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Abstract
The inverse degree r(G) of a finite graph G = (V, E) is defined by
(G) = T vev arsy» Where deg(v) is the degree of v in G. Erdés et al.
proved that, if G is a connected graph of order n, then the diameter of
G is less than (6r(G) + o(1)) 23k2~. Dankelmann et al. improved this

glogn
bound by a factor of approximately 2. We give the sharp upper bounds

for trees and unicyclic graphs, which improves the above upper bounds.
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1 Introduction

Given a connected, simple and undirected graph G = (V, E) of order n,
let the inverse degree r(G) of G be defined by (G) = T,y gozy» Where
deg(v) is the degree of v in G. The distance between two vertices « and v in
G, denoted by dg(u,v) (or d(u,v) for short), is the length of a shortest path
joining 4 and v in G. The diameter diam(G) of G is the maximum distance
d(u,v) over all pairs of vertices u and v of G. The average distance u(G), an
interesting graph-theoretical invariant, is defined as the average value of the
distances between all pairs of vertices of G, i.e.,

d(u,v
”( G) = Eu,ueé) ( )

A tree is a connected graph of order n and size n — 1, while a unicyclic graph
is a connected graph of order n and size n.
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The concept of average distance, also called the mean distance, was intro-
duced in graph theory by Doyle and Graver [5] as a measure of the “compact-
ness” of a graph. It has already been used in architecture {13] as a tool for the
evaluation of floor plans. Since then it has arisen also in the study of molecular
structure (see, e.g., (18]), inter-computer connections [14] and telecommunica-
tions networks {17]. In a network model, the time delay or signal disgradation
for sending a message from one point to another is often proportional to the
number of edges a message must travel. The average distance can be used to
indicate the average performance of a network, whereas the diameter is related
to the worst-case performance.

Graffiti is a program designed to make conjectures about, but not limited to
mathematics, in particular graph theory, which was written by Fajtlowicz from
the mid-1980’s. A numbered, annotated listing of several hundred of Graffiti’s
conjectures can be found in {10]. Graffiti has correctly conjectured a number
of new bounds for several well studied graph invariants. A number of these
bounds involve the average distance. For example, the inequality u(G) < a(G),
where a(G) is the independence number of G, which was proved by Chung (2]
and improved by Dankelmann [3]. A Graffiti conjecture involving two distance
parameters, rad(G) < u(G) + r(G), was disproved by Dankelmann et al. [6],
where rad(G) denotes the radius of G. See [1, 4, 15] for other problems and
results.

There is a Graffiti conjecture u(G) < r(G) (see (9, 12]). However, the
conjecture was refuted by Erdds, Pach and Spencer in [8]. They proved that,
if G is a connected graph of order n and r(G) > 3, then

(Burras+ot) ez

where p(n,r) = max{u(G) : »(G) < r} and diam(n,r) = max{diam(G) :
7(G) < r}. Dankelmann et al. [7] improved the the upper bound by a factor.
of 2,

logn
loglogn

log n
glogn

< p(n,r) < diam(n,r) < (6r + o(1))

logn
diam(G) < (3r(G) + 2+ o(1)) —— Toglogn’
which is also an upper bound on the average distance since u(G) < diam(G).
In this paper, we give sharp upper bounds for trees and unicyclic graphs.
We show that for a tree T of order n
3In—2r(T)+1—/&r(T)? - (4n—-4Hr(T) +n®>-2n -7
2 ]

diam(T) <
while for a unicyclic graph G of order n

3n—2r(G) - 1— /4r(G)? — (4n - 12)r(G) + n? —6n + 1
5 .
We also prove that the two upper bounds are sharp.

diam(G) <
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2 Main results

Theorem 1 Let T be a tree of order n. Then

3In-2r(T)+1-/4r(T)2—(dn—)r(T)+n2-2n -7
2 ?

with equality if and only if T = T(n,diam(T’)), where T(n,diam(T)) is a tree
having a unigque vertez with mazimum degree n + 1 — diam(T) and all other
vertices with degree one or two.

diam(T) <

Proof. Let T be a tree of order n and diam(T) =d. Ifd=n—1,then T & P,
and r(P,) = 242, It is easy to check that

diam(Py) = P 2r(Pa) +1 - ar(Fn)® - Gn— 8P+ —2n—7

In the following we suppose T' & P,. Denote by T'(n, d) a tree having a unique
vertex with maximum degree n + 1 — d and all other vertices with degree one
or two. If P = uguy...uq is a longest path of T, then the vertices up and uq4
must be leaves. Note that there are at most n—d+1 leaves since diam(T) = d.
Suppose the number of leaves in T is k (k > 3). First, we will show that
1 n-k-1

r(T)<k+ % + —
with equality if and only if T & T(n,n — k+1).

We apply induction on n. It is easy to check that the assertion holds for
smaller n. Suppose it holds for n — 1. It is well-known that every tree has at
least two leaves. Let v be a leaf of T and u be the unique neighbor of v.

If deg(u) = 2, T — v is a tree having n — 1 vertices and k leaves. Then we
have

1

r(T) = §+r(T—-v)
1 1 n-1-k-1 1 n—k-1
S Gkt pt =kt gt

Equality holds if and only if T'—v & T(n—1,n-1-k-1), i.e., T = T(n,n—k-1).
If deg(u) = 3, T — v is a tree having n — 1 vertices and k — 1 leaves. Then
for k > 3 we have

r(T) = 1+l—l+r(T-v)

3 2
5 1 n-k-1 1 n-k-1
< 2 - =t
< 6+k 1+k—1+ 3 Sk+k+ 3 ’
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where equality holds throughout if and only if T —v &2 T(n-1,n — k - 1)
and k = 3. That is to say, in this case, equality holds throughout if and only
fT2Tnn—-k—-1)andk=3. Fork > 3, r(T) < r(T(n,n—-k—-1)) =
S Sy

If deg(u) > 4, we have k > 4 and T — v is a tree having n — 1 vertices and
k — 1 leaves. Then for k > 4 we have

1 1

1) = 1-*-deg(u) " deg(u) —1 +r(T —v)
1 1 n—k-1
< - -
S - e =D TRt T
1 n—-k-1
< k+;+———§-——-—,

where equality holds throughout if and only if T —v 2 T(n—1,n—k —1) and
k = deg(u). It is easy to check that equality holds throughout if and only if
T2 T(n,n—k—1) in this case.

Considering all the above cases, we have proved the assertion above. Now
we will prove the theorem. Notice that k + -,1; + "‘;‘1 is a strictly increasing
function for k > 3. Thus for a tree with diam(T') = d, we have

1 n—k-
rT) < k+;+2—2—1
1 d—2
< -—
< n d+1+n_d+1+ 5

Now multiplying 2(n—d+1) to the two sides of the above inequality, we obtain

2n—d+1)r(T)<2(n—d+1)2+2+(n—-d+1)(d—2).
By some simplifications, we obtain a quadratic inequality on d,
d® - (Bn-2r(T)+1)d+2n%+2n+2 - (2n + 2)r(T) > 0.

We solve the inequality and give the following solution since the diameter d <
n-—1,

< In—-2r(T)+1— /(T2 —(dn-a)r(T)+n%—2n-7

— 2 .

The proof is complete. |
For a unicyclic graph G, by a similar method to the proof of Theorem 1,

we get

d

1 d
r(G’)Sn-d—l+-;-_—m+-2-.

Then we obtain the following theorem.
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Theorem 2 Let G be a unicyclic graph of order n. Then

3n—2r(G) —~1—-+/4r(G)? — (4n - 12)r(G) +n2 —6n + 1
2 9

with equality if and only if T = G(n,diam(G)), where G(n,diam(G)) is a
unicyclic graph having a unigue vertez with marimum degree n+ 1 — diam(G)
and all other vertices with degree one or two.

diam(G) <

3 Comparing of the upper bounds

Our two upper bounds are better than the following one given by Dankel-

mann et al. {7]:
logn

45 (3r(G) +2+o() .

In fact, we improve the above bound by a factor of approximately 4 3 10%%
(note that fﬁ,"—n > 1). Before proving it, we list the following two results
proved by Li and Zhao [16), Zhang and Zhang [19], respectively. Let P, be the
path with n vertices, S, the star with n vertices, C,, the cycle with n vertices
and S; the graph obtained from S, by joining two leaves with an edge.

Theorem 3 (Li and Zhao [16]) For a tree T of order n, the inverse degree of
T satisfies that

n+2 1
< <n— ——
o STT) Sn-14—,

where the left inequality is an equality if and only if T = P,,, the right inequality
13 an equality if and only if T = S,,.

Theorem 4 (Zhang and Zhang [19]) For a unicyclic graph G of order n, the
inverse degree of G satisfies that

n 1

z <n—24 —

S <r(@) Sn-2+ 1,

where the left inequality is an equality if and only if T = C,,, the right inequality
is an equality if and only if T = S}.

At first, for a tree T of order n, we will show that the following inequality
holds for 22 < r(T) <n -1+ iy

3n—2r(T) +1 — /4r(T)2 ; n—r@)+n®-2n—-7 g(3r(T) +2).
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By some simplifications, we can transform the above inequality into the
following one:

6n — 137(T) — 4 < 2y/&r(T)2 — (dn — d)r(T) +n2 —2n— 7. Q)

When 22 < r(T) < n -1+ 31, we have 6n — 13r(T) — 4 < 0 and 4r(T')? -
(4n — 4)r(T) + n? — 2n — 7 > 0. Thus inequality (1) holds obviously, which
implies that our bound is a better one.

By similar discussions as above, for a unicyclic graph G of order n, we can
prove that the following inequality holds for 2 <r(G) <n -2+ 4

3n-2r(G) — 1 — /(G2 — An—12)(G) + 7% —bn + 1
2

which also implies that our bound is a better one.
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