \setminus \{a, x\}$ which is not adjacent to u. Then $G[\{y, u, w, a, v\}] \cong C_5$, a contradiction.

Now let us prove (4). Note that all vertices of B are adjacent to each vertex of $S\setminus\{x,a\}$. Hence B contains no any maximal clique of G. $(S\setminus\{a\})\cup D_2$ contains no maximal clique of G, since each vertex of $(S\setminus\{a\})\cup D_2\subseteq N(y)$. It remains to see that $\{a\}\cup D_2$ contains no maximal clique, since each vertex of $M(xy)\setminus\{a\}$ is adjacent to $\{a\}\cup D_2$.

In what follows, assume that |M(xy)| = 2, and let b be the other element of M(xy) different from a.

Claim 4. Assume that $N(y)\setminus (S\cup N(x)\cup \{x\})=\emptyset$. Let $B_1=N(xy)\cap N(b)$ and $B_2=N(xy)\setminus B_1$. Then (A,B) is a strong 2-division of G, where $A=S\cup B_1$ and $B=\{b\}\cup (N(x)\setminus N(y))\cup B_2$.

Proof. First, since $(S \setminus \{a\}) \cup B_1 \subseteq N(y)$ and $\{a\} \cup B_1 \subseteq N(b)$, A contains no maximal clique of G. To prove B contains no maximal clique of G, by the definition of B_2 , it suffices to show that both $(N(x) \setminus N(y)) \cup B_2$ and $\{b\} \cup (N(x) \setminus N(y))$ does not contain any maximal cliques of G. It is easy to see that $(N(x) \setminus N(y)) \cup B_2$ contains no maximal clique of G, since $(N(x) \setminus N(y)) \cup B_2 \subseteq N(x)$. On the other hand, by Claim $1, S \setminus \{x\} \subseteq N(b)$, and since G contains no induced G_5 , $N(b) \cap (N(x) \setminus N(y)) \subseteq N(z)$ for any vertex $z \in S \setminus \{a, x\}$. It follows that $\{b\} \cup (N(x) \setminus N(y))$ does not contain any maximal cliques of G.

Now assume that $N(y) \setminus (S \cup N(x) \cup \{x\}) \neq \emptyset$ and we consider two cases based on $M(xy) = \{a, b\}$.

First assume that $\{a,b\}$ is a maximal clique of G. Let $A_1 = (N(x) \setminus (N(y) \cup \{y\})) \cap N(a)$, $A_2 = (N(x) \setminus (N(y) \cup \{y\})) \setminus A_1$.

Claim 5. If $A_2 \neq \emptyset$, then the following statements hold:

- (1) each vertex of A_2 is adjacent to each vertex of $S \setminus \{a\}$.
- (2) each vertex of N(xy) is adjacent to each vertex of $S \setminus \{a\}$.
- (3) each vertex of A_1 is adjacent to each vertex $N(y) \setminus (S \cup N(x) \cup \{x\})$.
- (4) each vertex of A_2 is adjacent to each vertex of A_1 .
- (5) (A, B) is a strong 2-division of G with $A = A_2 \cup (N(y) \setminus S) \cup \{y, b\}$ and $B = S \cup A_1$.

Proof. By contradiction, suppose a vertex $u \in A_2$ is not adjacent to a vertex $v \in S \setminus \{a\}$. Then $G[\{x, u, v, a\}] \cong 2P_1 + P_2$, a contradiction. This proves (1).

To show (2), suppose that a vertex $u \in N(xy)$ is not adjacent to a vertex $v \in S \setminus \{a, x\}$. Then u must be adjacent to a, for otherwise, $G[\{u, a, v, y\}] \cong 2P_1 + P_2$. Moreover, since $\{a, b\}$ is a maximal clique, u is not adjacent to b. So $G[\{y, u, v, a, b\}] \cong C_5$, a contradiction.

Now we prove (3). In fact, if a vertex $u \in A_1$ is not adjacent to a vertex $v \in N(y) \setminus (S \cup N(x) \cup \{x\})$, then by the definition of A_1 , $ua \in E(G)$, and by Claim 1, $va \in E(G)$. Hence $G[\{u, v, x, y, a\}] \cong C_5$, a contradiction.

Suppose (4) is not true, and a vertex $u \in A_1$ is not adjacent to a vertex $v \in A_2$. Then, since $\{a, b\}$ is a maximal clique of G, u is not adjacent to b and by the definition A_2 and Claim 1, v is not adjacent to a. In this case, $G[\{x, u, v, a, b\}] \cong C_5$, a contradiction.

Finally we prove (5). By Claim 1 and (1-2) of Claim 4, each vertex of A is adjacent to each vertex of $S \setminus \{a, x\}$, A does not contain any maximal clique of G. Since S is an independent set, to see that B has not maximal clique it suffices to show that $A_1 \cup \{z\}$ has not a maximal clique of G for each $z \in S$. At first, by (4) of Claim 5, $\{x\} \cup A_1$ does not contain a maximal clique. Secondly, by (3), each vertex of $A_1 \cup (S \setminus \{x\})$ is adjacent to each vertex of $N(y) \setminus (S \cup N(x) \cup \{x\})$, $A_1 \cup (S \setminus \{x\})$ does not contain any maximal cliques of G.

Claim 6. Let $C_1 = N(xy) \cap N(a)$, $C_2 = N(xy) \setminus C_1$. If $A_2 = \emptyset$, then the following statements holds:

- (1) Each vertex of C_2 is adjacent to every vertex of $S \setminus \{a\}$.
- (2) Each vertex of C_1 is adjacent of each vertex of $S \setminus \{a\}$.
- (3) (A, B) is a strong 2-division of G with $A = (N(x) \setminus N(y)) \cup (N(y) \setminus N(y))$

 $S) \cup \{b\} \cup C_1 \text{ and } B = S \cup C_2.$

Proof. Suppose (1) is not true, and let a vertex $u \in C_2$ is not adjacent to a vertex $v \in S \setminus \{a\}$. Then $G[\{x, u, v, a\}] \cong 2P_1 + P_2$, a contradiction.

We show (2) by contradiction. Suppose a vertex $u \in C_1$ is not adjacent to a vertex $v \in S \setminus \{a\}$. By the definition of C_1 and the assumption that $\{a,b\}$ is a maximal clique of G, $ua \in E(G)$ and $ub \notin E(G)$. By Claim 1, $vb \in E(G)$. Hence $G[\{y,u,v,a,b\}] \cong C_5$, a contradiction. Now we conclude that each vertex of $(N(y) \setminus S) \cup \{y\} \cup C_1$ is adjacent to all of $S \setminus \{a\}$.

Now we show (3). Firstly, B has not maximal clique of G, since $(S \setminus \{a\}) \cup C_2 \subseteq N(y)$. Next we prove that A does not contain a maximal clique. It is easy to see that $((N(x) \setminus N(y)) \setminus \{y\}) \cup (N(y) \setminus S) \cup \{b\} \cup C_1 \subseteq N(a)$, $((N(x) \setminus N(y)) \setminus \{y\}) \cup (N(y) \setminus S) \cup \{b\} \cup C_1$ does not contain a maximal clique of G. It remains to show that $(N(y) \setminus S) \cup \{y\} \cup C_1$ not contain a maximal clique of G. It suffices to prove that each vertex of C_1 is adjacent of each vertex of $S \setminus \{a\}$. By (2), Accordingly, A has not maximal clique.

Claim 7. If $\{a, b\}$ is not a maximal clique of G, then the following statements holds.

- (1) If a vertex $u \in N(x) \setminus (N(y) \cup \{y\})$ is adjacent to both a and b, it is adjacent to all of $N(y) \setminus (N(x) \cup \{x\})$. Furthermore, (A, B) is a strong 2-division of G, where $A = (N(y) \setminus N(x)) \cup \{a, b\}$ and B = N(x).
- (2) If each vertex of $N(x) \setminus (N(y) \cup \{y\})$ are adjacent to exactly one vertex of $\{a,b\}$, then (A,B) is a strong 2-division of G with $A = \{a,b\} \cup (N(x) \setminus N(y))$ and B = N(y).

Proof. We prove (1) by contradiction. Suppose that there is a vertex $v \in N(y) \setminus (N(x) \cup \{x\})$ is not adjacent to u. We consider two cases. If $v \in S \setminus \{a, x\}$, then by Claim 1, $vb \in E(G)$. But, $G[\{x, y, u, v, b\}] \cong C_5$, a contradiction. If $v \in N(y) \setminus (N(x) \cup S)$, then by Claim 1, $va \in E(G)$. But, $G[\{x, y, u, v, a\}] \cong C_5$, a contradiction. It is clear that both A and B does not a maximal clique of G.

Let us show (2). Obviously, B has not a maximal clique of G. Next we show that A does not contain a maximal clique of G. Since y is adjacent to neither a nor b, it only need to prove that neither $N(x) \setminus N(y)$ nor $\{a,b\} \cup (N(x) \setminus (N(y) \cup \{y\}))$ contain a maximal clique of G. Since $N(x) \setminus \{y\}$

 $N(y) \subseteq N(x), \ N(x) \setminus N(y)$ does not contain a maximal clique of G. To prove $N(x) \setminus (N(y) \cup \{y\}) \cup \{a,b\}$ has not maximal clique it suffices to prove both $N(x) \setminus (N(y) \cup \{y\}) \cup \{a\}$ and $N(x) \setminus (N(y) \cup \{y\}) \cup \{b\}$ does not contain a maximal clique of G, since each vertex of $N(x) \setminus (N(y) \cup \{y\})$ are adjacent to exactly one vertex of $\{a,b\}$. Suppose $N(x) \setminus (N(y) \cup \{y\}) \cup \{a\}$ contains a maximal clique D. Then for each vertex $z \in N(y) \setminus (N(x) \cup S)$, $D \subseteq N(z)$, otherwise, $G[\{x,y,d,a,z\}] \cong C_5$, where $d \in D \setminus \{a\}$.

Suppose $N(x)\setminus (N(y)\cup \{y\})\cup \{b\}$ contains a maximal clique D'. Then for each vertex $w\in S\setminus \{x,a\},\ D'\subseteq N(w)$, otherwise, $G[\{x,y,d',b,w\}]\cong C_5$, where $d'\in D'\setminus \{b\}$. Hence A does not contain a maximal clique of G. The proof is complete.

References

- J.A. Bondy and U.S.R. Murty, Graph Theory With Application, MacMillan Press Ltd., London, 1976.
- [2] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph theorem, Annals of Math. 164(2006) 51-229.
- [3] S. Gravier, C.T. Hoàng, F. Maffray, Coloring the hypergraph of maximal cliques of a graph with no long path, Discrete Mathematics 272(2003) 285-290.
- [4] A. Gyárfás, Problems from the world surrounding perfect graphs, Appl. Math. XIX (3-4)(1987) 413-441.
- [5] C.T. Hoàng, C. McDiarmid, On the divisibility of graphs, Discrete Math. 242(2002) 145-156.
- [6] S. Wagon, A bound on the chromatic number of graphs without certain induced subgraphs, Journal of Combin. Theory, series B 29(1980) 345-346.