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Abstract

In this paper, we study quaternary quasi-cyclic (QC) codes with even
length components. We determine the structure of one generator quater-
nary QC codes whose cyclic components have even length. By making
use of their structure, we establish the size of these codes and give a lower
bound for minimum distance. We present some examples of codes from
this family whose Gray images have the same Hamming distances as the
Hamming distances of the best known binary linear codes with the given
parameters. In addition, we obtain a quaternary QC code that leads to a
new binary non-linear code that has parameters (96, 2%, 28).

Keywords:Quaternary codes, quasi cyclic codes, even length codes.
1 Introduction

There are many good reasons to investigate the structure and the design of quasi
cyclic (QC) codes. Some of them are as follows: QC codes form an important
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class of linear codes which includes cyclic codes as a subclass, meet a modified
version of Gilbert Varshamov bound unlike many other classes of codes [15],
and some well-known linear codes are equivalent to QC codes. Due to these
facts and many more that are not listed here, the research on QC codes has
been attractive. This family has proven to be a very good candidate for good
linear codes since many record breaking and optimal QC codes over finite fields
of various orders have been discovered (see (11}, [13], [22], among many others).
Tables of best-known linear codes over small finite fields published in [9] and also
updated version available online [12]. The computer algebra system MAGMA
[8] contains & similar database as well. Additionally, a table of best-known
binary non-linear codes is available [20].

There have been many papers in the literature dealing with the design of
1-generator QC over fields. They are investigated via a polynomial approach
introduced in (23], [21] and [10], and more recently, via Grbner basis in [16]
and {17], and by viewing them as modules over some special rings [18].

On the other hand, there has been intensive research on codes over Zg,
integers modulo 4, for over a decade. The term “quaternary code” has been
used both for codes over GF(4), the finite field of order 4, and for codes over Z,,
integers modulo 4. Throughout this paper, we shall use the term “quaternary
code" exclusively for codes over the ring Z;.

The structure and the design of quaternary QC codes of length n = ml with
the restriction that m is odd are studied in [6], where the authors found a new
non-linear binary code and some other good binary codes from quaternary QC
codes by applying the standard Gray map. Additional new codes over Z; are
discovered in {7} and (5] in the class of cyclic codes and QC codes with cyclic
components having odd length. Moreover, an online database of best known
quaternary codes has been recently introduced [4]. In this paper, we investigate
the design of quaternary QC codes of length n = ml where m is even. This class
of codes has been largely avoided in the literature. In [19], algebraic structure
of QC codes over chain rings are considered. Although, Z4 QC codes are in the
class of QC codes over chain rings, our approach is different and we relax the
condition on the length of QC codes over Z;.

The paper is organized as follows: In the next section, we summarize some
basic facts related to our work. In the third section, we study the structure of
quaternary QC codes where components have even lengths. Section 4 gives the
results of some of our searches which include several quaternary QC codes with
even length components whose Gray images have the same Hamming distances
as the Hamming distances of the best known binary codes with comparable
parameters. Besides exploring the algebraic structure of these codes, in particu-
lar, our search results in the construction of a quaternary QC code whose Gray
image is a new binary non-linear code with parameters (96,226,28). Hence,
we contribute several new codes to the database [4). Finally, we conclude by
summarizing our results and pointing out some directions for further work on
the subject.

A remark on notation: as is common in the literature, sometimes we may
write f for a polynomial f(z).
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2 Basics

A linear code C of length n over Z, is defined to be an additive submodule of the
Z4—module Z7. A free module C is a module with a basis (a linearly indepen-
dent spanning set for C). A cyclic code of length n over Z; is defined to be a sub-
module of Z that is invariant under the standard (right) shift operator T that
maps the element (cg,...,cn-1) of Z} to (cn—1,¢0,...,cn—2). As usual, for each
vector (g, . - - ,Cn—1) in Z} we associate the polynomial cg+cyz+. .. cr—yz™! in
the ring R, = Z4[z]/ (z" — 1). With this identification, cyclic codes are ideals
in R,. The Hamming weight of a codeword u = (ug,%;, - ,un-1), denoted
by wg(u), is the number of nonzero entries in u. The (minimum) Hamming
distance of a linear code C is given by

dy(C) = min {wy(u): u € C and u #0}.

The Hamming weight enumerator, We(y), of a code C is defined by
Woly) =) yw# = ZA,y )

ceC

where A; = |{c € Clwr(c) = i}|, i.e. the number of codewords in C whose
weights equal to 2.

The smallest non-zero exponent of y with a nonzero coefficient in We(y) is
equal to the minimum distance of the code.

The Lee weights wy, of the elements 0,1,2 and 3 of Z; are 0,1,2 and 1
respectively. Further, the Lee weight of an n tuple in Z} is the sum of Lee
weights of its components.

The Lee weight enumerator of a quaternary code C is defined by

Lo(y) =Y y=v@. 2

ceC

An important connection between quaternary codes and binary codes is es-
tablished by Hammons et. al in [14] where some well-known non-linear binary
codes, such as Kerdock and Preperata codes, are obtained as images of qua-
ternary linear codes via the Gray map. The Gray map maps 0, 1,2,3 to (0,0),
(0,1), (1,1) (1,0) respectively. After this work, the interest in studying quater-
nary codes and codes over other finite rings has grown intensively. Further, the
Gray map is an isometry from (Z},Lee distance) to (Z?", Hamming distance).
In [6], the structure of quaternary QC codes with odd component lengths are
studied and a new non-linear binary code and some optimeal binary codes are
found by applying the Gray map to quaternary QC codes.

Recently, quaternary cyclic codes and their structures are investigated in (1),
[2], and [3]. A recent result for the structure and the design of quaternary cyclic
codes of arbitrary length is stated below.

Theorem 1 [1] Let C be a cyclic code in R, = Z4z]/ (z™ - 1).
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1. If n is odd, then R, is a principal ideal ring and C = (g(z),2a(z)) =
(9(z) + 2a(z)) where g(z), a(zx) are polynomials with a(z) |g(z) |(z™ - 1)
mod 4.

2. If n is even, then either
(a) C is a free module with a generator of the form
= (g9(z) + 2p(z)),
where g(z)| (z™ — 1) mod 2 and (g(z) + 2p(x)) |(z™ —1) mod 4, or,
(b) C = (g9(z) + 2p(z), 2a(z)) where g(z), a(x), and p(z) are polynomi-
als with g(x)|(z"—1) mod 4, a(z)|g(z) mod 2, a(z)|p(z) g(a:)l
mod 2, and degg(z) > dega(z).
If n is odd then R, is a principal ideal ring, and z™ — 1 has a unique fac-
torization. Moreover, there is a one-to-one correspondence between factors of
z" — 1 over Z, and factors of ® — 1 over Z4. More specifically, a factor fo of

z"™ — 1 in Zy[z] can be “ lifted" to a factor f of z® — 1 in Z4[z], called Hensel
lift. There are well known methods to compute the Hensel lift of a polynomial

(eg. [24)).

Definition 1 [24] Two polynomials fi(z), fo(x) € Za[z] are said to be rela-
tively prime, denoted by (fi(z), f2(x)) = 1, in Z4[x] if there exist polynomials
p1(z), p2(z) € Zy[x] such that

pi(z)fi(z) + p2(z) fa(z) = 1.

Note that if (fi(z), f2(z)) = 1 in Zy[z] then (}'ETJ{)) =1 in Z[z],
where f;(z) = fi(z) mod 2.

3 Algebraic Structure of Quaternary Quasi Cyclic
Codes

Definition 2 A gquaternary code is called an I-QC code if it is invariant under
7!, the l-fold composition of the shift operator T.

It is well-known that, after a suitable permutation of the coordinates, an
I-QC code of length n = ml over Z; (or over any ring) can be regarded as an
R = Z4fz]/ (™ — 1) submodule of R!,. This is because the quasi-cyclic shift
operation corresponds to (after a permutation of the coordinates) multiplication
by z in module R},. An r generator QC code is a submodule with r generators.
In this paper, we only study 1l-generator quaternary QC codes. A l-generator
quaternary QC code C generated by (a1(z), a2(z), ... ai(x)) is defined as

{ (@) (a1(2), @(@),...,a(2) = }
(f(2)ayr(z), f(z)ao(z),...,f(x)ar(z))| f(z) € Rm [~
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In [6), quaternary QC codes with the restriction that m is odd are studied.
In this paper, we study quaternary QC codes of length n = ml, where m is
even.

By the remarks above, we shall always view quaternary QC codes as sub-
modules of R!,. Our first theorem easily follows from the observations already

made.

Theorem 2 Let C be a quaternary 1-generator [-QC code of length n = ml
with even m and generator F(z) = (Fi(z), Fa2(z),. .., Fi(z)) where Fi(z) € R
for1 < i< l. Then, Fiy(x) € C; where C; is a cyclic code of length m in R,,.
Therefore, F; is of the form Fi(z) = fi(z)(gi(z) + 2pi(z)) + 2a:(z)k;(z) where
gi(z) and a;(z) are as in Theorem 1, fi(x) € Z,4[z] and ki(z) € Z2[x).

Proof: For all 1 < ¢ <! define the following projection map II; : R, = R,
such that IT; ((f1, f2,. .., fis---, 1)) = fi. Let C = (F, F,...,F) be such a
code. Then IT;(C) is a cyclic code in Ry By Theorem 1, we get that F; € C; =
(gi(z) + 2pi(z), 2ai(z)) for all 1 < i <l (where a(z) is possibly 0). O

Corollary 3 A 1-generator quaternary QC code is equivalent to a quaternary
code generated by (fi91 + 2q1, fag2 + 242, . . ., fig1 + 2qi) where f;, gi, i € Zs[x],
gil(z™ —1) for all1 < i <! and deg(q;) < deg(g;).

Proof: By Theorem 2, the generator should be in the form (F,FR,..., F)
where F; € C; for all 1 €< i < l. Next, each F; can be written in the form
F; = fi(9: + 2p:) = fig: + 2f:p;, for some binary polynomials f;,g; and p;. Let
¢i = fip; then

C= (flgl + 2‘11:f292 +2q2)-- ':flgl +2¢11) .

Finally, since the ideals generated by (e,b) and (a + rb,b) are equal for any
ring element 7, if deg(q;) > deg(g1) we can replace the first generator by g, +
2q1 + 2x*(f292 + 2g2) ( mod 2™ — 1) for a suitable k to satisfy the degree
requirement. O

For a code C with generator G(z) = (g1 + 2q1, f292 + 242, - - - , fi91 + 2q1), we
will have g(z) denote

9(z) = ged(g, f292, ..., figr,a™ — 1) and hy = (™ — 1)/g in Z,|z). 3)

Theorem 4 Suppose C is a quaternary, 1-generator, l- QC code of lengthn =
ml for even m with a generator G(z) = (91+2q1, fog2+24z, . . ., figi+2q;) where
fir 9, Gi € Za[z], gil(z™ — 1) for all i <1 <! and deg(q1) < deg(g1). Let g(z),
hg = (™ —1)/g be as in Equation (3), hyG(z) = 2H (z) = 2[Hy(z), ..., Hi(z))
where Hi(z) € Zs[z], k = ged(Hi(x), Ha(z),. .., Hi(z),z™ — 1) in Z3[z], and
hy = (g™ — 1)/k. Take Cq to be the Z,-submodule of C generated by o =
. {G(=),2G(z),...,zist)-1G(z)}.

1. If 2H(z) € Cy, then C = Cp and C is a free Zy-module generated by the
set a and |C| = 4de8(ks)—1,
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2. If 2H(z) ¢ Co, then there exists an 0 < r < deg by — 1 such that

B= {G(z),xG(a:),. .., zdes(ha)=1G (),
2H(z),2zH(z),...,2z" H(z)} .

generates C and |C| = 4de8(ha)=1. 27,

Proof: Let G(z) = (g1+2q1, f292+2¢2, . - ., figi+2q1). Let c(z) = f(z)G(z) € C.
1f deg f(z) < deghy then c(z) € Span(a). Otherwise by the division algorithm
we have

f(z) = hyg(z) + r(z) where r(z) = 0 or degr(z) < degh,.
This implies that

cz) = (hgq(z)+r(2))G(z)
q(z)hyG(z) + r()G(2)
29(z)H(z) +r(2)G(2)

Now, we consider two cases:

1. If hyG(z) = 2H(z) € Cp then g(z)2H(x) € Span(a) and r(z)G(z) €
Span(a) (because degr(z) < deghy). Hence c(z) € Span(a). It is also
clear that a is linearly independent (over Z;). So C is a free Z3-module
generated by the set a and |C| = 43¢8(hs)-1,

2. If hyG(z) = 2H(z) ¢ Co, then
c(z)

(hga(z) +7(z)) G(z)
9(z)hyG(z) + r(2)G(x)
2q(z)H(z) + r(z)G(z).

If deg g(z) > deg hy, then g(z) = §(z)hi(x) + 7(z) where §,7 € Zs[z] and
0 < deg7 < deghy. Hence,
q(z)Hi(z) =(§(x)hi(x) + 7(x))Hi(z) = §(z)hi(z)Hi(z) + 7(z) Hi(z)
= #(z)Hi(x)
for all 4. Thus, 2¢(z)Hi(z) = 27(z)H;(z) and deg(z) < deghx — 1 and

hence 8 generates C. Therefore |C| = 49¢8(*s)~1.27 for some r < deg hy —
1. 0

The following corollary presents a lower bound on minimum distance for a
subclass of QC codes considered in this paper.
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Corollary 5 Let C be a I1-generator, I-QC quaternary code of length n = ml

for even m of the form C = ((g + 2p)f1, (g + 2p)f2';.. .+, (9 + 2p)fi) where (g +
20)| (=™ 1) mod 4. Let deg g(z) = r, H,(z) = ’”+—‘2;, (fi(@), Hy(z)) = 1 in
Zyx] for alli=1,2,...,l, and G(z) = ((9+ 2p) f1, (9 + 2P) f2, - .-, (9 + 20) fi).

Then, C is a free Zy-module with basis
8 = {G(z),zG(z),...,2™ ""'G(z)},

rank(C) =m —r, |C|=4™"", and dy(C) > !-d,

where d(C), and d are the minimum Lee weights of C and the Z4 cyclic code
generated by (g + 2p) respectively.

Proof: I1;(C) = ((g + 2p)f:) is a cyclic code of length m, where (g+2p)|(z™—1)
mod 4 and g|z™ —1 mod 2. Let K = g+2p and H, = hy +2s where 9,p,hy, s €
Zylz], KH; = 0 mod 4, K = g and Hy = hy and ghy = 0 mod 2, ghy =
™ —1+2F mod 4. Then, 0 = (g+2p)H, = (g+2p)(hy+2s) = ghy+2phy+2sg
mod 4. So 2phy = g(2s + hy). Hence, hy(g + 2p) = ghy + 2phy = ghg + g(2s +
hg) = 2sg. Then, 2H; = hyG; = hy(g + 2p)fi = 2sgf;. So hyG; is a multiple of
2gf:. Thus, 2H € C. Therefore, by the previous theorem first three assertions in
this corollary follow. To prove the assertion on the minimum distance, consider
an arbitrary codeword

c(z) = k(z)G(z)
= (k(z)(g + 2p) 1, k(z)(9 + 2p) fo, . .. , K(z) (9 + 2p1) f) € C
™ -1

for some k(z) € Zy4[z]. Since ( fiy m;) =1in Z, then we have

zm -1

=1lforali=1,...,L
9+2

aifi + B;
Hence we have (g + 2p)a;fi = (g+2p) foralli=1,...,1.
If k(z)(g + 2p) f; = O for some j, then
k(z)a;(g + 2p)f; = k(z) (¢ + 2p) = 0.
This implies that k(z)(g + 2p)f; =0 for all i = 1,2, ..,1. So, either c(z) = 0 or
k(z)(g + 2p)fi # 0 for all i = 1,2,...,1. Since k(z)(g + 2p)f: € (9+ 2p) then
wr(k(z)(g + 2p) fi) > d for all i. Therefore dr,(C) >1-d. ]
4 Examples and a New Code

In these examples, we look at the parameters of the Gray images of these codes
and compare them with the best known binary linear codes. If the Gray image
of a Z, linear code has the same parameters as the best known binary linear
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code, we call such a code a decent code, if the parameters are better than the
best known binary linear code, we call it a good code. Finally, if the resulting
parameters happen to be contained in the range of the table [20] and improve
them, we call it an ezceptional code. Our examples include some decent codes
and an exceptional code.

Example 1 (A decent, 2-QC code of length 16)

Let g(z) = 28 + 2% + 22 + 1, p(z) = 2° + z* + 2 + 1 and f(z) = z. Then,
9(z) +2p(x) = =8 + 22° — 24 + 22 + 2z — 1, and (g(z) + 2p(z))|(z® — 1) mod 4.
Consider the quaternary QC code C = ([g + 2p, (g + 2p) f]) . By Corollary 5,
this is a free code. Indeed, hy = 2% + 1 and hgG = 2[g, gz] = 2G = 2H € Co.
Hence, 2H(x) € Co and C = Cp. Thus, this code has length 16, and it is free
with 4% codewords.

In order to use the space efficiently, we introduce the notation below for
weight enumerators (1) and (2), where the base and the power represent the
weight and the number of the codewords corresponding to that weight respec-
tively. A computer computation shows that the Lee weight enumerator of C
is given by 0'16432! and the Hamming weight enumerator of C is given by
0182128168, So, w(C) = 16 and wx (C) = 8. Hence, the quaternary QC code
C has length 16, rank 2, and minimum distance 16. The Gray image of this
code is a binary code of length 32, minimum Hamming distance 16, and it has
16 codewords. It is known that there exits an optimal binary linear code with
these parameters [12].

Example 2 (A decent, 2-QC code of length 28):

There are 796 distinct divisors of z!4 — 1 over Z4. One of those divisors is
g = x* + 322 4 3z + 3 which generates a cyclic code of length 14, dimension 10
and minimum Lee weight 4. Let f = 2z° + 3z® + 22° + 225 + z* + 23, Then
the 2-QC code C generated by (g, fg) is free of rank 10, and has minimum Lee
weight 16. Therefore, the Gray image of C has parameters (56, 22°,16). These
parameters are the same as the parameters of the best-known binary linear
code. We have found several other factors of (z'4 — 1) that yielded codes with
the same parameters.

Example 3 (An ezceptional, 2-QC code of length 48):

There are 37558 distinct factors of z24 — 1 over Z;. One of those divisors is
g = 3! + 210 + 329 + 28 4+ 27 + 328 + 325 + 32* + 323 + 32% + 3z + 3 which
generates a cyclic code of length 24, dimension 13 and minimum Lee weight
4. Let f = 2'? + 3210 + 32° + 328 + 27 + 225 + 25 + 2*. We found that the
2-QC code C generated by [g, fg] is free of rank 13, and has minimum Lee
weight 28. Therefore, the Gray image of C has parameters (96, 2%6,28) (and it
is non-linear). This binary code not only has a larger minimum distance than
a best-known comparable linear code with parameters [96, 26, 26], but also it
turns out to be better than the previously best-known comparable binary non-
linear code [20]. In the notation of [20], A(95,27) is improved from 22° to 2%,
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Therefore, we obtain a new binary code and we call this code an exceptional
code. Out of the 37558 divisors of 224 —1 found, a number of them lead to good

codes. The weight enumerator of this code is as follows:
Ol 284368 32102135361078224 405816832 4415616800 4821872144 5215616800 565816832

60107822464102135684368961.

5 Conclusion

We have investigated the structure of quaternary quasi-cyclic codes of length
ml, with m even. We proved some results related to the number of codewords of
1-generator quaternary QC codes and gave a lower bound on minimum distance
for a special case. Our search results show that this class is a larger family (since
number of factors of z™ — 1 is much larger) compared to odd component length
QC codes. We constructed a quaternary QC code that leads to a new binary
non-linear code that has parameters (96,226,28). Further research problems
would be to study 7 which contributes to non-free part in Theorem 4 or compute
it for a specific subclass of this family and study quasi cyclic codes over different
finite rings with no restrictions on lengths.

Acknowledgements: The authors would like to thank the anonymous ref-
erees for their careful reading and useful comments which improved the writing
and presentation of the paper.
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