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ABSTRACT. For the sequence satisfying the recurrence relation of the
second order, we establish a general summation theorem on the infi-
nite series of the reciprocal product of its two consecutive terms. As
examples, several infinite series identities are obtained on Fibonacci
and Lucas numbers, hyperbolic sine and cosine functions, as well as
the solutions of Pell equation.

1. INTRODUCTION AND PRELIMINARY

For the classical Fibonacci numbers {F},}, Dean Clark [1, 1992] asked for
evaluating the following reciprocal sum

= (1)
2 FuFrs’ M

The authors observe that the summability of the last infinite series relies
crucially on the fact the Fibonacci numbers satisfy a recurrence relation of
the second order. In fact, there exist many combinatorial sequences which
satisfy the recurrence relation of the second order. To be concrete, let {A4,}
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be such a sequence with the fixed initial values Ag and A; as well as
An+1 =bAn + dAp-1 for n=1,2,---. (2)

For a nonnegative integer €, the objective of the present paper is to evaluate
the following general infinite series:
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Their closed formulae will be given as Theorem and Corollary in the next
section. Interestingly enough, there is almost no other known infinite series
identities of this kind in literature except for the example displayed in (1).
On account of the common character that {A,} satisfies the recurrence re-
lation of the second order, several new summation formulae are exemplified
as consequences, in the third section, concerning the Fibonacci and Lucas
numbers, hyperbolic sine and cosine functions, as well as the solutions of
Pell equations.

n=e

2. THE MAIN RESULTS AND PROOFS

With b and d being the coefficients in recurrence relation (2), define two
conjugate algebraic numbers o and v by

b+ VEE+4d b— VB2 +4d
o= 2T and gy = (4)

Then we are ready to state the main theorem of this paper.

Theorem. Let b, d and v be three real numbers with b > 0 and v being
defined by (4). For the sequence {A,} satisfying recurrence relation (2),
there holds the following infinite series identity:

oo
(=d)" (~dy
E = e=0,1,---. 5
AnAnpr AcAcqr — A2y for ®)

n=e

In particular, for € = 0 and € = 1, the identity (5) reduces respectively to
the following:
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which will be used frequently in this paper.
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Proof. From the recurrence relation (2), we can compute without difficulty
(cf. Wilf [5] for example) the generating function of {4,}. In fact, multi-
plying by z"+! the both sides of (2) and summing over n from 1 + € to oo,
we can proceed as follows:

o0 [> ] (=]
Do Anz™ =6 Y Azt 4+ d Y Apoaz™tl
n=14¢ n=l+4¢ n=1l+4¢

Defining f(z) = Y o2, Anz™, we can reduce the above equation to the
following

f(&) = Aez® — Azt = ba{f(z) — Acz®} + d2?f(z).
Resolving this equation, we find that

Ae + T(Aet1 — bAe)
— €
f@) =" =g

Noting that 1 — bz — dz? = (1 - az)(1 — yz) with « and ~ defined in the
theorem, we can decompose f(z) into partial fractions:

z€ Acy1 — Aey - A1 — Acr
a—- 1-za 1—zvy )

flz) =

Extracting the coefficients of ™ from the both sides of the equation just
displayed, we get an explicit expression for A,:

A, = A€+1 — A€7an—e _ A€+1 —Aca n—e

-y a—
Noting that
b+vb2+4d b-VbZ+4d
axXy= X = —d
2 2
and defining
n—¢ n—¢&
T"’ = 7 = A 3—A Y ’Y A¢+1—A [~ 4 ?
A, et Y yn—€ £Zyn—e

a—y a—vy
we can easily calculate the following difference:

(Aet1 = Aeq)(=d)"~¢
AﬂAn+1 '

Tn - Tn+l =
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By means of telescoping method, we then evaluate the infinite series in the
theorem:

(=a)" (—d
n=¢ AnAn-H AE+1 Aerr ml_l;n'oo Z{ n+]}

(df (1,
y ey b n!‘—‘»“ooT"‘*‘}
(=d)*
AcAcyr — Asz'Y’

where the limiting process has been justified by

b+ vb*+4d 2

13 TVE Al o b>0
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and

< . moe . 1
n!l—ronoon = n}l—ro%o Am = 131—120 Act1-Aey (e)m—e _ Aeq1-Acax = 0.
= ¥ a=y
This completes the proof of the theorem. O

Corollary. With the same parameters defined in the theorem, we have:

= (=d) (—d)e{ 1 _ d }
AnAny2 b AchAcy1 — A2y AcrrAeta — A§+1'7 .

n=¢e

Proof. From the recurrence relation satisfied by the sequence {4}, it is
trivial to see that

bAns1 1 d
AnAn+2 An An+2 '
which is equivalent to
1 _ 1 d
AnAniz  bAsAni1 bAnp1dni2
In view of the theorem, the infinite series results in the following closed

form:
o n Ll n oo 8 n
Z A(n::+2 - %{ A(n::+l + Z A(n::-l—l }
n=¢ n=g n=ec+1
S el
B AeAe-H - A?'Y Act18cq2 — A§+17 ’
which is essentially the same as the formula stated in the corollary. O
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We remark that the right hand sides of the infinite series identities stated in
the theorem and corollary depend only on b, d and A., Ac41. In what follows,
we shall collect some examples to show the usefulness of the theorem.

3. EXAMPLES

In order to exemplify the method, we show, by means of the theorem and
corollary demonstrated in the last section, five classes of infinite series iden-
tities on Fibonacci and Lucas numbers, hyperbolic sine and cosine functions
as well as the solutions of Pell equation.

3.1. Fibonacci Numbers. Define the sequence {A,} by A, := F,,, where
{Fy.} is the well-known Fibonacci sequence [2, P45), which satisfies the
recurrence relation

Fop=F+Fy

with the initial condition
F=FR=1.

Now it is trivial to figure out three parameters b=d =1 and v = 1%@ .
According to the theorem, we obtain

f’: G 1 1 E-1

By means of the corollary, we can similarly evaluate infinite series (1):
= (=1) _d { 1 _ d }
el FnFn+2 - b Ff’)’ - F1F2 F22’Y bt F2F3

{6—2(11-\/5)'2_;25}=‘f‘g‘

3.2. Lucas Numbers. Define the sequence {A,} by A, := L,, where {L,}
is the Lucas sequence [3, P298] satisfying the recurrence relation:

Ln+l = Ln + Ln—l
with the initial condition
Lo =2 and L1 = 1.
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They have the same parameters b = d = 1 and v = 132@ as Fibonacci
numbers. Then the theorem gives

— (=)™ 1 _ 1 1
LoLoti  LoLi—L3y ~ 2-21-+5) 25

n=0

Similarly, we can also evaluate, by means of the corollary, another infinite
series related to Lucas numbers as follows:

o~ (=D 1{ 1 __ d }
=t LnLn42 blLoLy—Lgy LiLy— L3y

1 1 2-45
2-2(1-v5) 3-158 2V

3.3. Hyperbolic Sine Function. Let {A,} be given by A, = sinhnz,
where the hyperbolic sine function (3, P271] reads as

et —e~*
2
Then it is not hard to check the following recurrence relation

sinhz =

sinh(n + 1)z = (e + e~ *)sinhnz —sinh(n — 1)z.
Noting further that b = e* +e7%,d = —1 and

_JeF R(z) >0
T=1es,  R(2) <0

we derive from the theorem the following summation formula:

o0
1 1
:4—:41 sinhnz sinh(n+ 1)z~ sinhzsinh2z — ysinh® 2z

s R(2) >0
#};’;, §R(z) < 0.

Analogously, the formula stated in the corollary gives us another hyperbolic
function identity:

-2z
i 1 - F-;%?’;;TE’? R(z) > 0;
sinhnz sinh(n + 2)z Li2e™ R(2) < 0.

n=1 e*+e~*)3%ginh® 2’
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3.4. Hyperbolic Cosine Function. Similarly, let {A,} be the sequence
defined by Ap, := coshnz, where the hyperbolic cosine function [3, P272) is
defined by

e’ +e*

2

cosh z =
and satisfies the recurrence relation
cosh(n + 1)z = (e* + e~ *)coshnz — cosh(n — 1)z.

With the same parameters b, d and vy determined previously, we get another
hyperbolic function identity:

— 1 1 _ 2

; coshnz cosh(n + 1)z = coshz- v e*te* -2y
- #, §R(Z) > 0;
#, §R(z) < 0.

In view of the corollary, the same reasoning leads us to the following hyper-
bolic function identity:

f: 1 _ TRy R(2) >0
coshnz cosh(n + 2)z ez+ezf-_' iff:_e: . R(z) <0.

n=0
Recalling two hyperbolic trigonometric relations

cosh(z +y)z + cosh(z —¥)z = 2coshzzcoshyz

cosh(z + y)z — cosh(z —y)z = 2sinhzzsinhyz
we derive, as byproducts, two infinite series identities:
— 1 > 1
; cosh(2n + 1)z + cosh 2 - nz% 2coshnzcosh(n + 1)z
_ {———ez_}-., R(z) > 0
Py D) §R(z) <0.
= 1 ~ 1
; cosh(2n + 1)z —coshz nz'_-:l 2sinhnzsinh(n + 1)z

_ {m,— R(2) > 0;
m, §R(z) <0.
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Two other infinite series identities with the summands given by the recip-
rocals cosh(2n + 2)z £ cosh 2z can be established similarly as follows:

[= <]
1 1
1;_0 cosh(2n +2)z +cosh2z 1; 2 coshnz cosh(n + 2)z
TRy R >0
rﬁﬁlﬁ R(z) <0.

o0 1 o0
nzz:l cosh(2n +2)z —cosh2z 21 2sinhnz smh(n +2)z

1/2+
= { e‘+e"‘)€"smh z? ?R z) >0;
1/2+
e‘+e“)esinh z? §R(z) <0.

3.5. Solutions of Pell Equation. To make the paper self-contained, we
review some basic fact about Pell equations. For the details, refer to (4,
§7.8].

For non-perfect-square natural number D, the Pell equation
2 -Dy? =1

admits infinite positive integer solutions {Zn,yn}n>1. Let (z,3) = (z1,21)
be the smallest one. Then {z,,yn}n>1 satisfies the crossing recurrence
relations of the first order

Tng1 = Z1Zn + Dy1yn, (82)
Yn+l = Z1Yn + N1Zn. (8b)

and the independent recurrence relations of the second order:
Tnt1 = 2%1Zp — Tp-1 ! z9 = z2 + Dy?, (9a)
Yntl = 2Z1Yn — Yn-1: Y2 = 27141, (9b)

The explicit expressions read as
1

Tp = 5{(5121 + 1 \/B)" + (221 - %N \/B)n}, (IOa)

4 = %{(xww/ﬁ)"—(xl—ylﬁ)"}. (10b)

Both sequences have the same three parameters b = 2z;, d = —1 and
Y=z~ \/a:? — 1. Consequently we can evaluate the following two infinite
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series
1 1 1

= = ) 1la
=1 TnTntl T T2 — T3y z1(Dy? + z14/23 - 1) (112)
o0
1 1 1
> = == 5 . (11b)
=1 Yn¥Un+1 ny— ¥y iz + 22 - 1)

We now give a concrete example to show these formulae. For Pell equation
with D = 2, it is not hard to check that (z;,3:) = (3, 2) and figure out the
three parameters b = 6, d = —1, v = 3 — 21/2. The corresponding identities
result in the following:

i ! __3v/2-4

S{B+2v2)" + (3-2v2)"} x {(3+2V2)"H + (3-2V2)n+1} 48

i 1 _3-242

S{B+2vD)" - 3-2v2)"} x {(3+2V2)"H - (3-2v2)"H) | 82
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