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Abstract

Given a parity-check matrix H with n columns, an ¢-subset T of
{1,2,---,n} is called a stopping set of size £ for H if the £~column
submatrix of H consisting of columns with coordinate indexes in T
has no row of Hamming weight one. The size of the smallest non-
empty stopping sets for H is called the stopping distance of H.

In this paper, the stopping distance of Hm (2t + 1), parity-check
matrices representing binary t-error-correcting BCH codes, is ad-
dressed. It is shown that if m is even then the stopping distance of
this matrix is three. We conjecture that this property holds for all
integers m > 3.
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1 Introduction and Background

1.1 Introduction

Let C be a linear block code of length n represented by a parity-check ma-
trix H. For decoding C on the binary erasure channel by iterative decoding
algorithms, the algorithms are performed on the Tanner graph [1] repre-
senting H. The performance of C is determined by a type of combinatorial
structure on the parity-check matrix H referred to as stopping sets [2].
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An f-subset T C {1,2,-:-,n} is called a stopping set of size £ for H if
the ¢-column submatrix of H consisting of columns with coordinate indexes
in T has no row of Hamming weight one. The size of the smallest non-
empty stopping sets for H is called the stopping distance of H, denoted
by s(H) [3]-[9). The role of s(H) on the performance of C under iterative
decoding on the binary erasure channel is very similar to that of minimum
distance of C under maximum likelihood decoding.

The stopping distance of full-rank parity-check matrices of the Ham-
ming codes is studied in [10]. The class of binary Hamming codes is in fact
the class of single-error-correcting BCH codes. In this paper we consider
binary t-error-correcting BCH codes of length n = 2™ — 1. It is shown
that the stopping distance of the associated parity-check matrices, denoted
H,.(2t + 1), is 3 when m is even. We conjecture that this property also
holds for the cases wherein m is odd.

Necessary background materials are given in the following subsection.
In Section 2, we show that the parity-check matrices H,,(5), 3 < m < 8,
that is matrices representing two-error-correcting BCH codes of lengths 7,
15, 31, 63, 127, and 255, have stopping distance 3. Based on this, we
believe that for any integer m > 3 the stopping distance of H,,(2t + 1) is
three. It is shown in Section 3 that this property holds for Ha,.(2t + 1),
the parity-check matrix representing binary t-error-correcting BCH code of
length 22" — 1.

1.2 Background

Cyclic codes For a prime power g, suppose n and g are relatively prime,
denoted (n,q) = 1, and let a;, ag, -+, o be a set of nth roots of unity
over F,, and let C be the largest g-ary length-n cyclic code having o,
1 < i < t, among its zeros. Then C is the set of all polynomial-codewords
f(@) = fo+ fiz + -+ + fam1z™L, f; € Fy, satisfying

flos) = fool + frou+ faof + -+ + fa1af 1 =0, 1<i<t.

If the splitting field of ™ — 1 over F, is Fyq, then any element 8 of Fq,
in particular any nth root of unity, is expressed as a d-tuple 3] over Fj.
Therefore,

f(z) € C if and only if fo[o?]+f1 [e}]++fn-1[of7!] =0, 1<i<t,

This implies that the following matrix H over Fj, with possibly linearly
dependent rows, is a parity-check matrix for C.



o8] [a] - [e37]

o8] [ed) o [e57]
. (1)

[o¢] [at] - [er7]
Definition 1 The ith cyclotomic coset of ¢ modulo n is the set Ci(q) :=

{i,iq,1g?,- - - ,ig?~'} where d is the smallest positive integer such that ig? =
i (mod n).

It follows from definition that u € C;(2) if and only if 2u € C;(2). This
implies the following corollary.

Corollary 1 Let a be a primitive nth roots of unity over F; with (n,2) =
1, that is o generates the cyclic group E(™ consisting of the nth roots of
unity over F. Suppose m;(z) is the minimal polynomial of of. Then poly-
nomials g (z) = lem {m(z), ma(z), - - -, M2e(2)}, g2(2) = lem {my(z), m2(z),
-+« ,mag-1(z)} and g3(z) = lem {my(z), ma(z), - - -, mae—1(z)} generate the
same length-n binary cyclic code.

BCH codes Let a be a primitive nth root of unity over Fy. Suppose
g(z) is the monic polynomial over F; of minimum degree having a®*,
0 < ¢ <6 — 2, among its zeros, that is

g(z) = lem {my(z), mp41(2), - -, Moy 5-2(z)}

where m;(z) is the monic minimal polynomial of of. The g-ary cyclic code

of length n with the generator polynomial g(z) is called a BCH code and

dented by By(n,d,a,b). If b =1 then this code is denoted by B,(n,4, )

and referred to as a narrow-sense BCH code. Also, if « is a primitive field
element, that is it generates the multiplicative group Fq“d = Fya — {0} of

the splitting field Fa of ™ — 1, then this code is called a primitive BCH

code. If b = 1 then the binary BCH code B2(n,2 = §,a) is in fact the

binary Hamming code.

It is known that the BCH code By(n,d,a,b) has minimum distance
at least d > § and that the binary Hamming code B;3(n,2 = 6,a) has
minimum distance d = 3. The integer J is called the design distance of
Bqy(n,é,a,b).

According to Corollary 1, to construct a binary BCH code we just need
to consider odd design distances and in designing a code with design dis-
_ tance 2¢ + 1 we employ g3(z) = lem {m;(z), m3(z), -+, m2e—1(z)}. In this

paper we are concerned with binary narrow-sense primitive BCH codes.
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Let a be & primitive nth root of unity with n = 2™ — 1. Hence the
splitting field of z™ — 1 is Fom and any primitive field element is a primitive
nth root of unity. We consider BCH code Bsy(n,2t + 1,a), denoted by
Cm(2t + 1), of length n = 2™ — 1 defined by zeros a, @?, --- and %1,
Thus, according to (1), Cr,(2t+1) has parity-check matrix Hy,(2t+1) given
below wherein the powers of o are computed modulo n — 1.

[o;o] [:1]1 e [o;z::il
Hn(2t +1):= [(a:)] [(°':’] v e ): ] @
[(aze;l)o] [(021'-])1] .. [(aac—x')zm_g]

We note that the first block-row of H,,(2t + 1), consisting of the m binary
rows specified by «, is a parity-check matrix of the binary Hamming code
of length n = 2™ — 1,

2 Stopping distance of BCH-code parity-check
matrices of lengths 7, 15, 31, 63, 127, 255

In this section, we show that the stopping distance of parity-check matrices
H,(5),3 <m < 8, is three. The examples are illustrative and provide some
useful ideas for proving this property for arbitrary values of m.

Theorem 1 ([11]) Let C be a linear binary code represented by a parity-
check matrix H and that C has minimum distance d < 3. Then d = s(H).
Proof. If H has an all-zero column then d = s(H) = 1. Otherwise, any
column of H has a nonzero entry and hence s(H) > 1. Thus if d = 2, then
it follows from s(H) < d that s(H) <2, and henced =s(H)=2. if d =3
then any two columns of H are linearly independent, and hence any matrix
consisting of two columns of H has at least one row in the form 01 or 10,
implying that s(H) > 3. This together with s(H) < d = 3 gives s(H) =dm

Corollary 2 Any parity-check matrix H of the [2™—1,2™—m~1, 3] binary
Hamming code satisfies s(H) = 3; in particular, this holds for H,,(3), the
matrix consisting of the first m rows of Hn(2t + 1) given by (2).

Lemma 1 For the parity-check matrix Hp, (2t + 1), given by (2), we have
s(Hm(2t +1)) > 3.

Proof. As mentioned above, in Hp(2t+1) = ( HES? ) ), given by (2), the
matrix H,,(3) consisting of the first m binary rows of H,,(2t + 1) satisfies
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8(Hpm(3)) = 3. It is obvious that if a matrix M consisting of some columns
of Hyn(2t + 1), has no rows of Hamming weight one, then the first m rows
of M also satisfy this property, and hence any stopping set for Hpn (2t + 1)
is also an stopping set for Hp,(3). Thus s(Hn,(2t +1)) > 3. .

Example 1 Set m = 3. The splitting field of z7 —1 is Fz and any root o of
the primitive polynomial 1+x + 23 is a primitive field element for F3 and a
primitive 7th root of unity. Fj is a 3-dimensional vector space over F; with
basis {1, &, @®}. Using 1+ a+a? = 0, we obtain the binary representation
of the 7th roots of unity: 1 = a® = 001, a! = 010, a? = 100, o® = 011,
a* = 110, o® = 111, o® = 101. Thus we have the following parity-check
matrix Hj.

o 0 1 0 1 1 1
01 0 1 1 1 0O
H3(5)—(a al az a3 a4 a5 as)_ 1 0 0 1 0 1 1
= 0 3 6 2 5 1 4 - 0 0 1 1 1 0 1
[0 a
o a @ a a 0 1 0 0 1 1 1
1 11 0 1 0 O

The matrix consisting of the first three rows of the binary matrix is a parity-
check matrix for the length-7 Hamming code. The parity-check matrix of
the length-7 Hamming code in its recursive form, expressed in terms of
parity-check matrix of the length-3 Hamming code, is obtained by applying
a column permutation on this matrix. In fact, we have

0001 1 11
01100 11
Hy(s)= |10 10101 __(a° a! o® o of ot of
FlT0 01T 1T 110 | a® a® o2 af ot of al
0100 1 11 «
1101010

Columns 2, 4 and 6 of this binary matrix represent a stopping set and hence
s(Hz(5)) < 3. This together with Lemma 1 gives s(H3(5)) = 3. Note that
in this example a® is also a primitive field element.

Example 2 The splitting field of z1°—1 is Fig and any root a of 1 +z+z4
is a primitive 15th root of unity. By a process similar to the given in
Example 1 we get the following parity-check matrix Hy(5).

Hy(5) =
Qo al a‘ &2 as 05 alo as 014 09 a? aa ala all a13
ao 03 alz aB 09 aO ao a’ al’ ala 06 aa aﬂ as QG
0000 00O0T1T1T1T1F1T1a1.1
0001111000011 11
0 1 1 0 0 1.1 0 0 1 1 O O 1 1
]l 1010101010101 01
=l T T 1T 1T oo T T T T T 1T 11
00 1100007111000 1
0010 1007111000100
1 0 1.0 0 1.1 0 1 1 0 O 0 O O
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In this case o® is not primitive and generates o2, o, a°, a!? and a!® =
a® = 1. Columns 2, 12, and 14 give an stopping set and hence s(Hy(5)) = 3.

Example 3 For m = 5, the splitting field of z3! — 1 is F3, with primitive
field element o which is a root of 1 + z% + z5 The matrix Hj(5) given
below is the corresponding parity-check matrix for the length-31 two-error-
correcting binary BCH code.

0000000111111110000000011111111
0001111000011110000111100001111
0110011001100110011001100110011
1010101010101010101010101010101
0000110110001010110111101010011
0111100110011001001160101101001
0010111000101111011001001001101
0011110101101001110000110110100
\ 1010110011010100000001100111111 /

( 0000000000000001111111111111111 w

Hg(5) =

Columns 5, 12 and 13, associated with the top elements o, o® and o8,
respectively, introduce an stopping set, and hence s(Hs) = 3. For this case
o® is a primitive field element.

Following the same process, one can find 3-element stopping sets for the
cases m = 6, 7,8. These support the conjecture that the stopping distance
of Hy, (2t + 1) is three.

3 Stopping distance of BCH-code parity-check
matrix H.(2t + 1)

In this section, it is shown that the stopping distance of BCH-code parity-
check matrix Hs,.(2t + 1) is three for any integer .

Lemma 2 Suppose « is a primitive field element for Fym where m is an
even integer. Then o2 is not primitive for Fom.

Proof. Set m = 2r. By induction on r we show that 2™ — 1 is a multiple
of 3. This obviously holds for r = 1. Assume that this property holds for
all integers 1 < i < r. Hence 22" = 3k + 1 for some integer k. This implies
that

22r+1) = 92792 — 4(3k +1) = 12k + 4 = 3(dk +1) +1 = 3k' + 1.

The order of « is 2™ — 1, hence (o:3)'="""ti__1 = 1, that is the order of a® is at
most 2 3"1 implying that o is not primitive. We show that o® has order




21, Suppose £ < =L and (0®)® =1, that is a® = 1; but 3¢ < 2™ — 1
which is a contradiction since the order of o is 2™ — 1. ]

Lemma 3 Suppose o is a primitive nth root of unity with n = 2™ -1
where m is a positive even integer. Then

nije ipe __ ¢
aF 4 o =af,

for0<€<n—1and1<z<n 1.
Proof. Suppose a¥ + o = ot; then

a? = (cr‘ii +az§i) =a¥ +o® =o'

Thus 2t = ¢ (nod n), and hence ¢ = 0 (mod n), implying that a¥ o =
a®. Multiplying both sides of this equation by af we get the required

property. ]

Theorem 2 Let o be a primitive nth root of unity over Fy where n =
2™ — 1 and m is an even integer. Let C;, i = 1,3,.-.,2¢t — 1, be the ith
cyclotomic coset of 2 modulo n. Then the stopping distance of parity-check
matrix H,,(2t + 1) given by (2) is 3.

Proof. By Lemma 2, o® is not primitive and its order is 2~—=% 3 . Hence in
the second block-row of H,,(2t+ 1), the row corresponding to o®, there are
=1 distinct elements each of which appeared three times.

The element o appears three tunes in the second row of H,,(2t + 1);
consider the three-element v := (2 a% a) sub-row of the second row.
The three-column submatrix of H, (2t + 1) containing v is in the following
form.

3

S I O B e
[(as)o] [(as)o] [(as)o]
H= [(aa)o] [(as)n/s] [(as)zn/s]

[(aﬁt—l)o] [(aﬂ-l)nls] [(am-;)zn/s] )

We show that each block-row of H, considered as a binary matrix with m
rows, represents a three-element stopping set, and hence the set of column-
indices associated with H is an stopping set for H,,(2¢ + 1).

The columns of the second block-row of H are identical, and, by Lemma 3,
the three columns of any other block-row of H are linearly dependent. Thus
8(Hpm(2t 4+ 1)) < 3. This together with the fact that the first block-row of
Hn(2t+1) is Hy,(3) with stopping distance 3, implies s(H,,(2t+1)) < 3.m

465



References

(1] R.M. Tanner,“A recursive approach to low complexity codes,” IEEE Trans.
Inform. Theory, vol. 27, pp. 533-547, 1981.

[2] C. Di, D. Proietty, L.E. Telater, T.J. Richardson and R.L. Urbanke, “Finite-
length analysis of low-density parity-check codes on the binary erasure chan-
nel,” IEEE Trans. Inform. Theory, vol. 48, no. 6, pp. 1570-1579, June 2002.

[3] M. Esmaeili and V. Ravanmehr, “Stopping sets of binary parity-check matri-
ces with constant weight columns and stopping redundancy of the associated
codes,” Utilitas Math., vol. 76, pp. 265-276, July 2008.

[4] T. Etzion,“On the stopping redundancy of Reed-Muller codes,” IEEE Trans.
Inform. Theory, vol. 52, no. 11, pp. 4867-4879, Nov. 2006.

[5] M. Hivadi and M. Esmaeili,“On the stopping distance and stopping redun-
dancy of product codes,” IEICE Trans. Fund., vol. E91-A, no. 8, pp. 2167~
2173, Aug. 2008.

[6] N.Kashyap and A. Vardy,“Stopping sets in codes from designs,” Proc. IEEE
Int. Symp. Inform. Theory, p. 122, June-July, 2003.

[7] M. Esmaeili and M.J. Amoshahi, “On the Stopping distance of Array Code
Parity-check Matrices,” IEEE Trans. Inform. Theory, vol. 55, no. 8, pp.
3488-3493, Aug. 2009.

[8) A. Orlitsky, K. Viswanathan and J. Zhang,“Stopping set distribution of
LDPC code ensembles,” IEEE Trans. Inform. Theory, vol. 51, no. 3, pp.
929-953, Mar. 2005.

[9] S.-T. Xia and F.-W. Fu, “On the stopping distance of finite geometry LDPC
codes,” IEEE Commun. Letters, vol. 10, no. 5, pp. 381-383, May 2006.

[10] K.A.S. Abdel-Ghaffar and J.H. Weber,“Complete enumeration of stopping
sets of full-rank parity-check matrices of Hamming codes,” IEEE Trans. In-
form. Theory, vol. 53, no. 9, pp. 3196-3201, Sept. 2007.

{11) M. Schwartz and A. Vardy,“On the stopping distance and the stopping re-
dundancy of codes,” IEEE Trans. Inform. Theory, vol. 52, no. 3, pp. 922-
932, March 2006.



