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ABSTRACT. Let D(G) be the Davenport constant of a finite abelian
group G, defined as the smallest positive integer d such that every
sequence of d elements in G contains a nonempty subsequence with
sum zero the identity of G. In this short note, we use group rings as
a tool to characterize the Davenport constant.

1. INTRODUCTION

Let G be an additively written finite abelian group. Let F(G) be the
free abelian monoid over G, multiplicatively written, with basis G. The
elements of F(G) are called sequences over G. Let S=g¢,-...-g; € F(G).
We call S a zero-sum sequence if 3°i_, g = 0. We call S a minimal zero-
sum sequence if S is a nonempty zero-sum sequence and contains no proper
zero-sum subsequence. We call S a zero-sumfree sequence if S contains no
nonempty zero-sum subsequence. The Davenport constant of G, denoted
by D(G), is defined to be the smallest positive integer d such that every
sequence of d elements in G contains a nonempty zero-sum subsequence.
The problem of finding D(G) was proposed by H. Davenport in 1966, and he
also pointed out that D(G) is connected to algebraic number theory in the
following way. Let K be an algebraic number field and G be its class group.
Then D(G) is the maximal number of prime ideals (counting multiplicity)
that can occur in the decomposition of an irreducible integer in K. It
plays an important role in unique factorization theory in algebraic number
theory. Furthermore, the Davenport constant is also connected with graph
theory, classical number theory and coding theory, and the study of D(G)
has attracted a great deal of attention (See for example, [1], [2], [4], [7],
[9), [10], and [13]). The exact value of D(G) has been determined only for
a few classes of groups, such as finite abelian p-groups, abelian groups of
rank not exceeding 2, and certain very special abelian groups of rank 3 (See
for example, (3], [4], [6],[11], and [12]).
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In this paper, we use group rings as a tool to investigate D(G). In Section
2, we give a new characterization of D(G). Perhaps, this characterization
will be helpful in estimating D(G).

Let R be a commutative ring with unity. The group algebra RG of
group G over the ring R is a free R-module with basis {X9 | g € G} (built
with a symbol X).

Let d(G) denote the maximal length of a zero-sumfree sequence over
G. Then d(G) +1 is the Davenport constant of G.

For a field F,let d(G,F) denote the largest integer ! € N having the
following property:

There is some sequence S=g; ... g of length ! over G such that
(X9 —ay):...- (X% —q;) #0€FG forall ay,...,a1 € F*.

Then it is easy to see that d(G) < d(G, F). Define d(G) = ming{d(G, F)}.
Clearly, D(G) < d(G) + 1. For any finite abelian p-group G or finite cyclic
group G, the equality D(G) = d(G) + 1 was confirmed by J.E. Olson [11],
and by the first author and A. Gerlodinger [5], respectively. However, we
do not know any other finite abelian group G for which D(G) = d(G) + 1
holds. In the final section 3, we will show that D(G) = d(G) + 1 holds for
G=C®Con.

Our notations about group rings follow those of [8]. Throughout this
paper, let G be a finite abelian group and let F be a field.

2. A NEW CHARACTERIZATION OF THE DAVENPORT CONSTANT D(G)

It is well-known that the Davenport constant D(G) can be characterized
by several equivalent conditions:

e D(G) = max{|S| | S € F(G) is a minimal zero-sum sequence}.

e D(G) is the smallest integer ! such that every sequence S € F(G) of

length |S| > ! has a non-empty zero-sum subsequence.

e D(G)=d(G) +1.
The equivalence of all these definitions is easy to check, details can be
found in [6, Section 5.1). It is the aim of this section to derive a further
characterization of D(G) which could be useful when working with group
algebras.

We fix the following notation. For an element f € FG and all g € G,
let c,(f) € F be defined by

f =Y cnxe.

9€G
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Lemma 2.1. Let S=g;-...-g1 € F(G) be a sequence and suppose that
there exist aj,...,a;_1 € F such that

CO(H(Xg‘—as)) # (= I)HHa

i=1

Then there exist some a; € F such that

i i
Co(H(Xg‘ - a;)) 75 (—l)l Ha.- .

i=1 i=1

Proof. Let ¢ = (—1)*'ajay - --a;_;. Write

-1

[I(X% —a) =" aX?,0, €F.

i=1 g€G
Then ap # c. Let az € F. Then

co((X9 —a) [T21(X% —a5)) = co(X9 —a1) Ty e @ X9) = g, —a100.
So, it suffices to choose a; so that
g, — Q100 F —ayC.
This is equivalent to
a(ag —c) # oy,

Since Qo—c # 0, it is a unit in F. Clearly we can choose a; so that
a; # =2 This completes the proof. 8]

ap~c*

Theorem 2.2. Let S=g,:...- g € F(G) be a sequence.
Then the following statements are equivalent:

(a) There emist ay,...,a1 € F such that co([[in,(X% — ai)) #
( l)l Ht—-l a;.
(b) S is not zero-sumfree.
In particular, the Davenport constant D(G) is the smallest integer | € N
having the following property:
For every sequence S =gy-... g1 € F(G) of length | there exist
ay,..., €F such that

co(H(Xg'—a;)) # (- 1)’Ha.

i=1
Proof. 1t suffices to prove the equivalence of (a) and (b).
If there are ! elements a;,as,--- ,a; € F (repetition allowed) such that
the co([Tio; (X% ~ a:)) # (—1)*ajaq- - a1 , clearly S contains a nonempty
zero-sum subsequence.
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Next assume that S contains a nonempty zero-sum subsequence. With-

out loss of generality, we may assume that T = g; - ... gx is a minimal
zero-sum subsequence. Then co(]'[;.‘=l(X 9% —a;)) =1+ (-1)*ajas---ay #
(-1)*ajaz - - - ax. By Lemma 2.1, we can find @g41, - ,@; inductively, such
that co([['o, (X% — a;)) # (—1)!a1az-+-ay. |

3. ON d(G) AND d(G)

The question of when D(G) = d(G) + 1 is investigated in this section.
We are able to show that this equality holds when G = C; @ Cay,.

The following easy observation will be helpful in the proof of Theo-
rem 3.3.

Lemma 3.1. Let S = gy-...-g: € F(G), and let ky,- - - , k¢ be some positive
integers. If there exist ay,--- ,as € F* such that (X9 —ay)- (X9 —a;) =
0 € FG, then (X*191 — gk1)... (Xkeo: _gky =0 e FG.

Forn € N, let u,(F)={{ € F|¢" =1} C F* denote the group
of n-th roots of unity of F. Then pu,(F) is a cyclic subgroup of F*.
If exp(G) = n, then Hom(G, F*) = Hom(G, un(F)), and F is called a
splitting field of G if |un(F)| = n. Clearly, if F is a splitting field of G,
then char(F) { exp(G).

Lemma 3.2. Let S = gy-...-g: € F(G) be a sequence with ord(g;) < -+ <
ord(g:). Let F a splitting field of G and let m; = ord(g;) fori=1,---,t.
Ifl1- ;'1—1 (1= ﬁ)iG” < £ holds for some non-negative integer £ < t,
then there exist nonzero elements ¢;,-+- ,c; of F such that the product

(X9 —cy) .- (X% — ;) =0 € FG.
Therefore, d(G) < t.

Proof. This lemma follows immediately from Lemma 5.5.3 and Proposition
5.5.4.2 in [6]. O
Theorem 3.3. Let G = Cy @ Cs,, with n > 2 and suppose that F is a
splitting Iield of G. Then the equality d(G) = d(G,F) holds, and therefore,
D(G) =d(G)+1.

Proof. As observed in the introduction, we clearly have d(G) < d(G, F).
Thus it remains to prove the reverse inequality. Since d(G) = 2n (see [6,

Theorem 5.8.3]), we have to show that d(G,F) < 2n. Let S=g¢;-...-
gan+1 € F(G). We will prove that there are a,,...,a2n41 € F* such that

(31) (X% —a1)(X? —ap)- - (XP* —agnyq) =0 € FG.
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Then by definition of d(G, F) it follows that d(G,F) < |S| =2n+1, and
we are done.

We now prove Equation (3.1). If S contains an element of order 2, we
may assume that ord(g:) = 2. Since [(1 ~ ;t=)IG|] = 2n, (3.1) follows
from Lemma 3.2 with ¢ = 2n + 1 and £ = 2n. Thus we may assume that S
contains no element of order 2.

Write 2n = 2%y with 2 fv. Let G = Co @ Ca,, = (z) & (y) with (z) = C;
and (y) = C2n. Then every element in G is of the form ay or = + ay with
a 2> 0. Since S contains no element of order 2, for each g € S either g = ay
or g =z +by withb € {1,2,---,2n — 1}. If g = ay, then by Lemma 3.1
we can replace g by y. If g = z + 2°by with b odd, then g = b(z + 2%y),
so by Lemma 3.1 we can replace g by = + 2°y. Furthermore, if ¢ > u then
T+ 2% =2+ (2°+ 2n)y = 2+ (2*(2°7" + 0))y = (2°7 + v)(z + 2¢y)
and we can replace = + 2°y by z + 2%y. Thus we may assume that g €
{v,z+y,z+ 2y,z + 4y, ,x + 2%y} holds for every g € S. Let £ be a
primitive 2n-th root of 1. Then {1,£,£2,---,£2"~1} are all 2n-th roots of
L Clearly {19 §v 52: tte rfzﬂ_l} = {ilx d:€1 :1:62’ R} if"-l}-

The next 4 equations will be used later in the proof.

n-1 2n—1

32 JIxv-&)xv+e)=[[(X¥-¢)=X"-1=X"-1=0.
i=0 =0

(3.3) X =Xx%=1.

(3.4)
(X:I:za - a)(xzzb +nb) = (za+b _,qc+b) +nbxzza _nax::zb = (z _n)a’

where 2,7, € FG, a,b€ N and a < b.

(3.5) (XTz =) (X"z+n) = (z—n)(z+n),

where 2,7 € FG.
Next, we divide the terms of S into as many as possible disjoint pairs

(21, w1), (22,w2),- - - , (24, wy) such that each pair is of one of the following
three forms: (y,y), (z+2"y,z+2"y)(0 < r < ) and (z+2%y,z+2%y)(1 <
s<t<u).

Consider the remaining sequence obtained by deleting (23, w;, 23, w2, - -,
Zq,wq) from S, and clearly there are only two cases: (1) the remaining
sequence is of the form (y,z + y,z + 2fy) with 1 < f < «u, or (2) the
remaining sequence contains only one term.
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Case 1. If the remaining sequence is of the form (y,z + y,z + 2fy),
then there are ¢ = n — 1 pairs (z;,w;) of terms from S. We show that
there exist b1,c1,b2,¢2, +* ybn—1,cn—1 € F* such that (X¥ + 1)(X=+¥ —
1)(X=+2'v + 1) [T (X% - bi)(X™ —¢;) = 0 € FG. For each pair (z;, w;)
with i € {1,2,--- ,n — 1}, we choose b;, ¢; in the following way:

(1) If (2i,ws) = (¥,9), then let b; = £* and ¢; = —¢* = ¢™*;

(2) If (2, w;) = (z + 2"y, = + 27y), then let b; = (£%)*" and ¢; = —(¢%)?".
By (3.5), (X% —b:i)(X¥i—c;) = (XZV—£2")(XTV4+£%7) = (X¥-€)(X¥+
&)a; where o; € FG;

(3) If (2, w;) = (z+ 2%, z+2%y) with 1 < s < t < u, then let b; = (¢%)%
and c; = —(¢*)%". Thus by (3.4), (X* — b)(X* — ¢;) = (X2 — (£)?)ox =
(XY — €)(XY + €')a; where o; € FG.

We just showed that for each above pair (z;, w;) withi € {1,--- ,n—1} we
can choose a pair (b;, ¢;) of elements in F* such that (X% —b;)(X% —¢;) =
(XY - €)XY + ¢')a; where o; € FG.

It follows from (3.4) that (X=*+¥ —1)(X=+2'v4+1) = (X¥—1)8 where 8 €
FG. We now have (X¥ +1)(X=+¥ — 1)(X=*+2'v 4 1) [TPo 1 (X% — bi) (X —
&) = (XV+1)(XY =BT, (XV-€) (X +€)as = (BT @) [Tis (X¥—
£)XV+¢£)=0.

Case 2. If the remaining sequence contains only one term, then there
are ¢ = n pairs (z;, w;) of terms from S. As before, for each pair (z;, w;), we
can find a pair (b;, ¢;) of elements in F* such that (X% — 4;)(X™ —¢;) =
(XY—£")(XV+£& )y, where o; € FG. Therefore, [Ti, (X% —b;)(X ¥ —¢;) =
(ITiy @) [Ticy (XY = €)(X¥ +€°) = 0.

In all the cases, we showed that (3.1) holds. This completes the proof.

O

We are not aware of any example of a finite abelian group G for which
the equality d(G) = d(G,F) fails to hold. We close this paper by making
the following conjecture.

Conjecture 3.4. For every finite abelian group G and every splitting
field F of G, we have d(G) =d(G,F).
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