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Abstract

Let 7.(G) be the connected domination number of G and v:-(G) be
the tree domination number of G. In this paper, we study the gener-
alized Petersen graphs P(n, k), prove v.(P(n,k)) = v+ (P(n, k)) and
show their exact values for k = 1,2, [n/2].
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1 Introduction

We only consider finite connected and undirected graphs without loops
or multiple edges.

Let G = (V(G), E(G)) be a graph with |V(G)| = p and |E(G)| = q.
The open neighborhood and the closed neighborhood of a vertex v € V are
denoted by N(v) = {u € V(G) : vu € E(G)} and N[v) = N(v) U {v},
respectively. For a vertex set S C V(G), N(S) = LGJSN (v) and N[S] =

v
.,é’sN [v]. A set S C V(G) is a dominating set if and only if N[S] = V(G).
The domination number v(G) is the minimum cardinalities of minimal
dominating sets.
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Sampathkumar and Walikar 21 defined a connected dominating set S
to be a dominating set S whose induced subgraph G[S] is connected. The
minimum cardinality of a connected dominating set of G is the connected
domination number ~.(G).

Chen et al. 1! etc. defined a tree dominating set S to be a dominating
set S whose induced subgraph G[S] is a tree. The minimum cardinality
of a tree dominating set of G is the tree domination number - (G). If
there is no tree dominating set in G, then let v;-(G) = 0. They showed the
exact values of the tree domination number for several classes of graphs,
including Pp, Cp, Kp, K1,p-1, K, s and T, and gave several bounds for 7
and the relationship of v, and ;..

Observation 1.1. If %,(G) > 0, then 7.(G) < 7 (G).

Theorem 1.2. Let G be a connected graph with §(G) > 2. If v (G) > 0,
then v:-(G) 2 @"'—1;’_—12& and the bound is sharp.

Corollary 1.3. Let G be a connected k-regular graph and k& > 2. If
Yr(G) > 0, then ;- (G) > E% and the bound is sharp.

Theorem 1.4. Every connected graph G contains a spanning connected
subgraph H such that 7. (H) = v:(G).

The generalized Petersen graph P(n, k) is defined to be a graph on 2n
vertices with V(P(n,k)) = {vi,u; : 0 £ { < n -1} and E(P(n,k)) =
{vivit1, vivi, witigk 0 0 < i < m — 1, subscripts module n}.

In this paper, we study the connected domination number and tree dom-
ination number of the generalized Petersen graph P(n, k), prove v.(P(n,
k)) = vir(P(n, k)) and show their exact values for k = 1,2, |n/2].

2 The relationship of 7.(P(n, k) and 7, (P(n, k)

Theorem 2.1. For n = 2k, v.(P(n, k)) = v (P(n, k)) = n.

Proof. Let S = {v; : 0 < i < n — 3} U {ug_1,ur—2}, then S is a tree
dominating set of P(n,k) with |S| = n. Hence, 0 < v (P(n,k)) < n.
Let S be a connected dominating set of P(n, k), then for every 0 < i <
n — 1, at least one vertex of {v;, u;+«} has to belong to S. Hence |S| > n,
ie. Y(P(n,k)) = n. By Observation 1.1, we have n < ~v.(P(n,k)) <
Yer (P(n, k)) < n, ie. v(P(n, k)) = %r(P(n, k) =n. o

Theorem 2.2. For n = 2k + 1, v.(P(n,k)) = v (P(n,k)) =n — 1.
Proof. Let § = {v; : (0 £ i < n — 3)} U {(n-3)/2}, then S is a tree



dominating set of P(n,(n — 1)/2) with |S| = n — 1. Hence 7:r(P(n,(n —
1)/2)) £ n—1. By Corollary 1.3, 7 (P(n,(n—=1)/2)) > (2n-2)/(83-1) =
n—1 ie v (P(n,(n—-1)/2))= n~-1. (]

Lemma 2.3. For n # 2k, n — 1 £ % (P(n,k)) < n.

Proof. Let S = {v; : 1 <i < n—1}U{u}, then S is a tree domma.tmg
set of P(n,k) with |S| = n. Hence, 0 < 7%.(P(n,k)) < n. By Corollary
13, 1er(P(n,k)) 2 2n - 2)/(3~-1) =n—1. o

Theorem 2.4. v.(P(n,k)) = v+ (P(n, k)).
Proof. If n = 2k, then by Theorem 2.1, v.(P(n, k)) = v (P(n,k)). Thus
we only need to consider the case of n # 2k.

Let S = {v;i:1<i<n-—1}VU{ui}, then S is a connected dominating
set of P(n,k) with |S| = n. Hence, 0 < 4.(P(n,k)) < n. Let S* be a
connected dominating set of P(n,k) with |S*| = 4.(P(n,k)). Let t be
the number of edges in P(n, k) having one vertex in S* and the other in
V(P(n,k)) — S*, then,

23n— |E(S")) = Tyyer_s- dws) + 2 3(2n — |S*)) + (2n - [S*])
= 8n — 4|5*|,
4|8*| = 2n+2|E(S*)),
2|S*| =>n+|E(S*)|-

Since P(n,k)[S*] is connected, E(S*) > |S*| — 1. Hence, 7.(P(n,k)) =
[S*|>n-1.

Case 1. Suppose v.(P(n, k)) =n—1, then |V (P(n,k)) - S*| =n+1, and
t > n+ 1. Hence,

23n - |E(S*)) = Zyev-s- d(w) +t
>3(n+1)+(n+1)

=4n+4,
2/E(S*)| <2n-—4,
|E(S*)] <n-2.

Since §* is connected, we have E(S*) > n — 2. Hence, |E(S*)| =n -2,
and P(n, k)[S*] is a tree, and S* is a tree dominating set of P(n, k) with
|S*] = n— 1, 3r(P(n,k)) < n—1. By Lemma 2.3, n — 1 < %,(P(n, k)),
we have v, (P(n,k)) = n — 1 = ~.(P(n,k)).

Case 2. Suppose 7.(P(n,k)) = n, then by Observation 1.1 and Lemma
2.3, we have n = v.(P(n,k)) < 7r(P(n,k)) < n. Hence, v.(P(n,k)) =
Yer(P(n, k).

By Case 1 and Case 2, we have 7.(P(n, k)) = v+ (P(n, k)). o

469



Let S be a minimum tree dominating set of P(n,k). By Lemma 2.3
and Theorem 2.4, we have

Lemma 2.5. If v, (P(n, k))) = n — 1, then every vertex of P(n,k) — S is
dominated by exactly one vertex of S.

Proof. Since 1 (P(n,k))) =n—1,|S|=n-1and E(S)=n-2. Let ¢
be the number of edges in P(n, k) having one vertex in S and the other in
V(P(n,k)) — S, then

23n — |E(S)) =X ,v-sd(v)+1
2Bn—(n-2)) =3(nr+1)+t
t =n+1.

Thus, every vertex of P(n,k) — S is dominated by exactly one vertex of S.
O

By Lemma 2.5, we have

Corollary 2.6. If v,(P(n,1))) = n — 1 and there exists one edge wjwa
in P(n,1)[S], then for any edge wswy € E(P(n,1)) with ws € N(wz) and
w4€N(w1), w3 €Sand wys € S. m]

Corollary 2.7. If v,.(P(n,2))) = n — 1 and there exists a path wywaws
in P(n,2)[S], then for any edge wqws € E(P(n,2)) with ws € N(ws) and
'wseN(wl),w4¢Sandw5¢S. a

3 The Exact Value of v (P(n,1))(7.(P(n,1)))

Un—2 Un—t Vg U1 Vg Un2 Un-1 Yo U1 U
Up—2 Un-1 Up uy Uug Up-2 Un-1 U Uy U2
(1) )

Figure 3.1.

Theorem 8.1. For n > 4, % (P(n,1)) = v(P(n,1)) = n.
Proof. Let S be a minimum tree dominating set of P(n,1). Assume that
|S| = n — 1. By symmetry, we assume that there is at least one vertex of

{vo,v1,...,Vn-1} in S. Since |S| = n — 1, there is at least one vertex of
{vo,v1,...,Vn-1} not in S, without loss of generality, we may assume that
VUn-1 & S,v0 € S.
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Case 1. Suppose ug € S(see Figure 3.1(1)). Then, by Corollary 2.6,
v1 €S, u1 € Sand vp_1 € S, up—1 € S, a contradiction with P(n,1)[S]
being a tree.

Case 2. Suppose ug & S(see Figure 3.1(2)), then since P(n,1)[S] is a tree
and both vertices v,_; and ug do not belong to S, we have v; € §. By
Corollary 2.6, uo € S, u; € S. Since P(n,1)[S5] is a tree and any one vertex
of {vn-1,u0,u1} does not belong to S, we have v, € . By Corollary 2.6,
uz ¢ S. Since P(n,1)[5] is a tree and any one vertex of {vn_1,uo,u1,us2}
does not belong to S, we have v3 € S. Continue in this way, we have v; € §
for 4 < i < n -2, thus, v,—; would be dominated by both v,_2 and v, a
contradiction with Lemma 2.5.

By Cases 1-2, we have |S| # n — 1. Furthermore, by Lemma 2.3, we
have y:.(P(n,1)) = n. o

4 The Exact Value of 7, (P(n,2))(v.(P(n,2)))

In [3], Watkins showed: (1) P(n,k) = P(n,n—k); (2)If1<k,m<n-1
and km = 1( mod n), then P(n,m) & P(n,k). So, for odd n, we have
P(n,2) = P(n,(n +1)/2) = P(n,(n — 1)/2). By Theorem 2.2, we can get

Theorem 4.1. For odd n > 5, v (P(n,2)) = 4.(P(n,2)) =n - 1. |
Let S be a minimum tree dominating set of P(n,2).

Un—8 Un—g Un—4 Un-2 U U2 Uy Ug ug

O

Un~-9 | Un-7 | Un~5 [ Un-3 [ Un-1 | U1 U3 s vy
Un~8| Vn-6| Un-4| Un-2| Yo v2 V4 vg vg
Un—9 Un~? Up-5 Un-3 Un-1 Uy us [173 U7

(1)

Un-8 Un—6 Un—4q4 Un-2 Up uy Uq ug ug

Un—9 | Un~7 | Yn—5 | Un-3 | Un-1
Un-8| Yn-6| Yn—4| Vn-2

Un—9 Un-7 Un—5 Un-3 Un—1 W Uz U5 U7
@

Figure 4.1.
Lemma 4.2. For even n > 6, if 14 (P(n,2))) =n—~1,v,_1 €S, % €S
and vi41 € S, then vy ¢ S(0 < i < n — 1, subscripts module n).

Proof. By contradiction. Without loss of generality, suppose that v,_; ¢
S,v € Sand v; € S, and v € S. By Corollary 2.7, uo € S and up € S.
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Since P(n,2)[S] is a tree and any one vertex of {vn—1,uo,u2} does not
belong to S, we have, at least one vertex of {u;,v3} has to belong to S.

Case 1. Suppose u; € S. Then, by Corollary 2.7, any one vertex of
{vn—1,un—1,uo, u2, v3, ua} does not belong to S(see Figure 4.1(1)), a con-
tradiction with P(n,2})[S] being a tree with |S| =n - 1.

Case 2. Suppose vz € S. Then, by Corollary 2.7, uy € S and uz & S(see
Figure 4.1(2)). Since P(n,2)[S] is a tree, v4 € S. By Corollary 2.7, us & S.
Since P(n,2)[S5] is a tree, vs € S. Continue in this way, we have v; € S for
0 € j € n-2. Thus, vp,—1 would be dominated by both v,_2 and vg, a
contradiction with Lemma 2.5.

By Cases 1-2, v € S. ]

Un—-8 uvL—S Un—q4 Un-2 Ug

Un~9 | Un=7 | Un—5 | Un~3 | Un—1
Un—8| VYn—6] Yn-4| Vn-2| o

Un-9 Un—7 Un-5 Un-3 Up-1 U3 Uz Us U7
Figure 4.2.

Lemma 4.3. For even n > 6, if %, (P(n,2))) =n—-1, 4. 2 €S, u; €S
and u;42 € S, then u;44 € S ( 0 < i < n — 1, subscripts module n).

Proof. By contradiction. Without loss of generality, suppose that
Un-2 & S, up € S, uz € S and ug & S(see Figure 4.2). Since P(n,2)[S] is
a tree and both vertices u,_o and u4 do not belong to S, we have, at least
one vertex of {vg,v2} has to belong to S. By symmetry, we may assume
vp € S. By Corollary 2.7, v1 € S, v2 € S. Since P(n,2)[5] is a tree and any
one vertex of {un—_2,u4,v1,v2} does not belong to S, we have v,_; € S.
By Corollary 2.7, vn—2 € S. Since P(n,2)[5] is a tree and any one vertex
of {un—2,u4,v1, V2, Un-2} does not belong to S, we have u,—; € S. By
Corollary 2.7, u; ¢ S. By Lemma 2.5, any one vertex of {us,vs,v4} does

not belong to S. Thus, v3 would not be dominated by S, a contradiction.
O

Lemma 4.4. For even n > 6, if v, (P(n,2))) =n—1, 42 €S, u; € 5,
uis2 € S and ui44 € S, then ui4e ¢ S(0 < i < n — 1, subscripts module
n).

Proof. By contradiction. Without loss of generality, suppose that v,—2 ¢
S,up €8, uz €85, ug €5 and ug € S. Since P(n,2)[S] is a tree, we have,
at least one vertex of {vo,ve,vs,ve, us} has to belong to S.

Suppose vg € S. Then, by Corollary 2.7, v € S and v; ¢ S. By
Lemma 2.5, u; € S and v3 € S. Since N([v3]N S # B, at least one vertex of
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Un-8 Un—6 Un-4 Un-2 U U Ug Ug ug

Un-9 | Un-7 | Un-5 | Un-3 | Un-1

EDEDEDES
Un—9 Up-7 Up-5 Up-3 Un-i 51 us Us uz

(1)
Un—8 Un—6 Un—4 Un-2 U Uz U4 Ug Ug

Un—9 | Un—7 | Un—5 | Un-3 | Un-1 | u v3 U5 U7
Un-8| Un—6| Un—4| Un-2 ) V2 vy vg vg

Up—9 Un-7 Un—5 Un-3 Un-1 W Uz Us Uy
(2

Figure 4.3.

{va,u3} has to belong to S. If v4 € S(see Figure 4.3(1)), then by Corollary
27, vs € S and v¢ € S. By Lemma 2.5, us € S. Thus, uz would not
be dominated by S, a contradiction. Hence v4 ¢ S, so uz € S(see Figure
4.3(2)). Since u; ¢ S, By Lemma 2.5, u,—; & S. Since up_p € S, By
Lemma 2.5, v,—3 € S. Since P(n,2)[S] is a tree and both vertices u; and
v3 are not belong to S, we have us € S. Since v4 ¢ S, by Lemma 2.5,
vs € S. Since P(n,2)[S] is a tree and any one vertex of {u1,vs,vs} does
not belong to §, we have u7 € §. By Lemma 2.5, vg € S. Since P(n, 2)[S]
is a tree and any one vertex of {#n—2,¥n—1, V1, ¥2, ¥4, vs} does not belong to
S, we have ug € S. Continue in this way, we have u; € Sfor 7 < j < n—-4.
Thus, un,—2 would be dominated by both u,_4 and ug, a contradiction with
Lemma 2.5. Hence vy € S.

Un—8 Un—6 Un—q4 Un-2 U u2 Uyq Us Us

Un-9 | Un-7 { Un—§ | Un-3 | Un—-1 U1 U3 U5 vy
Un—8| Un—6| Un-4} Un-2| o v2 v4 Vg vg

Un—9 Un—7 Un-5 Un-3 Un—1 U Uz Us Uy

Figure 4.4.

Suppose va € §. Then, by Corollary 2.7, vo € S, v1 € S, v3 € S
and v4 ¢ S. By Lemma 2.5, u; € S, ug € S(see Figure 4.4). Since
Nug) NS # @, us has to belong to S. By Lemma 2.5, vs ¢ S. Since
P(n,2)[S] is a tree and both vertices u3 and vs do not belong to S, we have
u7 € S. By Lemma 2.5, vg € S. Since P(n,2)[S] is a tree and any one
vertex of {un—2,v0,v1,v3,v4,06} does not belong to S, we have ug € S.
Continue in this way, we have u; € § for 7 < j < n —4. Thus, u,_2
would be dominated by both u,_4 and ug, a contradiction with Lemma
2.5. Hence v; € S.
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Un-8 u,‘__e u,.._,; Un—2 Uo Uz Ugq Uug ug Uuyo U2

Un~9 | Un-7 | Un-5 | Yn~3 | Un—-1 v V3 Vs U7 Vo U111
Un-8| Un-6| Un—d| Yn-2| vp v2 V4 Vs g Yio V12

Un—8 Un—7 Un—5 Un-3 Un-1 U3 U3 Us Uy Uy Uy

Figure 4.5.

Suppose v4 € S. Then, by Corollary 2.7, vs € S, v3 € S, v5 & S
and vg € S. By Lemma 2.5, ug € S and us ¢ S(see Figure 4.5). Since
Nlus)NS # 0, ur has to belong to S. Since N[uz)NS # @, u; has to belong
to S. By Lemma 2.5, v; € S and vy € S. Since P(n,2)[S] is a tree and
any one vertex of {un—2,vo,v2,vs, Vs, U6} does not belong to S, we have
ug € S. By Lemma 2.5, v7 € S. Since P(n,2)[S] is a tree and both vertices
us and vz do not belong to S, we have ug € S. Continue in this way, we
have u; € § for 7 < j £ n — 4. Thus, u,-.2 would be dominated by both
un—4 and ug, a contradiction with Lemma 2.5. Hence vy € S.

Un-8 Upn—6 Un—q Un-2 U u2 Uy Us

Vn-9 | Un—7 | Un—5 | Un—3 | Un—
Un-8| Un~8| Un—d| Un-2

Up—9 Un-7 Up-§5 Un-3 Un-1 U3 U3 U5 Uy Uy UN
(2)

Figure 4.6.

Suppose vg € S. Then, by Corollary 2.7, v4 € S, vs € S. Since
P(n,2)[S] is a tree and any one vertex of {un—2,vo,v2,v4,v5} does not
belong to S, we have, at least one vertex of {v7,ug} has to belong to S. If
v € S, then by Corollary 2.7, ug € S and vg ¢ S. Since P(n,2)[5] is a
tree, we have u7 € S. By Corollary 2.7, us ¢ S. By Lemma 2.5, v3 € S and
uz € S. Thus, v3 would not be dominated by S, a contradiction(see Figure
4.6 (1)). Hence ug has to belong to S. By Lemma 2.5, us ¢ S and u7 € S.
Since N[u7]NS # 0, ug has to belong to S. By Corollary 2.7, vg € S. Since
P(n,2)[S] is a tree and any one vertex of {un_2,v0,v2,vs,vs,v7,v8} does
not belong to S, uje has to belong to S. By Lemma 2.5, vg € S. Since
P(n,2)[S] is a tree and both vertices u7 and vg do not belong to S, we
have u3; € 8. Continue in this way, we have u; € Sfor 9 <i < n-4.
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Thus, u,—2 would be dominated by both u,_4 and ug, a contradiction with
Lemma 2.5. Hence vg € S.

Un—-8 Un-6 Un-4 Un-2 U U2 U4 Ug Uug

Un—9 Un—7 Upn—5 Un—3 Un—1 1:1 ’!:3 '!.'&5 1'1.7
Ug ug Uy Ug ™ Uzj-6 Ugj-4 U2j-2 U U2j42
vn-1! v | v3 | Us | vy e e e !v?j-s!”?j-alvﬁ—l V2541 | V243
Yo v2 V4 vg V2j—6] V2j-4| V2j-2| V2; | V2542
Un—y U uz3  us ur Ugj—p U2j—3 U2j—1 U2j+1 U243
Un—6 Un-4 Un-2 Up @ Uzj-2  Uzj Uj42 U2i44 UDj+6
Un—7 | ¥n-5 | ¥n-3 | Un—1 v ce e V2j—1 | V2541 | V2543 | V2545 | V2547
i vn—Gi vu—4i vn-zi L) | vzj—zi Ve I ”2j+2i vzj+4i v2j+ei
Un—7 Un—§ Un-3 Ua-1 U @ Ugj—1 Ugjel U243 U2j4b  Uj47
Figure 4.7.

Since P(n,2)[S] is a tree and any one vertex of {,—2, vo, V2, v4, vs} does
not belong to S, we have, ug € S. If there is no vy; € S4 < i < (n-6)/2),
then since P(n,2)[S] is a tree, we have u; € S for 9 < i < n - 4.
Thus, u,-2 would be dominated by both u,_4 and up, a contradiction
with Lemma 2.5(see Figure 4.7(1)). So, at least one vertex of wy; €
S5(4 < i £ (n - 6)/2), say voj, has to belong to S. By Corollary 2.7,
vgj—2 & S and vp;_; € S. Since P(n,2)[S] is a tree and any one vertex
of {tn_2,v0,v2,* ,v2j—2,v2j-1} does not belong to S, we have, at least
one vertex of {vg;41,uz;j42} has to belong to S. If vpj41 € S, then by
Corollary 2.7, ugj;2 & S and vaj42 € S. Since P(n,2)[5] is a tree, we have
ugj+1 € S. By Corollary 2.7, ugj-1 ¢ S. By Lemma 2.5, v2;_3 € S and
ugj~3 € S. Thus, ve;_3 would not be dominated by S, a contradiction(see
Figure 4.7 (2)). Hence u2;42 has to belong to S. By Lemma 2.5, ugj—; € S
and ugjy1 € S. Since N[ugj+1] NS # O, ugjis has to belong to S. By
Corollary 2.7, vgj42 € S. Since P(n,2)[S] is a tree and any one vertex
of {un—2,v0,v2, - ,¥2j_2,¥2j-1,V24+1, Y2542} does not belong to S, uzj+q
has to belong to S. By Lemma 2.5, v3j13 € S. Since P(n,2)[S5] is a tree
and both vertices uz;4) and vp;4+3 do not belong to S, we have ugj45 € S.
Continue in this way, we have u; € S for 2j +2 < i < n — 4. Thus, up_»
would be dominated by both u,_4 and up, a contradiction with Lemma
2.5. Hence ug & S(see Figure 4.7(3)).
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Thus ug € S. (]

Un—-5 Un-3 Un-1 U1 U3 Us uy

Vn-6|Vn~4|VUn-2| Yo V2 U4 Vg
Un~5] Un-3[ Un—1 1 3 3

-6 Un—4a Un-2 (t‘lt";) Uy uq  Us #n—6 Un-4 Un-2 (t)
2

Figure 4.8.

Theorem 4.5. For even n 2> 6, v:-(P(n,2)) = v.(P(n,2)) = n.

Proof. By contradiction, suppose :(P(n,2))) = n— 1. Since P(n, 2)[S5]
is a tree, at least one vertex of S is a leaf.

Case 1. Suppose that at least one vertex of {v; : 0 < ¢ < n— 1}, say vy, is
a leaf of P(n,2)[S]. Then, by symmetry, we need only consider the cases
for either v; € S or ug € S.

Case 1.1. Suppose v; € S. Since vp is a leaf of P(n,2)[S], we have
Up-1 &€ S and yp ¢ S. By Lemma 4.2, v € S. Since P(n,2)[S] is a
tree and any one vertex of {v,-1,uo,v2} does not belong to S, we have
u; € S. By Lemma 2.5, u,—; ¢ S. Since P(n,2)[S] is a tree, u3 € S. By
Lemmas 4.3-4.4, us € S and u7 € S. By Corollary 2.7, v2 € S and vz € S.
Since P(n,2)[9] is a tree and any one vertex of {vn_1, %0, V2, Un-1,V3,u7}
does not belong to S, we have vs € S. By Corollary 2.7, v4 € S. By
Lemma 2.5, u2 € S and uq4 & S. Thus, us would not be dominated by S, a
contradiction(see Figure 4.8(1)).

Case 1.2. Suppose ug € S. Since vg is a leaf of P(n,2)[S], we have
Vn-1 € S and v; ¢ S. Since P(n,2)[S] is a tree and both vertices v,_;
and v; do not belong to S, we have at least one vertex of {un—2,u2} has
to belong to S. By symmetry, suppose that us € S. By Lemmas 4.3-4.4,
ug € S and ug € S. By Corollary 2.7, vo ¢ S. Since P(n,2)[S] is a tree
and any one vertex of {vn_1, %1, Un-2, V2, ue} does not belong to S, we have
vy € S. By Corollary 2.7, v3 € S. By Lemma 2.5, u; ¢ S, u3 € S and
un—1 € S. Thus, u; would not be dominated by S, a contradiction(see
Figure 4.8(2)).

Case 2. Suppose that at least one vertex of {u; : 0 < i < n — 1}, say ug,
is a leaf of P(n,2)[S]. Then, by symmetry, we need only consider the cases
for either us € Sor vy € S.

Case 2.1. Suppose uz € S. Since ug is a leaf of P(n,2)[S], we have vp &€ S
and un,_2 € S. By Lemmas 4.3-4.4, us € S and ug € S. Since P(n,2)[S]
is a tree and any one vertex of {un—2,vp,us} does not belong to S, we
have, at least one vertex of {vg,v4} has to belong to S. If v € S, then by
Corollary 2.7, v; € S, v3 € S and vy € S, a contradiction with P(n,2)[S]
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Figure 4.9.

being a tree with |S| = n — 1. Thus, v4 has to belong to S. By Corollary
2.7, v3 ¢ S. By Lemma 4.2, vs € S and vg € S. Since P(n,2)[S] is a
tree and any one vertex of {un—2,%vo,v2,vs,us, v} does not belong to S,
we have us € S. By Corollary 2.7, u3 € S. By Lemma 2.5, u; ¢ S and
vy € S. Thus, v; would not be dominated by S, a contradiction(see Figure
4.9(1)).

Case 2.2. Suppose vg € S. Since ug is a leaf of P(n,2)[S], we have
up & S and un_s € S. Since P(n,2)[S] is a tree and both vertices up and
un—2 do not belong to S, we have, at least one vertex of {vn—1,v1} has
to belong to S. By symmetry, suppose that v; € S. If v,—; € S, then
by Corollary 2.7, vp—2 € S, up—1 € S, u1 ¢ S and v» € S, a contra-
diction with P(n,2)[S] being a tree with |S| = n — 1(see Figure 4.9(2)).
Thus, v,y ¢ S. By Corollary 2.7, v2 € S. Since P(n,2)[S] is a tree
and any one vertex of {un—_2,u2,Vn—1,v2} does not belong to S, we have
uy € S. By Corollary 2.7, un,—1; € S. Since P(n,2)[5] is a tree, and
any one vertex of {un—2,u2,Vn-1,%2,%Un—1} does not belong to S, we have
ug € S. By Corollary 2.7, v3 € S. By Lemmas 4.3-4.4, us € S and u7 ¢ S.
Since P(n,2)[S] is a tree and any one vertex of {up—2, u2, Va1, v2, U3, u7}
does not belong to S, we have vs € S. By Corollary 2.7, v4 € S. Since
P(n,2)[S] is a tree, v¢ € S. By Lemma 4.2, v; ¢ S. Since P(n,2)[9]
is a tree, u¢ € S. By Corollary 2.7, u4 ¢ S. Since P(n,2)[S] is a
tree, ug € S. By Lemmas 4.4-4.5, ujp € S and u;2 € S. By Corol-
lary 2.7, vg ¢ S. Since P(n,2)[S] is a tree, vjg € S(see Figure 4.9(3)).
Continue in this way, we have {410i+0, ¥10i+0, V10i+1, ¥10i+1, Y10i+3, %10i+5,
V10i+5, V10i+6, U10i+6, U10i+8} € S(0 < i < | &) — 1).

Let a = | 5], b =n mod 10 and S; = {10i+0, 10i-+0; V10i+1, Y10i+1,
10643, U10i+5 V10i+5, V10i+6, Y10i+6, U10i+8} (0 < i < a —1).

Case 2.2.1. Suppose n mod 10 = 0. Then, P(n,2)[S;] would be a circle,
a contradiction with P(n, 2)[S] being a tree(See Figure 4.10(1)).
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Case 2.2.2. Suppose n mod 10 = 2. Then, u,—2 would be dominated by
both u,—4 and ug, a contradiction with Lemma 2.5(See Figure 4.10(2)).

Case 2.2.3. Suppose » mod 10 = 4. Then, by Lemma 4.3, u,—4 has
to belong to S. Thus, u,-2 would be dominated by both u,_4 and uo, a
contradiction with Lemma 2.5(See Figure 4.10(3)).

Case 2.2.4. Suppose n mod 10 = 6. Then, by Lemmas 4.3-4.4, u,_6 € S
and un,—4 & S. Since P(n,2)[S] is a tree with |S| = n — 1, vn_¢ has to
belong to §. By Corollary 2.7, vp~7 € S. By Lemma 4.2, v,_5 € S and
Vp—q € S. Since P(n,2)[S] is a tree with |S| = n—1, u,—s has to belong to
S. By Corollary 2.7, un—7 € S. Since P(n,2)[5] is a tree with |S| =n—1,
Un—3 has to belong to S. Thus, u,_; would be dominated by both u,_3
and u;, a contradiction with Lemma 2.5(See Figure 4.10(4)).

Case 2.2.5. Suppose n mod 10 = 8. Then, by Lemmas 4.3-4.4, u,—¢ € S
and un_q € S. Since P(n,2)[S] is a tree with |S| = n — 1, v,_¢ has to
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belong to S. By Corollary 2.7, vp—7 € S. By Lemma 4.2, v,_5 € § and
Un—-4 € S. Since P(n,2)[S] is a tree with |S| = n—1, u,_5 has to belong to
S. By Corollary 2.7, up_7 € S. Since P(n,2)[S] is a tree with |S|=n -1,
Un—3 has to belong to S. By Lemma 4.4, u,_3 € §. Thus, u,_; would
be dominated by both u,—3 and u;, a contre,dlctlon with Lemma 2.5(See
Figure 4.10(5)).

By Cases 1-2 and Theorem 2.2, we have v, (P(n,2)) = 7.(P(n,2)) = n.
a
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