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Abstract

Let G be a simple graph, and let p be a positive integer. A subset D C
V(G) is a p-dominating set of the graph G, if every vertex v € V(G) — D is
adjacent to at least p vertices in D. The p-domination number v,(G) is the
minimum cardinality among the p-dominating sets of G. A subset I C V(G)
is an independent dominating set of G if no two vertices in I are adjacent and
if I is a dominating set in G. The minimum cardinality of an independent
dominating set of G is called independence domination number i(G).

In this paper we show that every block-cactus graph G satisfies the in-
equality v2(G) > i(G) and if G has a block different from the cycle Cy,
then 72(G) > i(G) + 1. In addition, we characterize all block-cactus graphs
G with v2(G) = i(G) and all trees T with v2(T) = i(T) + 1.

Keywords: Domination; 2-Domination; Independence Domination; Block-
Cactus Graph

1. Terminology and Introduction
We consider finite, undirected, and simple graphs G with vertex set V(G) and
edge set E(G). The number of vertices |V(G)| of a graph G is called the order

of G and is denoted by n = n(G). The neighborhood N (v) = N¢(v) of a vertex
v consists of the vertices adjacent to v and if § C V(G) then N(S) = Ng(S)
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denotes the set of vertices that are adjacent to the vertices of S in G. We call
d(v) = dg(v) = |N(v)| the degree of v and by § = §(G) and A = A(G) we
denote the minimum degree and the maximum degree of the graph G, respectively.
A vertex of degree one is called a leaf and we denote with L, the set of leaves that
are adjacent to the vertex u € V(G) and with L(G) the set of leaves in G. For
asubset S C V(G) we define by G[S] the subgraph induced by S. The distance
dc(z,y) of two vertices z and y of a connected graph G is the length of a path of
minimum length with end vertices z and y. The diameter dm(G) of a graph G is
the longest distance between every two vertices of G.

We write C,, for the cycle of length n, K, for the complete graph of order n
and K, , for the complete bipartite graph with bipartition X, Y such that | X| = p
and |Y| = g. A bipartite graph is called p-semiregular if its vertex set can be parti-
tioned in such a way that every vertex in one partite set has degree p. A subdivided
star SS; is obtained from a star K, ; by subdividing each edge by exactly one ver-
tex. A tree is a double star if it contains exactly two vertices of degree at least two.
A double star with respectively s and ¢ vertices attached to these two support ver-
tices is denoted by S, . A subdivided double star SS, ; is obtained from a double
star S, ; by subdividing each edge by exactly one vertex.

A block of a graph G is a maximal induced subgraph of G without cut vertices.
A graph G is a block graph if every block of G is a complete graph and a cactus
graph if every block of G is either a cycle or isomorphic to Ko. We call G a
block-cactus graph if every block of G is either a complete graph or a cycle. If we
substitute each edge in a non-trivial tree by two parallel edges and then subdivide
each edge, then we speak of a Cy-cactus.

Let p be a positive integer. A subset D C V(G) is a p-dominating set of the
graph G, if [Ng(v) N D| > p for every v € V(G) — D. The p-domination num-
ber ~p(G) is the minimum cardinality among the p-dominating sets of G. Note
that the 1-domination number v, (G) is the usual domination number v(G). A
p-dominating set of minimum cardinality of a graph G is called a v,(G)-set. If a
dominating set D of a graph G is also independent, that is, no two vertices of D
are adjacent, then D is called an independent dominating set. The cardinality of a
minimum independent dominating set in G is denoted with i(G) and is called the
independence domination number of G. A set of vertices U C V(G) is a covering
of G if every edge of G is incident with at least one vertex of U. A covering of
minimum cardinality is called a minimum covering and its cardinality is denoted
by B(G), the covering number of G.

In [1], [2], Fink and Jacobson introduced the concept of p-domination. In [10]
a more general domination concept was introduced. For a given integer-valued
function f defined on the vertices set V(G) of a graph G, a subset D of V(G)
is an f-dominating set if each vertex x € V(G) — D is adjacent to at least f(z)
vertices in D. The f-domination number v;(G) of G was defined in [12] as the
minimum cardinality of an f-dominating set of G. The concept of f-domination
appeared already in [8] in a slightly different way. If V(G) = {x1,z2,...,Zn}



is the set of vertices of a graph G, let associate every vertex z; with an integer b;
such that 0 < b; < d(z;) and denote b = (by,bo,...,b,). A set D of vertices
in G is called, according to (8], a b-dominating set if each z; € V(G) — D is
adjacent to at least b; vertices in D. The minimum b-dominating number of G is
defined as the cardinality of a minimum b-dominating set of G. Thus, if we define
J(z;) = b; for 1 < i < n, the f-domination and the b-domination concepts coin-

cide.
In [13], the relation between «¢(G) and #(G) in a simple graph G is analyzed.
In this paper, we concentrate on the parameters v2(G) and i(G) in block-cactus

graphs G.
For a comprehensive treatment of domination in graphs, see the monographs

by Haynes, Hedetniemi, and Slater [6], [7].

2. Preliminary results
The following results play an important role in our investigations.

Theorem 2.1 (Fink, Jacobson [1] 1985) Let p > 1 be an integer. If T is a

tree, then Dl T
v(T) > (p—_);(ﬂ

and ,(T) = ((p — 1)n(T) + 1)/p if and only if T is a p-semiregular tree or
n(T)=1.
Corollary 2.2 (Fink, Jacobson [1] 1985) If T is a tree, then
n(r) 2 2011
and y2(T) = ﬂ%& if and only if T is the subdivision graph of another tree.

Recently, Volkmann characterized the trees T' with ~,(T') = [ M%M-I .

Theorem 2.3 (Volkmann [11] 2007) If T is a tree of order n = n(T), then
1o(T) = [ﬁﬂ}'ﬂ] if and only if

(i) n = pt + 1 for an integer ¢t > 0 and T is a p-semiregular tree orn = 1 or

(ii) n = pt + r for integers t > 0 and 2 < r < p and T consists of r trees
1, T3, ..., T, which satisfy the conditions in (i) and » — 1 further edges
such that the trees T3, T3, . . . , T;. together with these 7 — 1 edges result in a
tree.



Corollary 2.4 (Volkmann [11] 2007) If T is a tree of order n = n(T), then
y(T) = [ﬁzﬂ] if and only if

(i) n is odd and T is the subdivision graph of another tree or

(ii) n is even and T consists of two subdivision trees S(71) and S(7%) and a
further edge, connecting S(T1) with S(T3).

Theorem 2.5 (Volkmann [11] 2007) A non-trivial tree T satisfies
72(T)=v(T)+1

if and only if T is a subdivided star S:S; or a subdivided star SS; minus a leaf or
a subdivided double star S5 ;.

Lemma 2.6 (Randerath, Volkmann [9] 1998) Let G be a connected C4-cactus
with the partite sets A and B. If |A| < |B], then |A] = v(G) = B(G) and
|B| = 2|A] - 2.

3. Main results
Theorem 3.1 If G is a connected block-cactus graph, then ¥2(G) > i(G).

Proof. If G is a complete graph or a cycle, then it is easy to see that 12(G) 2 i(G).
Now suppose that G has a cut vertex. We will prove the statement by induction
on the number of blocks in G. Let B be an end block of G with cut vertex « in G.

Case 1. Suppose that B = K. Let D be a v2(G)-set and let V(B) = {u,v}.

Case 1.1. Suppose that u ¢ D. If L, U {u} = V(G), then G is a star and
we are done. Let |L, U {u}| < n. Then D — L, is a 2-dominating set of G’ :=
G — (L U {u}) and 50 12(G") < 2(G) — |Lu|. Clearly, i(G) < i(G") + |Lul.
By the induction hypothesis follows 2 > i for every component of G’ and thus
v2(G’) = i(G'). This implies

72(G) 2 72(G") + |Lu| 2 i(G) + |Lu| 2 ¥(G).

Case 1.2, Suppose that v € D. Since D — {v} is a 2-dominating set of
G" := G — v, we conclude 72(G”) < 72(G) — 1. Since i(G) < i{(G”) + 1, we
obtain by the induction hypothesis

72(G) = 72(G”) +1 2 4(G") +1 2 i(G).

Case 2. Assume that B 2 K, for an integer p > 3. Let D be a 2(G)-set.
Without loss of generality, we can suppose that v € D. Then D \ (V(B) — {u})



is a 2-dominating set of G’ := G — (V(B) — {u}) and thus together with the
induction hypothesis and the evident fact that {(G’) + 1 > #(G) we obtain

72(G) 2 72(G') +12i(G’) +1 2 4(G)

Case 3. Assume that B is isomorphic to a cycle of length p > 3. Let D
be a 2(G)-set. Without loss of generality, we can suppose that v € D. Then
D\ (V(B) — {u}) is a 2-dominating set of G’ := G — (V(B) — {u}) and so

(@) <m(@) - [2E=2].

On the other hand, we observe that
i(G) <i(G) + [7'(]3%-11 .
It follows by the induction hypothesis
#(6) 2 m(@)+ | W] 26+ | f‘&g"-l] > ()
and the statement is proved. [J

Theorem 3.2 Let G be a connected block-cactus graph. If there is a block B
of G, which is different from the cycle Cj, then 72(G) > i(G) + 1.

Proof. If G is a complete graph or a cycle different from C,, then it is evi-
dent that 72(G) > #(G) + 1. Now suppose that G has a cut vertex. Let B be an
end block of G with cut vertex u in G such that G’ := G — (V(B) — {u}) has
still a block different from the cycle Cy. Now we can proceed as in the proof of
Theorem 3.1 with the only difference that by the induction hypothesis we have
72(G’) 2 i(G’) + 1. Thus in all three cases we obtain 72(G) > i(G) + 1 and the
proof is complete. O

Corollary 3.3 Let G be a non-trivial block graph. Then 12(G) > i(G) + 1.
Corollary 3.4 Let G be a unicyclic graph. If G # Cy, then %(G) > i(G) + 1.

Theorem 3.2 allows us to give a former result of Hansberg and Volkmann
as a corollary.

Corollary 3.5 (Hansberg, Volkmann [3, 4]) If G is a non-trivial block graph
or a unicyclic graph different from the cycle Cy, then ¥2(G) > v(G) + 1.



Proof. This is evident if we regard the inequality v(G) < #(G) and Corollar-
jes3.3and 3.4.0

In the same work, Hansberg and Volkmann characterized all block graphs and
unicyclic graphs G that fulfill v2(G) = v(G) + 1.

Additionally, we obtain directly from Theorem 3.2 the following result, which
will be very usefull for characterizing all block-cactus graphs G with 72(G) =
i(G).

Corollary 3.6 If G is a block-cactus graph with v2(G) = %(G), then G only
consists of Cy-blocks.

Lemma 3.7 Let T be a tree of order n = n(T). If v(T) = ¢(T) + 1, then
7(T) = [2].

Proof. Suppose that v2(T") > [%+1] + 1. Let A and B be bipartition sets of T.
Then both sets A and B are independent and dominating and hence #(T') < n/2
holds. It follows

y(T) 2 [n;1]+1> 2+1>z(T)+1

which is a contradiction to our hypothesis. Therefore v2(G) < |'—-+—'| and, to-
gether with Corollary 2.2, we obtain vo(T') = [241]. O

Theorem 3.8 Let T be a non-trivial tree of order n. Then ¥2(T) = i(G) + 1
if and only if 42(T") = 4(T) + 1 or T is isomorphic to the graph illustrated in

Figure 1.

Figure 1.

Proof. If T is isomorphic to the graph in Figure 2, then v2(T") = 4 = i(T) + 1.
If v2(T) = 4(T) + 1, then, since the inequality ¢(T) > ~(T') is always valid and
since y2(T) = i(T') + 1 in view of Corollary 3.3, we obtain v2(T") = i(T) + 1.

Conversely, assume that y2(T) = {(G) + 1. Hence, Lemma 3.7 leads to
72(T) = [23L]. We distinguish two cases.

Case 1. Assume that n is odd. Then 42(T") = (n + 1)/2 and by Corollary
2.4 it follows that T is the subdivision graph of another tree. If dm(T") < 6, we
obtain that T is either a subdivided star SS; or a subdivided double star S5, ¢,
for which 42(T) = ¥(T) + 1 hold. We will now prove by induction on n that
we can never reach equality in 42(T) > #(T) + 1 for dm(T) > 8. Let z be the

410



central vertex of T" and let L; be the set of leaves in T' of distance 7 from 2. If
dm(T) = 8, then Np(L4) U L2 U {2} is an independent dominating set of G.
Since |L4| > 2, one can easily see that [Np(Lg) U Lo U {2}] < ";3 and hence
72(T) = 2L > 253 41 > §(T) + 1. Now suppose that dm(T") > 10. Let u
be a leaf of T' and v its support vertex, for which obviously dr(v) = 2 is fulfilled.
LetT’ := T — {u, v} and let I’ be an ¢(T")-set. Then I’ U {u} is an independent
dominating set of T and ¢(T") < i(T") + 1 follows. Since T" is again a subdivision
graph and dm(T") > 8, by the induction hypothesis it follows that

1 n+1

i(T) +1SiT) +2< () +1="2=+1= o= =n).

Therefore the only possible trees T of odd order with yo(T") = i(G) + 1 are those
with dm(T) < 6.

Case 2. Assume that n is even. Then 2(T) = (n + 2)/2 and from Corollary
2.4 we obtain that T consists of two subdivsion trees T; and T of other two
trees and 77 and T> are connected by a further edge uv where v € V(T}) and
v € V(T2). Additionally, n(T}) and »n(T2) are both odd and, by Corollary 2.2,
72(T1) = (n(T1) + 1)/2 and 72(T2) = (n(T2) + 1)/2.

Case 2.1 Assumethat n(T;) > 3and n(T3) > 3. Let A; and A, be the smaller
sets of the bipartition sets of T; and T3, respectively. Then A, is an independent
dominating set of T} and A3 an independent dominating set of T5. If u ¢ A; or
v & Ao, then A; U A, is an independent dominating set of T' and thus

A0 S il + ol s B 4 S 2 PR g () -
which is a contradiction. Hence, let v € 4; and v € A3 and, since T} and T
are subdivision trees and A; and Ay are the smaller partite sets of 77 and T3,
dr,(u) = 2 and dp,(v) = 2. Then, if we regard T — v, it consists of two
sudivision trees 77 and T3'. Suppose that n(T3) > 3 and n(T4') > 3 and let A4}
and A7 be the smaller partite sets of the bipartitions of T} and T3, respectlvely

+

Then A1 U Aj U Af is an independent dominating set of T and thus
T) - T — " _
z(T)<iA1|+|A|+;A|<"( 12) 1. 22) 1+n(T22) 1
n-4 n+2
=g =5 —3=n)-3,

which is a contradiction. Now assume that n(T%3) = 1 or n(T” ) = 1. Suppose that
n(T3) = 1 and n(T}') > 3. Let V(T3) = {w}. Then, if AY is again the smaller
partite set of the bipartition of T, A; U A5 U {w}isa mdependeut dominating
set of T and thus

i(T) < [Ar] + 145] +1 <

n(:rl)-r n(Ty) -1
T
_n—4 4 n+2

+1
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again a contradiction. It follows that n(T3) = n(T3’) = 1. Because of the sym-
metry, the same follows for T} and thus T' is isomorphic to the graph illustrated in
Figure 1.

Case 2.2 Assume that T is the trivial graph. We distinguish now with respect
to the diameter dm(T2) of T5 four cases.

(i) If dm(T») = 0, then T is the trivial graph and T consists only of the edge
uv, that is, T is a subdivided star $S; without a leaf and yo(T) = v(T) + 1 =2.

(ii) Let dm(T2) = 2. Then T3 is a path of length 2. If uv would be inci-
dent with the central vertex of T3, we would have i(T) = 1 and y2(T) = 3,
which is not allowed. Therefore uv has to be incident with a leaf of T and
hence T is a path of length 3, that is, the subdivided star SS; without a leaf
and 2 (T) =v(T)+1=3.

(iii) Let dm(T2) = 4. Then T is a subdivided star SS; for an integer ¢ > 2.
If uv would be incident with a leaf or with a vertex z # =z in T3, where z is
the central vertex of T5, then v2(T") = t 4+ 2 and #(T") = ¢ and the assumption
v2(T) = i(T) + 1 would be contradicted. Therefore uv has to be incident with
the central vertex z of T%. In this case T is the subdivided star SS;4; without a
leafand yo(T) =v(T)+ 1=t +1.

(iv) Suppose dm(T2) = 6. We will show by induction on n that in such a case
the assumption y2(T') = i(T) + 1 cannot be satisfied. Let dm(T2) = 6. Then
Ty is a subdivided double star SS, ;. By analyzing which vertices of V(13) the
edge uv could be incident with, one can easily show that y2(T) = ¢(T’) + 2 holds
always. Let now dm(T2) > 8. Let z be a leaf in T and y its support vertex such
that u ¢ Nr({z,y}). Then T — {z,y} is again a subdivided graph of diameter
at least 6 and by the induction hypothesis we know thatin T’ = T — {z, y} the
inequality v2(T”) = i(T") + 2 holds. Thus if I’ is a (T")-set, then I’ U {z} is an
independent dominating set of T" and hence it is not difficult to see that

i(T) <UT)+1 < n(T) 1< (D) -2

Because of the symmetry, we do not have to distinguish more cases and thus
72(T) = v(T) + 1 or T is isomorphic to the graph in Figure 1. O

Corollary 3.9 Let T be a non-trivial tree of order n. Then 72(T) = i(G) +1
if and only if T is a subdivided star SS, or a subdivided star SS; minus a leaf or
a subdivided double star SS; ; or T is isomorphic to the graph showed in Figure 1.
Proof. This follows directly from Theorems 2.5 and 3.8. O

Theorem 3.10 Let G be a non-trivial connected block-cactus graph. Then y2(G) =
i(G) if and only if G is a Cy4-cactus.

Proof. By Corollary 3.6, G is a block-cactus graph whose blocks are all Cy-
cycles. If G consists of only one block, then G = Cy. If G has a cut vertex, then
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there is an end block C isomorphic to the cycle Cy. Let u be the cut vertex of C
in G. Then it is easy to see for the graph G’ := G — (V(C) — {u}) that

7(G') £ 7(G) -1=1i(G) -1 <i(G),

and together with Theorem 3.1 we have that y2(G’) = i(G’). Now consider the
following graph F.

Here y2(F) = 5 = i(F) + 1 holds. Note that the block-cactus G is a C,-cactus if
and only if every block of G is a Cs-cycle and G does not contain the graph F' as a
subgraph. Hence, if G would not be a C4-cactus, we could reduce G to the graph
F by taking away Cy-end cycles one after the other. According to our previous
analysis, every reduction G’ of G should satisfy v2(G’) = #(G’). Hence, v2(F)
has to be equal to ¢(F'), which is a contradiction. It is now evident that G has to
be a Cy-cactus. O

As a Corollary to this theorem we obtain the characterization of all connected
block-cactus graphs G with y2(G) = v(G), which we gave in a former article.

Corollary 3.11 (Hansberg, Volkmann [5]) Let G be a connected block-cactus
graph. Then v2(G) = 4(G) if and only if G is a Cy-cactus.

Observation 3.12 Let G be a connected Cy-cactus with partite sets A and B
and |A| < |B|. Then the following properties are satisfied:

(@) Aisavy(G)-, av2(G)-, ani(G)-and a ﬁ(G)fset.
(ii) If n(G) > 7, then A is the only v2(G)- and B(G)-set of G.

Proof. (i) By Lemma 2.6 we know that |A| = v(G) = B(G) and from The-
orem 2.7 and Corollary 3.11 follows 72(G) = i(G) = 4(G). This implies
|A] = 72(G) = v(G) = i(G) = B(G). Moreover, since every vertex z € B
has degree dg(z) > 2 and Ng(V(B)) = A, A is a 2-dominating set in G and
thus dominating and, for being a partite set, it is independent. Evidently A is also
a covering of G and hence (i) follows.

(ii) We will prove the statement by induction on n = n(G). If n(G) = 7, then
we have a Cy-cactus which consists of two Cy-cycles that have exactly one vertex
in common. Then |[A| = 3 < |B| = 4 and A is the only 72(G)- and B(G)-set of
G. Observe that all vertices z € V(G) with dg(z) > 2 are contained in A.
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Now suppose that n(G) > 7. Let C be an end block of G with cut vertex u in
G. Then the graph G’ := G — (V(C) — {u}) is again a Cj-cactus graph but with
less vertices than G. If A’ and B’ are partite sets of G’ with |4’| < |B’|, then it
follows by the induction hypothesis that A’ is the unique y2(G’)- and B(G’)-set
of G’ and that all vertices x € V(G') with dg+(z) > 2 are contained in A'. It is
now evident from the definition of a Cy-cactus that u € A’, |A| = |A’| + 1 and
|B| = |B’| + 2 and that A is both a 2-dominating set and a coverig of G. Since
72(G) = ¥2(G’) + 1 and B(G) = B(G') + 1, it follows that A is both a 72(G)-
and a B(G)-set of G. It is also the only 42(G)- and 3(G)-set of G since otherwise
would exist a y2(G’)- and a 8(G’)-set different from A’. O
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REMARKS ON GROUP RINGS AND THE DAVENPORT
CONSTANT

WEIDONG GAO AND YUANLIN LI

ABSTRACT. Let D(G) be the Davenport constant of a finite abelian
group G, defined as the smallest positive integer d such that every
sequence of d elements in G contains a nonempty subsequence with
sum zero the identity of G. In this short note, we use group rings as
a tool to characterize the Davenport constant.

1. INTRODUCTION

Let G be an additively written finite abelian group. Let F(G) be the
free abelian monoid over G, multiplicatively written, with basis G. The
elements of F(G) are called sequences over G. Let S=g¢,-...-g; € F(G).
We call S a zero-sum sequence if 3°i_, g = 0. We call S a minimal zero-
sum sequence if S is a nonempty zero-sum sequence and contains no proper
zero-sum subsequence. We call S a zero-sumfree sequence if S contains no
nonempty zero-sum subsequence. The Davenport constant of G, denoted
by D(G), is defined to be the smallest positive integer d such that every
sequence of d elements in G contains a nonempty zero-sum subsequence.
The problem of finding D(G) was proposed by H. Davenport in 1966, and he
also pointed out that D(G) is connected to algebraic number theory in the
following way. Let K be an algebraic number field and G be its class group.
Then D(G) is the maximal number of prime ideals (counting multiplicity)
that can occur in the decomposition of an irreducible integer in K. It
plays an important role in unique factorization theory in algebraic number
theory. Furthermore, the Davenport constant is also connected with graph
theory, classical number theory and coding theory, and the study of D(G)
has attracted a great deal of attention (See for example, [1], [2], [4], [7],
[9), [10], and [13]). The exact value of D(G) has been determined only for
a few classes of groups, such as finite abelian p-groups, abelian groups of
rank not exceeding 2, and certain very special abelian groups of rank 3 (See
for example, (3], [4], [6],[11], and [12]).
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In this paper, we use group rings as a tool to investigate D(G). In Section
2, we give a new characterization of D(G). Perhaps, this characterization
will be helpful in estimating D(G).

Let R be a commutative ring with unity. The group algebra RG of
group G over the ring R is a free R-module with basis {X9 | g € G} (built
with a symbol X).

Let d(G) denote the maximal length of a zero-sumfree sequence over
G. Then d(G) +1 is the Davenport constant of G.

For a field F,let d(G,F) denote the largest integer ! € N having the
following property:

There is some sequence S=g; ... g of length ! over G such that
(X9 —ay):...- (X% —q;) #0€FG forall ay,...,a1 € F*.

Then it is easy to see that d(G) < d(G, F). Define d(G) = ming{d(G, F)}.
Clearly, D(G) < d(G) + 1. For any finite abelian p-group G or finite cyclic
group G, the equality D(G) = d(G) + 1 was confirmed by J.E. Olson [11],
and by the first author and A. Gerlodinger [5], respectively. However, we
do not know any other finite abelian group G for which D(G) = d(G) + 1
holds. In the final section 3, we will show that D(G) = d(G) + 1 holds for
G=C®Con.

Our notations about group rings follow those of [8]. Throughout this
paper, let G be a finite abelian group and let F be a field.

2. A NEW CHARACTERIZATION OF THE DAVENPORT CONSTANT D(G)

It is well-known that the Davenport constant D(G) can be characterized
by several equivalent conditions:

e D(G) = max{|S| | S € F(G) is a minimal zero-sum sequence}.

e D(G) is the smallest integer ! such that every sequence S € F(G) of

length |S| > ! has a non-empty zero-sum subsequence.

e D(G)=d(G) +1.
The equivalence of all these definitions is easy to check, details can be
found in [6, Section 5.1). It is the aim of this section to derive a further
characterization of D(G) which could be useful when working with group
algebras.

We fix the following notation. For an element f € FG and all g € G,
let c,(f) € F be defined by

f =Y cnxe.

9€G
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Lemma 2.1. Let S=g;-...-g1 € F(G) be a sequence and suppose that
there exist aj,...,a;_1 € F such that

CO(H(Xg‘—as)) # (= I)HHa

i=1

Then there exist some a; € F such that

i i
Co(H(Xg‘ - a;)) 75 (—l)l Ha.- .

i=1 i=1

Proof. Let ¢ = (—1)*'ajay - --a;_;. Write

-1

[I(X% —a) =" aX?,0, €F.

i=1 g€G
Then ap # c. Let az € F. Then

co((X9 —a) [T21(X% —a5)) = co(X9 —a1) Ty e @ X9) = g, —a100.
So, it suffices to choose a; so that
g, — Q100 F —ayC.
This is equivalent to
a(ag —c) # oy,

Since Qo—c # 0, it is a unit in F. Clearly we can choose a; so that
a; # =2 This completes the proof. 8]

ap~c*

Theorem 2.2. Let S=g,:...- g € F(G) be a sequence.
Then the following statements are equivalent:

(a) There emist ay,...,a1 € F such that co([[in,(X% — ai)) #
( l)l Ht—-l a;.
(b) S is not zero-sumfree.
In particular, the Davenport constant D(G) is the smallest integer | € N
having the following property:
For every sequence S =gy-... g1 € F(G) of length | there exist
ay,..., €F such that

co(H(Xg'—a;)) # (- 1)’Ha.

i=1
Proof. 1t suffices to prove the equivalence of (a) and (b).
If there are ! elements a;,as,--- ,a; € F (repetition allowed) such that
the co([Tio; (X% ~ a:)) # (—1)*ajaq- - a1 , clearly S contains a nonempty
zero-sum subsequence.
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Next assume that S contains a nonempty zero-sum subsequence. With-

out loss of generality, we may assume that T = g; - ... gx is a minimal
zero-sum subsequence. Then co(]'[;.‘=l(X 9% —a;)) =1+ (-1)*ajas---ay #
(-1)*ajaz - - - ax. By Lemma 2.1, we can find @g41, - ,@; inductively, such
that co([['o, (X% — a;)) # (—1)!a1az-+-ay. |

3. ON d(G) AND d(G)

The question of when D(G) = d(G) + 1 is investigated in this section.
We are able to show that this equality holds when G = C; @ Cay,.

The following easy observation will be helpful in the proof of Theo-
rem 3.3.

Lemma 3.1. Let S = gy-...-g: € F(G), and let ky,- - - , k¢ be some positive
integers. If there exist ay,--- ,as € F* such that (X9 —ay)- (X9 —a;) =
0 € FG, then (X*191 — gk1)... (Xkeo: _gky =0 e FG.

Forn € N, let u,(F)={{ € F|¢" =1} C F* denote the group
of n-th roots of unity of F. Then pu,(F) is a cyclic subgroup of F*.
If exp(G) = n, then Hom(G, F*) = Hom(G, un(F)), and F is called a
splitting field of G if |un(F)| = n. Clearly, if F is a splitting field of G,
then char(F) { exp(G).

Lemma 3.2. Let S = gy-...-g: € F(G) be a sequence with ord(g;) < -+ <
ord(g:). Let F a splitting field of G and let m; = ord(g;) fori=1,---,t.
Ifl1- ;'1—1 (1= ﬁ)iG” < £ holds for some non-negative integer £ < t,
then there exist nonzero elements ¢;,-+- ,c; of F such that the product

(X9 —cy) .- (X% — ;) =0 € FG.
Therefore, d(G) < t.

Proof. This lemma follows immediately from Lemma 5.5.3 and Proposition
5.5.4.2 in [6]. O
Theorem 3.3. Let G = Cy @ Cs,, with n > 2 and suppose that F is a
splitting Iield of G. Then the equality d(G) = d(G,F) holds, and therefore,
D(G) =d(G)+1.

Proof. As observed in the introduction, we clearly have d(G) < d(G, F).
Thus it remains to prove the reverse inequality. Since d(G) = 2n (see [6,

Theorem 5.8.3]), we have to show that d(G,F) < 2n. Let S=g¢;-...-
gan+1 € F(G). We will prove that there are a,,...,a2n41 € F* such that

(31) (X% —a1)(X? —ap)- - (XP* —agnyq) =0 € FG.

420



Then by definition of d(G, F) it follows that d(G,F) < |S| =2n+1, and
we are done.

We now prove Equation (3.1). If S contains an element of order 2, we
may assume that ord(g:) = 2. Since [(1 ~ ;t=)IG|] = 2n, (3.1) follows
from Lemma 3.2 with ¢ = 2n + 1 and £ = 2n. Thus we may assume that S
contains no element of order 2.

Write 2n = 2%y with 2 fv. Let G = Co @ Ca,, = (z) & (y) with (z) = C;
and (y) = C2n. Then every element in G is of the form ay or = + ay with
a 2> 0. Since S contains no element of order 2, for each g € S either g = ay
or g =z +by withb € {1,2,---,2n — 1}. If g = ay, then by Lemma 3.1
we can replace g by y. If g = z + 2°by with b odd, then g = b(z + 2%y),
so by Lemma 3.1 we can replace g by = + 2°y. Furthermore, if ¢ > u then
T+ 2% =2+ (2°+ 2n)y = 2+ (2*(2°7" + 0))y = (2°7 + v)(z + 2¢y)
and we can replace = + 2°y by z + 2%y. Thus we may assume that g €
{v,z+y,z+ 2y,z + 4y, ,x + 2%y} holds for every g € S. Let £ be a
primitive 2n-th root of 1. Then {1,£,£2,---,£2"~1} are all 2n-th roots of
L Clearly {19 §v 52: tte rfzﬂ_l} = {ilx d:€1 :1:62’ R} if"-l}-

The next 4 equations will be used later in the proof.

n-1 2n—1

32 JIxv-&)xv+e)=[[(X¥-¢)=X"-1=X"-1=0.
i=0 =0

(3.3) X =Xx%=1.

(3.4)
(X:I:za - a)(xzzb +nb) = (za+b _,qc+b) +nbxzza _nax::zb = (z _n)a’

where 2,7, € FG, a,b€ N and a < b.

(3.5) (XTz =) (X"z+n) = (z—n)(z+n),

where 2,7 € FG.
Next, we divide the terms of S into as many as possible disjoint pairs

(21, w1), (22,w2),- - - , (24, wy) such that each pair is of one of the following
three forms: (y,y), (z+2"y,z+2"y)(0 < r < ) and (z+2%y,z+2%y)(1 <
s<t<u).

Consider the remaining sequence obtained by deleting (23, w;, 23, w2, - -,
Zq,wq) from S, and clearly there are only two cases: (1) the remaining
sequence is of the form (y,z + y,z + 2fy) with 1 < f < «u, or (2) the
remaining sequence contains only one term.
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Case 1. If the remaining sequence is of the form (y,z + y,z + 2fy),
then there are ¢ = n — 1 pairs (z;,w;) of terms from S. We show that
there exist b1,c1,b2,¢2, +* ybn—1,cn—1 € F* such that (X¥ + 1)(X=+¥ —
1)(X=+2'v + 1) [T (X% - bi)(X™ —¢;) = 0 € FG. For each pair (z;, w;)
with i € {1,2,--- ,n — 1}, we choose b;, ¢; in the following way:

(1) If (2i,ws) = (¥,9), then let b; = £* and ¢; = —¢* = ¢™*;

(2) If (2, w;) = (z + 2"y, = + 27y), then let b; = (£%)*" and ¢; = —(¢%)?".
By (3.5), (X% —b:i)(X¥i—c;) = (XZV—£2")(XTV4+£%7) = (X¥-€)(X¥+
&)a; where o; € FG;

(3) If (2, w;) = (z+ 2%, z+2%y) with 1 < s < t < u, then let b; = (¢%)%
and c; = —(¢*)%". Thus by (3.4), (X* — b)(X* — ¢;) = (X2 — (£)?)ox =
(XY — €)(XY + €')a; where o; € FG.

We just showed that for each above pair (z;, w;) withi € {1,--- ,n—1} we
can choose a pair (b;, ¢;) of elements in F* such that (X% —b;)(X% —¢;) =
(XY - €)XY + ¢')a; where o; € FG.

It follows from (3.4) that (X=*+¥ —1)(X=+2'v4+1) = (X¥—1)8 where 8 €
FG. We now have (X¥ +1)(X=+¥ — 1)(X=*+2'v 4 1) [TPo 1 (X% — bi) (X —
&) = (XV+1)(XY =BT, (XV-€) (X +€)as = (BT @) [Tis (X¥—
£)XV+¢£)=0.

Case 2. If the remaining sequence contains only one term, then there
are ¢ = n pairs (z;, w;) of terms from S. As before, for each pair (z;, w;), we
can find a pair (b;, ¢;) of elements in F* such that (X% — 4;)(X™ —¢;) =
(XY—£")(XV+£& )y, where o; € FG. Therefore, [Ti, (X% —b;)(X ¥ —¢;) =
(ITiy @) [Ticy (XY = €)(X¥ +€°) = 0.

In all the cases, we showed that (3.1) holds. This completes the proof.

O

We are not aware of any example of a finite abelian group G for which
the equality d(G) = d(G,F) fails to hold. We close this paper by making
the following conjecture.

Conjecture 3.4. For every finite abelian group G and every splitting
field F of G, we have d(G) =d(G,F).
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