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Abstract

The directed P;-graph of a digraph D is obtained by representing
the directed paths on k vertices of D by vertices. Two such vertices are
joined by an arc whenever the corresponding directed paths in D form a
directed path on k + 1 vertices or a directed cycle on k vertices in D. In
this paper, we give a necessary and sufficient condition for two digraphs
with isomorphic P};-graphs. This improves a previous result, where some
additional conditions were imposed.
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1 Introduction

In [4] directed path graphs were introduced as a generalization of (undi-
rected) path graphs and line digraphs. Following (2], first we define a directed
graph or digraph D to be a pair (V(D), A(D)), where V(D) is a finite nonempty
set of elements called vertices, and A(D) is a (finite) set of distinct ordered pairs
of distinct elements of V(D) called arcs. For convenience we shall denote an
arc (v, w) (where v,w € V(D)) by vw, and say that v is adjacent to w, and w
is adjacent from v. Let P, and Cj be a directed path and directed cycle on k
vertices, respectively. In this paper our digraphs do not have multiple arcs or
loops.

Let k be a positive integer, and D be a digraph containing at least one B;.
Denote by ﬁk(D) the set of all B’s of D. Then the directed Py.-graph of D,
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denoted by P(D), is the dlgraph with vertex set [z (D); pq is an arc of Py(D)
if and only if there is a P'k.,.l or Ck v1vg - -+ U4y in D (with vy = vg4 in the
case of a Ck) such that p =viv2---vx and g = v - - - VgVk41.

For a graph transformation, there are two general problems, which are for-
mulated by Griinbaum (7). We state them here for directed path graphs.

Characterization Problem. Characterize those digraphs that are di-
rected Pi-graphs of some digraphs.

Determination Problem. Determine which digraphs have a given di-
graph as their directed Pi-graphs.

For k = 2, i.e., line digraphs, the first problem of characterization was
solved in different ways [5, 6], and the determination problem was completely
solved by Ouyang and Ouyang [11]. For (undirected) path graphs we have two
similar problems. For the case k = 3, Broersma and Hoede [3] characterized
the graphs that are Ps-graphs; a problem about the characterization was found
and resolved by Li and Lin [8]. In [9, 10] Li showed that the P;-transformation
is one-to-one to all connected graphs of minimum degree at least 3. Later,
Aldred, Ellingham, Hemminger and Jipsen [1] characterized that two graphs
with isomorphic Ps-graphs are either isomorphic or part of three exceptional
families, and thus the determination problem for k = 3 was completely solved
with no degree or connectedness constraints on two original graphs. Along this
line, Prisner also did a lot of work on k-path graphs and line digraphs, see
(12, 13].

For the directed P;-graphs, Broersma and Li [4] got a result on the problem
of determination. However, they imposed an additional condition on the origi-
nal digraphs, and so they did not solve this problem in general. The aim of this
paper is to completely solve the determination problem of directed Ps-graphs.

2 Preliminaries

Now, we recall some old and establish some new terminology and nota-
tions which will be used in the sequel. First, we introduce some terminology
concerning isomorphisms. Let D and D’ be two digraphs. An isomorphism
of D onto D' is a bijection f : V(D) — V(D') such that uv € A(D) if and
only if f(u)f(v) € A(D'). To stress the head-to-tail adjacency, for two arcs
a,b € A(D), define that a hits b if @ = vw and b = wz. An arc-isomorphism of
D onto D' is a bijection f : A(D) — A(D') such that a € A(D) hits b € A(D)
if and only if f(a) € A(D') hits f(b) € A(D’). A Ps-isomorphism of D onto
D’ is an isomorphism of B;(D) onto P3(D’). We say that a Ps-isomorphism f
of D onto D’ is induced by an arc-isomorphism of D onto D' if there exists an
arc-isomorphism f* of D onto D' such that f(uvw) = f*(uv)f*(vw) for each
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Py = wow of D. _

For any digraph D and any vertex v in D, let N~(v) denote the in-
neighborhood of v and N+(v) the out-neighborhood of v in D. Let d~(v)
denote the in-degree of v and d*(v) the out-degree of v. For & € Ii3(D), de-
fine N~ (), N*(a), d~(a) and d*(a) in P3(D), similarly. A vertex v of D is
called a source or sink if d~(v) = 0 or d*(v) = 0, respectively. We call two
vertices {u,v} C V(D) a Cy-pair if both wv and vu are in A(D). Let {u, v}
be a Cp-pair, then v is called a pseudo-source with respect to u if N~ (v) = {u}
and d*(v) > 2, v is called a pseudo-sink with respect to u if N*(v) = {u} and

d~(v) 2 2, and v is called an end if N*(v) = N~ (v) = {u}

If By = wvw, then v is called the middle vertez of Ps. Denote by S(v) the
set of all the Ps-paths with a common middle vertex v, and then any subset
of S(v) is called a star at v. If a Ps-path a in D corresponds to an isolated
vertex in By (D), then we call « an isolated Ps in D. Let S2(D) be the set of all
the isolated P3’s in D, and denote by Sy (v) the set of all the non-isolated By’s
in S(v). Set D* = D\Iso(D), where Iso(D) denote the set of all the isolated
vertices in D. A mapping o : I13(D) — IIs(D') is called star-preserving or
partially star-preserving if the set ¢(S(v)) or o(S1(v)) is a star in D’ for every
vertex v of D with S(v) # 0 or S1(v) # 0, respectively.

3 Operations on digraphs

In [4] Broersma and Li showed that P3(D) = Py(D’) “almost always” im-
plies D 2 D', see the following.

Theorem 3.1 Let D and D' be two connected digraphs. If for each arc a =
wv € A(D) U A(D') there exist arcs b = zu and ¢ = vy in the same digraph
with T # v and y # u, then every Ps-isomorphism of D onto D' is induced by
an arc-isomorphism of D onto D'.

In this paper, we will consider the problem of ﬁs-isomorphisms on two
general digraphs D and D’ with no restriction. First, we give four simple
situations below, in which two digraphs D and D’ with isomorphic Ps-graphs
maybe nonisomorphic.

(1) If we delete any arc not contained in a P from D to get D', then
By(D) = By(D).

(2) For an arc uwv € A(D), if u is a source or pseudo-source with re-
spect to v and the out-neighborhood of v consists of sinks or/and pseudo-sinks
with respect to v (if v is a sink or pseudo-sink with respect to u and the in-
neighborhood of u consists of sources or\and pseudo-sources with respect to
u), then we see that the arc uv is just in the isolated ﬁa’s of D. So, if D is
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a digraph obtained from D by deleting this arc uv and adding some isolated
Py’s to D such that |Sz(D')| = |Sz(D)|, then P3(D) & Fa(D').

Now, following [4], we introduce an operation which will be used in our third
situation and later. An operation Splitting Vertices on a digraph D was defined

as follows: Let v € V(D) be a source with out-arcs vuy, - - ,vug. First replace
v by two (or more) new vertices v, vz, and then split the out-arcs vuy,--- ,vuy
into two (or more) disjoint (nonempty) sets viu, - -+ , V1Uk,, Valky41,°** 5 U2Uk-

Similar operation can be defined to apply it on a sink of D.

(3) Let D' be a digraph by doing the above operation “Splitting Vertices”
at sources or sinks of D. Obviously, this operation preserves the Py-structure
of D.

(4) If there is a Ca-pair {u,v} with v an end in a digraph D, then we let D’
be a digraph obtained from D by replacing v by two new vertices v, vo and
splitting the arcs uv, vu into uvy, vou. It is clear that (DU Bs) = B(D').

So, from the discussion above, in the rest of this section we can assume that
the digraph D satisfying the following properties:

(a) D has no end.

(b) All sources and sinks of D are of degree 1.

(¢) For any arc wv € A(D), there exists a Ps-path wzu or vyz in D with z # v
and y # u.

Now we take the three properties (a), (b) and (c) as one property P.

In the following, we will examine two complicated cases, for each of which
doing some operations on D also preserves the Py-structure of D if the number
|S2(D)} is not changed.

Before discussion, we introduce some additional notations. Denote by S,
and T, the sets of all sources adjacent to, and sinks adjacent from a vertex v,
respectively; and by X, and Y, the sets of all pseudo-sources adjacent to, and
pseudo-sinks adjacent from a vertex v, respectively.

By the definition of pseudo-sources and pseudo-sinks, if a vertex u € X, or
Y., then u is both the in-neighbor and the out-neighbor of v. In the first case,
we mainly deal with the vertices whose in-neighbors or out-neighbors contain
sources, sinks, pseudo-sources or pseudo-sinks.

Operation A

1. We consider the vertices whose in-neighborhoods consist of sources, pseudo-
sources or/and pseudo-sinks. Here we will distinguish the following three sub-
cases.

(i) The in-neighborhood of a vertex consists of only sources.

Let v € V(D) with N~ (v) = S,, and d~(v) = m. Then we have X, =Y, =
@, and T, = 0 by property (c) of P. Let uy,--- ,ux (k = 1) be all out-neighbors
of v. So there exists a vertex w; € N*+(u;)\{v} such that vusw; is a Ps-path in
D,fori=1,--- k. If k > 2, then we do the operation at v as follows:
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First, delete all in-neighbors of v, then v is a new source with out-arcs

vuy,- -+ ,vuk. Second, we do the operation “Splitting Vertices” at v: replace v
by k new vertices vy, - - , v and then split the out-arcs vu,- - - , vuy into k arcs
VU3, , Ukuk. Finally, for every vertex v; (i = 1,2, - - , k) add m independent

new vertices such that each vertex is adjacent to v;.
(ii) The in-neighborhood of a vertex consists of sources and pseudo-sources.

Let v € V(D) with N~(v) = S, U X,, and |Sy] = m (m > 0). Then we
have Y, = @, and T,, = @ by property (c) of P. Now, let X, = {z1,--+ ,z}
(r 2 1), and u;,--- ,ux (k > 0) be all out-neighbors of v except z1,---,z,.
Note that £+ r > 2. Otherwiseif k+r =1, then k = 0 and » = 1. Thus
we have N*(v) = {z;}, and s0 2,7 is not contained in any Ps of D, which is
impossible by property (c) of P. Hence k + r > 2, then we do the operation at
v as follows:

First, delete all vertices in S, and arcs z;v, - -- , z,v, then v is a new source
with out-arcs vuy, - - -, vug, vz, -+, vZy. Second, if k > 1, then we do the op-
eration “Splitting Vertices” at v: replace v by two new vertices v;, vo and then
split the arcs vuy,--- ,vu,vz1, - , V2, into vyug,--- ,v1uk, V21, " ,V2Ty.
Third, add m + r independent new vertices such that each vertex is adjacent
to v1, and add other m + r — 1 independent new vertices such that each vertex
is adjacent to vo (wWith vg = v in the case of £k = 0). Then we see that v; and
v satisfy the condition of (i). Finally, if £ > 2 or r > 2, then continue to do
the operation at v, and v, as (i).

(iii) The in-neighborhood of a vertex consists of sources, pseudo-sources and

pseudo-sinks.
Let v € V(D) with N~(v) = §, U X, UY,, and X, = {21,---,2,} and
Y, ={y1,---,,ys}, where r >0 and s > 1.
If there is a vertex u € N*(v)\(X, UY, UT,), then there exists a Ps-path
vuw in D. Thus we do the following: delete the arcs vy;,--- , vy, from D, and

then add s— 1 independent new vertices such that each vertex is adjacent from
v.

Otherwise, we have N+ (v) = X,UY,UT,. If X,, # 0, then do the following:
delete the arcs z,v,- - ,z,v and vyy, - - ,vys, and then add r — 1 independent
new vertices such that each vertex is adjacent to v, and add other s — 1 inde-
pendent new vertices such that each vertex is adjacent from v. If X, = @, then
N*(v) =Y, UT,. So, we can do the operation at v similar to (ii).

2. We deal with the vertices whose out-neighborhoods consist of sinks, pseudo-
sources or/and pseudo-sinks. Then, we can do the operation at v similar to
1.

Remark. Let D' be a digraph resulting from D by doing the operatlon A, For
a vertex v € V(D' ), if Xy # @ or Y, # 0, then there are two Ps-paths zuv and
vyz in D' such that u ¢ Y, and y ¢ X,. Otherwise, the in-neighborhood of v
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satisfies the condition of 1, or the out-neighborhood of v satisfies the condition
of 2.

Now, we give a pair of nonisomorphic digraphs without sources, sinks,
pseudo-sources, or pseudo-sinks, but their Ps-graphs are also isomorphic. The
first digraph 2C, consists of two disjoint C.’s. The second one denoted by F,
is obtained from a cycle C, by replacing each edge wv of C,, by two arcs uv
and vu, n > 3. So, in the second case, we will consider a connected digraph D
which contains Cy-pairs {zi,Tip1} for i =1,2,--- k-1, where 21, -+ , 21
are all distinct vertices, and the in-neighborhood of z; consists of z;_, Ti4+1
and sources, and the out-neighborhood of z; consists of z;_;, z;4+1 and sinks in
D, fori=2,.- ,k—1. (Sg, or Ty, may be an empty set fori =2,--- ,k—1.)
Operation B

Then, according to the in-neighbors and out-neighbors of z; and zx, we will
distinguish the following subcases.

1. Let z; = 2k, then k > 3.

If the in-neighborhood of z; consists of z2, zx—1 and sources, and the out-
neighborhood of z; consists of 23, zx-1 and sinks, then take two copies of D,
and let D; and Dy be two digraphs by deleting the arcs zyz2, - - - , Zx—121 from
one copy of D, and deleting the arcs ;zx—1,- - , T2 from another copy of D,
respectively. Finally, we replace D by D; and Ds. Note that Sz, or T, may
also be an empty set.

Now, in the following subcases, we can suppose that z; # xzx, and then
k>2.

2. If the in-neighborhood of z; consists of z;4;, sources, and pseudo-sources
with respect to z;, for ¢ = 1,k, (with zx+1 = zx—; in the case of ¢ = k), then
do the following:

First, for the case k > 3, we delete the arcs z,x2, 222}, Txk-1Zk and TpTir—1
from D, and thus there are at least two components. Denote by D; the compo-
nent containing z;, for i = 1,2, k. Note that Dy # D, Di, but D, and Dj may
be the same component. Now, let H be a digraph which consists of Dj, two
additional vertices u and v, and arcs uzs, Zau, Tx—1v and vzi—1. Then, take
two copies of H, and denote by H; and H; the digraphs obtained by deleting
the arcs uzg, T2T3," *+ , Tk—2Tk-1,Tk—1v from one copy of H, and deleting the
8TCS UTk_1,Tk—1Tk—2,"  * , T3T2, Tou from another copy of H, respectively. Let
|Sz;| = ni and | Xz, | = 7y for ¢ = 1,k. Then, we add ny + i independent new
vertices such that each vertex is adjacent to v in H;. Similarly, add n; +
independent new vertices such that each vertex is adjacent to v in Hs. Finally,
in order to preserve the By-structure of D, we identify the vertex z; in D; to
the vertex u in Hj, and identify the vertex zx in Dy to the vertex v in Hy.
At last, observe the out-neighborhoods of z; and zx. If the out-neighborhoods
of £; and x; consist of sinks and pseudo-sources with respect to z; and zy,



respectively, then do the operation at z; and z; similar to operation A. In
Figure 1, we give an example for this situation.
For the case k = 2, it is similar to the case k > 3.

r
.
i
[}

Tk-1

P

Figure 1: An example for the subcase 2 of the operation B.

3. The out-neighborhood of z; consists of z;4,, sinks, and pseudo-sinks with
respect to z;, for i = 1, k, (with zx4) = zx_1 in the case of i = k).
4. Without loss of generality, we consider the in-neighborhood of z; consists of
T3, sources, and pseudo-sources with respect to z;, and the out-neighborhood
of . consists of zx_,, sinks, and pseudo-sinks with respect to zx.

For the subcases 3 and 4, we can do the operations similar to 2 as above.
Remark. Let D’ be a digraph obtained from D by domg the operation B.
If there are Cy-pairs {z:i,2i41} in D for i = 1,--- k-1 (k > 2), and
the in-neighborhood of z; consists of z;_1, ;1) and sources, and the out-
nelghborhood of z; consists of z;_1, z;4+; and sinks, fori = 2,-.- ,k = 1, then
there exist Pg-paths wiv1z; and Z1y121, Or upvkxk and Txyrze in D' with
v1 # y1 and vk # Y.

Now we denote by C(D) the digraph resulting from D by domg the op-
erations A and B, and satisfying the property P. It is clear that P3(D)' o
P3(C(D))‘ For two given digraphs D and D' with isomorphic P3-graphs
we have P3(C(D))* = ﬁg(C(D ))*. If necessary, add one or more isolated
P3’s to either C(D) or C(D') to obtain digraphs C’(D) and &(D') such that
152(C(D))| = |S2(C(D'))|, and then Py(C(D)) = By(C(D')).
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4 Main results
Before stating our main result, we give the following lemmas.

Lemma 4.1 Let ¢ be a Ps-isomorphism from D to D' and there are P3-paths
ToT1T, ToZ1Y0, Ti—1TiTi+1 Ond Tif1Z:Ti—1 tn D with zo # yo, fori=2,.--,
k-1. If o(zoz122) and o(x2z1y0) have a common middle vertez, then o(z;_;
Z;2i41) ond o(Zi+12izi—1) have a common middle vertez, fori=2,--- ,k—1.

Proof. Assume, to the contrary, that ¢ is the smallest index in {2,-- -1}
such that a'(z‘_lzc,:z....l) and o(zi41z:zi—1) have no common middle vertex Let
o(zi-1ZiTig1) = z,_lx x;,,_l and o(Zi412iTi—1) = z,_,,lx":c:'_l, then :z: # :z:
For i > 2, since z;_ox;_)x; is adjacent to z;_12;z;+; and g is a P3-1somorph1sm
from D to D', we know that o(Ti—ozi—1%;) is adja.cent to o(zi—1%iTi+1). So
o(zi-2%i-1%;) and a(z,_lz,x,ﬂ) have the arc z,_lz in common, and thus
o(Ti—2Ti—1%;) € S(x,_l). By a similar argument as above, we can also know
that a(z,x,_lx,_z) € S(z;_,) for the case i > 3. Then, the choice of i implies
that z;_, = 3’;-1 for ¢ > 3. Now, for the case ¢ = 2, it 1s easy to deduce that
a(xzzlyo) € S(z;). From the condltlon, we know that z; = 2;. Thus z;_, =
; for i > 2. So, there is a P3 pat.h a: 1::: in D' which is adjacent from
:;_lz"x:'_l and adjacent to zi 12 Tiyq Smce o lis also a Pj-isomorphism,
there exist & member o € IT3(D) such that o=(z; z;_,z;) = . Then a is

adjacent from x4 7;z;—1 and adjacent to z;—;Z;Tiy1, Which is impossible. 1l

Lemma 4.2 Let D and D' be two digraphs with each component of D non-
isomorphic to F,. Let o be a Ps-isomorphism from D to D'. Then o is
star-preserving if and only if for any arc uv € A(D)

(i) if T1, - -,z are all in-neighbors of u ezcept v, then o(z1wv), - , oz, uv)
have a common middle vertez.

(%) if y1,--- ,vs are all out-neighbors of v except u, then o(uvy),---,
o(uvys) have a common middle vertez.

Proof. The condition is clearly necessary. Now we assume that (¢) and (i)
hold for D. Let v be a vertex with S(v) # @ in D, vvw and u'vw’ be any two
Ps-paths in S'(v) If wvw and v vw have a common arc, then by (3) or (),
o(uvw) and cr(u vw') have a common middle vertex. Next we suppose that
wvw and ¥'vw’ have no common arc. To show that o(uvw) and o(u'vw’) have
a common middle vertex, we distinguish the following three cases.

Case 1. u# w or w#u, say w # «". Then from condition (i), we know
that o(uvw) and o(u'vw) have a common middle vertex; and from condition
(4), o(x'vw) and o(uvw') have & common middle vertex. Thus o(uvw) and
o(u'vw') have a common middle vertex.
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Case 2. u = w and w = 4, but S(v) \ {uvw,w vw'} # @. Then there
exists a Py-path zvy in S(v), such that o(uvw) and o(zvy) have a common
middle vertex, so do o(u'vw') and o(zvy), and o(uvw) and o'(u'vw').

Case 3. u = v and w = u with S(v) = {uvw,u'vw'}. Since each
component of D is nonisomorphic to F,, we can assume that there are P;-
paths Zor1T2, T2Z1Yo, Zi—1TiTiy1 aNd Tip1Zizi—y in D with 2o # o, for
i1=2,..- ,k— 1. Without loss of generality, let v = z;_;, v = z; and w = z;44
forsomei € {2,.-- ,k—1}. By Case 1, we know that o(zoz122) and o(z221%0)
have a common middle vertex. Then by Lemma 4.1, we know that o(uvw) and
o(u'vw') have a common middle vertex. [ |

Lemma 4.3 Let D and D' be two digraphs, o be a P3-isomorphism from C(D)
to C(D'). Then o and o~} are partly star-preserving.

Proof. It is clear that each component of C(D) and C(D’) satisfies the con-
ditions of Lemma 4.2. So in order to prove that o is partly star-preserving, we
only need to show that for any arc uv in C(D)

(i) if z1,--- ,z, are all in-neighbors of u with z;uv € Sy(u) fori=1,--- ,r,
then o(z uv),- - - ,0(z,uv) have a common middle vertex.

(ii) if y1,- - - , ys are all out-neighbors of v with uvy; € Sy(v) forj =1,---,s,
then o(uvy1),- - - ,o(uvy,) have a common middle vertex.

Case 1. We consider an arc wv in é(D) , where zy,---,z, are all in-
neighbors of u except v, and y;,::- ,ys are all out-neighbors of v except u,

and r > 1, s > 1. Then, it is clear that z;uv € S;(u) and uvy; € S1(v) for
i=1,--,rj=1,---,s. 3

Subcase 1.1 Since zjuv,- - ,z,uv are adjacent to uvy; and o is a Ps-
isomorphism, we have that o(zuv), - -+, o(z,uv) are adjacent to o(uvy;). Let
a(uvy;) = u'v'y;, then v'v’ is the common arc of o(z1uwv), - ,o(zruv). Thus
o(z1uv),- -+ ,0(z,uv) have a common middle vertex.

Subcase 1.2 By a similar proof as Subcase 1.1, we can obtain that o(uvy;),
.-+ ,0(uvy,) have a common middle vertex.

Case 2. We consider an arc wv in (D) with v is a sink or pseudo-sink

with respect to «, where zi, - - - , z, are all in-neighbors of u with z;uv € S;(u)
fori=1,--+,r. Let X = {z1, -+ ,2,} and 7 > 2. If r = 1, then it is a trivial
case. We shall show that o(zuv),--- ,o(zruv) have a common middle vertex.

Since z;uv € S1(u), there is a vertex p; € N~ (z;)\{u} such that p;z;u is
a Pi-path in C"(D), for i = 1,-..,r. By the operation A, the situation that
the out-neighborhood of u consists of only sinks and pseudo-sinks with respect
to u can not occur in (D). Now, we denote W = N+(u)\(T, UY,), and let
W = {w1,-++ ,wm}. Thus m > 1 and there is a vertex g; € N*(w;)\{u} such
that uw;q; is a Ps-path in C’(D) forj=1,---,m.

Subcase 2.1 There is a vertex w € W but w ¢ X.
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By Subcase 1.1, we have that o(z uw), - ,o(zruw) have a common mid-
dle vertex. We also know that o(z;uv) and o(z;uw) have a common middle
vertex by Subcase 1.2, for i € {1,---,7}. Hence, o(z uv),-- , o(zruv) have a
common middle vertex.

So, in the following subcases, we can assume that W C X. Without loss of

generality, let w1 = 2, w2 = Zro1,"* , Wi = Tr—m41-

Subcase 2.2 W C X andr>m > 2.

By Subcase 2.1, we know that o(zjuv),--- ,0(z,—ouv),o(z,_1uv) have a
common middle vertex since wy ¢ {1, --,zr—1}, and so do o(zjuv), -+,
o(zr_guv), o(z,uv) since wy ¢ {z1,+ , Tr-2, Zr}. Thus o(z1w), - -+, o(zruv)

have a common middle vertex.

Subcase 23 W C X andr=m = 2.

By Subcase 1.2, it is easy to see that o(z uv) and o(z1uz,), o(z2uv) and
o{zouz1) have a common middle vertex, respectively. So in order to prove
(i), we only need to show that o(xuz2) and o(zouz;) have a common middle
vertex.

(1) If v is a pseudo-sink with respect to u, then there is a vertex z €
N-(v)\{u} such that zvu is a Ps-path in C(D). Then, by Subcase 1.2, we
have that o(vuz,) and o(vuzg) have a common middle vertex. We also know
that o(zjuzs) and o(vuzz), o(zeuz;) and o(vuz;) have a common middle
vertex by Subcase 1.1, respectively. Therefore o(z1uzs) and o(zauz;) have a
common middle vertex.

(2) If v is a sink, then we can suppose that there is no pseudo-sink with
respect to u in C(D). Otherwise, we obtain that o(z;uz2) and o(zpuz;) have
a common middle vertex by Subcase 2.3(1). Now, we can assume that the
out-neighborhood of u consists of 1, z2 and sinks. Since W = X, there is no
pseudo-source with respect to u. Thus the in-neighborhood of « consists of z;,
5 and sources.

Then, without loss of generality, we can suppose that there are ﬁa-paths
Licililiva and Ly 05l g in C‘(D) such that the in-neighborhood of I; consists of
l;—1, l;4+1 and sources, and the out-neighborhood of I; consists of l;_1, l;4+; and
sinks, for i = 2,--- ,k— 1, where ly,lp,-- - , li are all distinct vertices. Now, let
2y =li_1, u =1; and 5 = l;4; for some i € {2,--- ,k — 1}. By the operation
B, for i = 1 or k, there must be two Py-paths zit:l; and 152 in C(D) with
t; # i, say i = 1. Then by Lemma 4.1, in order to show that o(zjuzz) and
o(zauz;) have a common middle vertex, we only need to show that o(t1l1l2)
and o(lal1f;) have a common middle vertex. By Subcases 1.1 and 1.2, we
get that o(lal11) and o(t1l1£;), o(t1l1lz) and o(t1l1£1) have a common middle
vertex, respectively. Thus o(1!1/2) and o(l2l1£;) have a common middle vertex.

Subcase 2.4 W C X and m=1.



Since wy ¢ {z1,---,zr-1} and by Subcase 2.1, we know that o(z,uv),

-+ ,0(zr-1uv) have a common middle vertex. And by subcase 1.2, it is easy

to see that o(zyuv) and o(z1uz,) have a common middle vertex. Thus, we
only need to show that o(z;uz,) and o(z,uv) have a common middle vertex.

Now, we see that the out-neighborhood of u consists of z, sinks and pseudo-
sinks with respect to 4. Then, without loss of generality, we can assume that
there are Co-pairs {;,li31} in C(D) fori =1,--- ,k—1 (k > 2), and the in-
neighborhood of !; consists of };—1, l;+; and sources, and the out-neighborhood
of l; consists of l;_1, l;+1 and sinks, for i = yk—1, where ly,1l3,--- ,li are
all distinct vertices. Let u = [; and z, = Is. By the operation B, there must be
two ﬁg-paths Iktrz and Zilgly in C'(D) with ¢y # £x. Then by Subcase 1.1 and
1.2, it is easy to see that o(lg—1lktx) and o(telkts), o(frlilc—1) and o(Eelkts)
have a common middle vertex, respectively. So o(lx—1liktr) and o(Exlrli—1)
have a common middle vertex for k > 2. Then, by Lemma 4.1, o(uz,l3) and
o(lzz,u) have a common middle vertex if k > 3.

Now assume, to the contrary, that a(:clua:r) and o(zruv) have no common
middle vertex. Let o(z1uz,) = z,u =, and o(z,uv) = z,u v”, then v’ #u”.
If & > 3, then it is easy to see that o(lazru) is adjacent to o(z,uv). So
a(ls:c,u) and o(z,uv) have the arc z, %" in common, and then o(l3z,u) €
S(z ). Similarly, we can also know that o(zuz,) is adjacent to o(u:c,l;;), then
u'z, is the common arc of o(zuz,) and o(uz,l3). Thus o(uz,ls) € S(z,.). So,
we obtain z, = z,. If k = 2, i.e., T, = lx, then we can get o(uz,ta) € S(mr)
and o(f2z,u) € S(:z:,) by a sxmxla.r proof of the case k > 3. Hence :c =z,
Then, there i is a P3-path wz,u" in G(D') which is adjacent from zu'z, and
adjacent to :c u"v". Since a" is also & P'a-lsomorp}nsm, there is a Ps-path
B in C(D) such that o=1(u'z.u") = 8. Then, § is adjacent from z uz, and
adjacent to z,.uv, which is impossible.

Case 3. We consider an arc uv in C(D) with u is a source or pseudo-source
with respect to v, where y;,---,y, are out-neighbors of v with uvy; € S1(v)
for j € {1,---,s}. This case is similar to Case 2.

Since o~! preserves the same properties as o, o~! is also partly star-
preserving. The proof is thus complete. |

Theorem 4.4 Let D and D' be two dzgmphs with |So(D)| = |S2(D')]. Then
B;(D) = By(D') if and only if C(D) = C(D').

Proof. By the definition of C(D), it is clear that P3(D)* = P3(C(D))" and
B(D) = P3(C(D )*. If (D) = c(D ),_then Py(D)* = By(D')*. And as
[S2(D)| = |S2(D")|, we have that P:;(D) Py(D").

Now we assume that Py(D) 2 Fy(D"), and thus B5(C(D))* = B(C(D'))*.
Let a and b be the number of isolated Py’s in C(D) and c(D), respectxvely
Without loss of generality, say a > b. Then we add a — b isolated Ps’s to
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C(D ) to obtain a dxgraph C(D'), and so Pg(C(D)) ~ B(C(D )) Note that
if v’ is a vertex in C(D') with S;(v ) # 0, then v is also in C(D'). Let o be
a Pi-isomorphism from C(D) to C(D'). For each vertex v € V(C(D)) with
S1(v) # 0, there is a vertex v in C(D') such that o(S1(v)) € S (v") by Lemma
4.3. In fact, v is uniquely determined by v. Now we construct a mapping
f:{ve V(C(D)) Si(v) # (0} — {v € V(C(D")) : Si(v') # 0} such that
fw)y =7 1f o(S1(v) € Sl(v ), and then we will show that f is a buecnon
If f(v) = v and f(v) = o, then o(S5(v)) C Si1(v') and a(Sl('u)) C 5 x).
So o(S1(v)) C Si(v') N Si(u'). Since Sy(v) #Pand o is a Pg-xsomorphlsm,
there is a ﬁs—path uvw € S1(v) such that. o(uvw) € 5 (v )n Sl (u'). Thus
the middie vertex of o(uvw) ls v and u whlch implies v' = u, and so f is
really a mapplng If f(v) = and f(u) = v, then d(Sl(v)) C Si(v') and
o(81(w)) € $1(v'), and so o(S1(v)) U o(S1(x)) C $1(v'). Since Si(v) # @ and
S1(u) #0,and o is a Ps-isomorphism, we have that S1 (v') # 0. By Lemma
4.3, there is a vertex w € V(C(D)) such that 0=1(S1(v')) C S1(w). Since o~}
is also a Ps-isomorphism, S;(v) U S)(x) C Si(w) which implies v =w = v, i.e.,
v = u. So f is an injection, and as o~} preserves the same properties as o,
then f is a surjection. Hence f is a bijection such that o(S1(v)) = 51(f(v)).

Claim 1. For an arc pq in C(D), if there are arcs zp and gy with = # ¢
and y # p, then f(p)f(q) is in C(D").

It is clear that zpg € S)(p) and pgy € S1(g). Since o is a Ps-isomorphism,
a(81(p)) = S1(f(p)) and o(51(q)) = S1(f(q)), we obtain that o(zpq) is adja-
cent to o(pgy), and o(zpqg) € 51(f(p)) and o(pgy) € 51(f(g))- Thus f(p)f(g)
is the common arc of o(zpq) and o(pqy), and so f(p)f(q) is in C(D').

Now, we will consider u € V(C(D)) with S(u) = 0, then u is a source or
sink of C(D). First we construct a one to one mapping between all the sources
of C(D) and C(D'). Let w be an out-neighbor of a source in C(D), and then
denote by s1,+ -+, 8m (m > 1) the all sources adjacent to w. By property (c) of
P, there is a Py-path wzy in C(D) such that wxy € S)(z) and s;wz € S)(w)
for i = 1,---m. So, let o(s;wz) = s;w'z’, where w' = f(w) and =’ = f(z) by
Claim 1, for i = 1,..- ,m. Then, we extend f by defining f(s;) = s; for every
i€ {1,---,m}. It can be similarly done for the case of sinks of C(D). Let z be
an in-neighbor of a sink in C(D), and let ty,--+ ,t, be all out-neighbors of 2.
By property (c) of P, thereis a Pi-path Zjjz in C(D). Now, by Claim 1, we can
let o(gzt;) = y'z't;, where § = f(7) and zZ = f(z),for j=1,--- ,n. Then we
extend f by defining f(¢;) = t;- for every j € {1, ,n} (and still denote the
resulting function by f), and then we conclude that f determines a mapping
f: V(C(D)) — V(C(D")) such that a(S;(v)) = S1(f(v)) for all v € V(C(D)).
Hence f is a bijection.

Next we will prove that f preserves adjacency and non-adjacency.



Claim 2. For an arc pq in C(D), if p is a source or ¢ is a sink, then f(p)f(q)
is in C(D'). This can be easily seen by the definition of f.

Claim 3. For an arc pq in C(D), if p is a pseudo-source with respect to ¢
or ¢ is a pseudo-sink with respect to p, then f(p)f(qg) is in C(D’).

Without loss of generality, let z1,--,2, (r 2 1) be all pseudo-sources
with respect to g, and let p = z;. Then we will show that f(z;)f(g) is in
C(D')fori=1,---,r. Let N'(q)\(Sg UX,UYy) = {uy,--- ,ux}, then k > 1
by the operation A and there is a Ps-path vjujq in C(D) for j = 1,---&.
Let |Sq| = m and |Y;] = s, where m > 0 and s > 0. Similarly, there is a
Pi-path quy in C(D) with w € X, by the operation A. Since z; is a pseudo-
source with respect to g, there is a vertex y; € N*(z;)\{q} such that gz;y;
is a 133-path in C(D), for ¢ = 1,--- ,r. Now, suppose that there is an index
i € {1,---,r} such that f(z;)f(g) is not in C(D'). Let & = quwy and 8 = qz;y;.
Obviously, z1qw € Si(q), @ € Si(w), u192; € S1(q) and 8 € S)(z;), and thus
we have o(a) = a’ = f(q)f(w)y and o(8) = ' = f(g)f(z:)y; by Claim 1.
If w & {u1, -+ ,ux}, then d=(e') = d~(a) = k+m + 7+ s. Since f(z:)f(q)
is not in C’(DI), we have d'(ﬂ') >d (@) =k+m+r+s Butin fact
d-(8) = d~(B) = k+m+r+s— 1, a contradiction. If w = u; for some
j € {1, ,k}, thend~(a') = d (@) = k+m+r+s— 1. For the arc
wyq, as there are arcs v;w and gz; with v; # g and z; # w, then we have
f(w)f(q) is in C(D) by Claim 1. Since f(z;)f(g) is not in C(D'), we have that
d-(8) > d=(¢') = k+m+r+ s — 1, also a contradiction.

Since o~ enjoys the same properties as o, f also preserves non-adjacency.
Then C(D) = C(D’), and thus a = b. The proof is now complete. |
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