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Abstract

For a graph G = (V, E), X C© V is a global dominating set if X
dominates both G and the complement graph G. A set X S V
is a packing if its pairwise members are distance at least 3
apart. The minimum number of vertices in any global
dominating set is y4(G), and the maximum number in any
packing is p(G). We establish relationships between these and
other graphical invariants, and characterize graphs for which
p(G) = p(G). Except for the two self-complementary graphs
on 5 vertices and when G or G has isolated vertices, we show
¥¢(G) < |n/2], wheren = |V].

1. Introduction

In a graph G = (V, E), X € W C V is said to dominate W when every vertex in
W-X is adjacent to a vertex (a neighbor) in X. When W = V, we simply say X
dominates G. A global dominating set is a set of vertices that dominates both G
and the complement graph G. The number of vertices in a smallest global
dominating set is denoted by y,(G). The following is an investigation of
relationships between y4(G) and the 2—-packing number p(G), described in the
next section.

We adopt the following notation: the order of a graph G is n = |V|; 8(G) is
the minimum degree of the vertices in V while A(G) is the maximum degree;
diam(G) is the diameter and r(G) is the radius; y(G) is the domination number;
and y(G) is the connected domination number. For any vertex v € V, the open
neighborhood of v in G is Ng(v) and is the set of vertices adjacent to v, and
Ng[v] = Ng(v) U {v} is the closed neighborhood of v. The subscript in the
neighborhood notation will be omitted unless referring specifically to a graph

other than G. For example, Na(") = V-N[v] is the open neighborhood of v in
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the complement graph G. For W C V, N(W) and N[W] are the unions of the
open and closed neighborhoods, respectively, for every v € W. Finally, K is the
complete graph on n > 1 vertices, C, is the cycle on n > 3 vertices, P, is a path
on n > 2 vertices, and H (a Ps with an edge added between the two distance two,
degree two, vertices) and Cs are the two self-complementary graphs on five

vertices.

2. Packings
For positive integer k, a k—packing of a graph G is a set of vertices that are
pairwise distance at least k+1. An early reference is Meir and Moon [8]. The
number of vertices in a maximum k—packing is the k—packing number of G and
is denoted by px(G). The 1-packing number p,(G) is also known as the
independence number of G. The 2—packing number, px(G), is the only packing
invariant studied in this paper. Therefore, for notational simplicity, we will omit
the subscript and simply refer to a 2—packing as a packing.

Packing number results have mainly focused on special classes of graphs.
For example Meir and Moon [8] show p(G) = y(G) for trees. Several authors
have studied packings in grid graphs, including Fisher [5], Hare and Hare [6],
and Hartnell [7]. The following observations are straightforward.

Observations:
(a) If G has k connected components Gy, G, ..., Gy, then
P(G) = p(G1)+p(G2)+...+p(Gw),
(b) p(G) =¥(G), and
(c) p(G) = 1 if and only if diam(G) < 2.

Theorem 1. If G is connected, p(G) > [(diam(G)+1)/3].

Proof: Let xo and Xg:m(G) be maximum distance vertices and let xo, X3, ...,
Xdiam(G) be the vertices on a shortest path joining them. Then, {x3; [0 < i <
|diam(G)/3]} is a packing of G and has [(diam(G)+1)/3] vertices. W
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To relate the packing number and the global domination number, it is

helpful to first obtain relationships between packings in G and G.

Theorem 2. For any graph G and its complement G,

(1) if p(G) = 3, then p(G) =1, and

(2) if p(G) = 2, then p(G) < 2.
Proof: Let X C V be a maximum packing of G. If {u, v, w} C X then, in G,
every pair of vertices has at least one of u, v, or w as a common neighbor. Thus,
G has no pair of distance three vertices and, hence, p(G) =1 by Observation
(c).

For (2), assume p(G) = 2 and p(a) > 2. Then, from (1), p(G) = 1. This

contradiction shows p(G)<2. B

A Nordhaus—-Gaddum type result for the packing number easily follows.

Corollary 3. For any graph G,

=l l4 ifp(G)= p(G)= 2
PG+ p(G) {max{p(G),p(C_?)}+1 otherwise

Theorem 2, Theorem 4 (next) and Theorem 6 (later) will together
characterize graphs for which p(G) = p( (_}'). From Theorem 2, it is sufficient to
characterize graphs for which p(G) = p(G) < 2.

Theorem 4. p(G) = p( G)=1ifand only if diam(G) = diam( 5) =20rG=K,.
Proof: The claim holds for G = K,;. Therefore, we assume n > 2. From
Observation (c), when p(G) = p(G) = 1, diam(G) < 2 and diam(G) < 2. We may

assume diam(G) < diam(G) and suppose diam(G) = 1. Then, G is complete and,
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since G # K, G is disconnected and p(-G-) = n > 2, a contradiction. Therefore,
diam(G) = diam(G) =2.

Conversely, when, say, p(G) > 1, G has two vertices distance at least three
apart. Therefore, diam(G) >3 and G#K;,. B

An additional equivalent condition for graphs to satisfy p(G) = p(G) =1
will be given by Theorem 16 in the next section. We first examine properties of
graphs with p(G) = 2. From Observation (¢), p(G) 2 2 if and only if diam(G) >

3. Lemma 5 provides another equivalent condition for graphs to have p(G) > 2

Lemma 5. p(G) > 2 if and only if y(G) <2 and G # K.
Proof: When p(G) > 2, G can not be a K;. Further, any two vertices of any non
trivial packing of G is a connected dominating set of G. Thus, yc((—?) <2.

Next, suppose p(G) = 1. If yc(a) = 1, then G has an isolated vertex and
either G = K, or, by Observation (a), p(G) = 2, a contradiction. If y(G) = 2, G
must have two non adjacent vertices x and y with no common neighbor. Thus,

the distance between x and y is at least three and, hence, from Observation (c),
p(G) = 2, again a contradiction. Therefore, either yc(a) =23 0r G=K, and
completes the proof. W

It follows immediately from Lemma 5 and Observation (c) that
Y(G) = 3 or G =K if and only if diam(G) < 2.

A characterization of graphs for which p(G) = p( G) =2 isnow possible.
Theorem 6. The following are equivalent statements for a graph G:
(1) p(G)=p(G)=2;
(2) diam(G) = diam(G) = 3; and

(3)1(G) =Y(G) =2.
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Proof: (1) = (2). When p(G) = p( G) = 2, Observation (c) shows that G and G
each have distance 3 vertices. Thus, diam(G) > 3 and diam(a) > 3. For any
graph G, diam(G) > 3 implies diam( 5) < 3, thus, we have diam(G) = diam( 5) =
3.

(2) 2 (3). Let v and w be distance three vertices in any graph with diameter 3.
Then, in in the complement graph, v and w form a connected dominating set.
Therefore, v:(G) < 2 and y«(G) < 2. If, say, Y«(G) = 1, G must have a vertex of
degree n—1. Then, diam(G) < 2 and contradicts (2). Hence, 1.(G) = Y(G) = 2.

(3) > (1). Since y(G) > 1, G # K,. Hence, by Lemma 5, p(G) > 2 and p(G) > 2.
Equality follows from Theorem2. W

As with Theorem 4, another condition equivalent to p(G) = p(G) = 2 will
be presented in Theorem 16. Theorems 2, 4, and 6 provide a characterization of

graphs for which p(G) = p(G).
Theorem 7. p(G) = p(G) if and only if diam(G) = diam(G).

It is interesting to note that when G # K, p(G) = p(G) is equivalent to
diam(G) = diam(G) = p(G)+1.

3. Packings and Global Domination

Global domination was introduced by Sampathkumar [10], and independently
by Brigham and Dutton [2] as a special case of factor domination of a graph G.
The special case, when G is complete and the number of factors is two, is global
domination. Further results on factor domination appear in Dankelman and
Laskar [3]. A survey of global domination, as of 1998, was given by Brigham
and Carrington [1]. Additional global domination results are given by Dutton
and Brigham [4]. The following three theorems appear in [2] and also in the
survey article [1].
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Theorem A. For any graph G and its complement G,
max{y(G), ((G)} <¥(G) =1,(G) <¥(G) +¥(G).

Theorem B. If G and G are connected and max{r(G), r(G)} = 3, then v:(G) =
max{y(G), W(G)}-

Theorem C. If G is triangle free, y(G) < v5(G) < y(G)+1.

The conditions for Theorem B are overly restrictive and a stronger result
can be obtained. When G is disconnected, we stipulate that r(G) is infinite.
Furthermore, Ore [9] shows that y(G) < |n/2] for any graph without isolated
vertices. Hence, when G has k isolated vertices, y(G) < [(n—k)/2]+k = [ (n+k)/2].

Theorem 8. If r(G) = 3, then 2-[k/n] = Y(G) = ¥.(G) < 2 < %4(G) = ¥(G) <
L(n+k)/2], where k is the number of degree zero vertices in G.

Proof: When 1(G) 2 3, G # K, and p(G) > 2. Hence, by Lemma 5, y( (—7) < y.,((_})
<2 <y(G). Since y(G) = 1 if and only if G has a degree zero vertex, it follows
that 2—[k/n] = y( G) = Y(G) < 2. Now, let D be any y-set of G. If D does not
dominate G, then V=D contains a vertex x which dominates D in G. Then every
vertex in V is distance at most two from x, contradicting the assumption r(G) >
3. Therefore, Y4(G) = ¥(G). The upper bound on y(G) follows from the comments
preceding the statement of the theorem. a

Notice that a direct result of Theorem 8 is that if max{r(G), r(G)} = 3, then
¥5(G) = max {¥(G), v( G)}, and supercedes Theorem B.

Three graphs, K,, H, and Cs merit special attention. For graphs G in this
group, it is easily checked that y;(G) = [n/2] > |n/2]. We show in the remainder

of this section that these, along with graphs in which G or G has a sufficiently
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large number of isolated vertices as covered in Theorem 8, are the only graphs

for which y,(G) > [n/2]. The following is straightforward.
Theorem 9. v,(G) = 1 if and only if G =K.

A set S C V is a perfect dominating set if every vertex in V-S has exactly
one neighbor in S. If S also is independent, S is a packing and p(G) =[S].

Theorem 10. v,(G) = 2 if and only if G has a perfect dominating set of two
vertices.
Proof: Let X = {v, w} be a yg—set of G. Since X dominates both G and G,vand
w can have no common neighbors in G. That is, X is a perfect dominating set of
G.

Now, suppose X = {v, w} is a perfect dominating set of G. Then, X also
dominates G. Therefore, v,(G) < 2. Since G # K, y4(G) = 2, by Theorem 9.
]

The set X in the proof of Theorem 10 is a packing for one of G or G, and a
connected dominating set for the other. The next three lemmas establish a

stronger relationship between global dominating sets and packings.

Lemma 11. For any graph G = (V, E) and any vertex v € V, either N[v] or V-

N(v) is a global dominating set. A
Proof: Since N[v] always dominates Gand V-N(v) always dominates G,
assume, by way of contradiction, that (1) N[v] does not dominate G and (2) V-
N(v) does not dominate G. Then, from (1), there exists a vertex w € V-N[v] for
which N[w] € V-N[v] and, from (2), a vertex u € N(v) for which N(u) 2 V-
N(v). Therefore, (2) implies u and w must be adjacent, while (1) implies u and w

are not adjacent, a contradiction that establishes the result. ]
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Lemma 12. For any graph G with 3(G) > 1 and any maximal packing X, N(X)
U {v} is a global dominating set of G, for any v € X.

Proof: Assume G is a graph with 8(G) > 1 and a maximal packing X. Let Z =
N(X) U {v}, for any v € X. Then, for every vertex w € V-Z, w is either in X-
{v} or is distance 2 from some vertex in X. In either case, w has a neighbor in
N(X) and is, thus, dominated in G by Z. In G, w is dominated by v. It follows
that Z is a global dominating set. |

Lemma 13. For any graph G with p(G) > 2 and any maximum packing X, V-
N(X) is a global dominating set of G.

Proof: In G, w € N(X) is dominated by exactly one vertex in X & V-N(X).
Thus, V-N(X) dominates G. If p(G) > 2, w is not adjacent to p(G)-1 = 1
vertices in X. Thus, w is dominated in G and V-N(X) is a global dominating
set. |

Lemma 12 implies, when p(G) = 1, that N[v] is a global dominating set for

every v € V. Theorem 14 shows this is also a sufficient condition for p(G) = 1.

Theorem 14. p(G) = 1 if and only if N[v] is a global dominating set for every v
EV.

Proof; The theorem holds for G = K. Otherwise, if p(G) = 1, then &G) = 1, and
the conclusion follows from Lemma 12. When p(G) > 2, there are two vertices v
and w that are at least distance 3 apart. Then, N{v] can not dominate w. Hence,
N[v] can not be a global dominating setof G. W

Corollary 15. If p(G) = 1, then y4(G) < 8(G)+1. If, further, p(G) = p(G) = 1,
then yg(G) < min{8(G), 8(G)}+1.
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When X is any maximum packing, N[X], and hence V, contains at least
p(G)(8(G)+1) vertices. If p(G) > 1, for every v € X, N[v] can not dominate X
and, therefore, can not be a global dominating set of G. Thus, there are at least
p(G) vertices v for which N[v] is not a global dominating set. These comments

are the basis of the following.

Theorem 16. Let M and M' be the sets of vertices for which N[v] and V-N(v),
respectively, are not global dominating sets. Assume, without loss of generality,
that 0 < m' = |M'| <m = |M]. Then, M and M are disjoint, and either

@ p(G)=p(G)=1andm'=m =0, or

() p(G)=p(G)=2<m'<m,or

(@ m' =0, p(G) = 1 <p(G) < min{m, |n/(&(G)+1)]}.
Proof: The sets M and M' are disjoint by Lemma 11. Part (a) follows
immediately from Theorem 14, which also shows, for Part (b), that p(G) > 2 and
p((—}) 2 2. Equality holds by Theorem 2. Notice that neither m nor m' can equal
one, since the existence of one vertex v for which N[v], or V-N(v), is not a
global dominating set implies the existence of another. Finally, for Part (c),
Theorem 14 again shows that, if m' = 0, p(a) =1, and when m > 0, p(G) > 1.
The upper bound on p(G) follows from the comments preceding the statement of
Theorem 16. W

The sets M and M' can be determined easily in polynomial time, for
example by computing the distance matrices for G and G. This will decide the
packing number for at least one of G or G. The other, say G, is also determined
if m = 2 or 8(G) > [(n—2)/3]. Case (b) can also be confirmed by the existence of
any two vertices v and w where neither N[v] nor V-N(w) is a global dominating
set, since that eliminates cases (a) and (c).

The upper bound m in Theorem 16 (c) can be replaced by the packing
number of the subgraph of G induced by the set M. That is, p(G) < p(<M>).
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Interestingly, when m = n, N[v] is not a global dominating set for any v € V.
Thus, r(G) = 3 and, by Theorem 8, v4(G) = y(G).

Theorem 17. If p(G) = p(G) = 1, then v(G) < |n/2] or G € {K, Cs}.

Proof: It is easily checked, when G € {K,, Cs}, that p(G) = p(G) = 1 and ¥5(G)
= [n/2] > |n/2}. Thus, in the following, we may assume G & {K,, Cs} and that
both G and G are connected. From Corollary 15, it follows that y5(G)-1 < 8(G)
< A(G) £ n—Y,(G). Therefore, y,(G) < |(n+1)/2] = [n/2] and the conclusion
follows when n is even.

Now, suppose n is odd and y,(G) = [n/2]. Then, from the chain of
inequalities in the last paragraph, G and G are both |n/2}-regular. Hence, by
Theorem 16, for any vertex x € V, D = N[x] is a global dominating set. Since G
is |[n/2 |-regular, |D| = [n/2] and it follows that D is a yg—set.

Suppose there is a vertex v € N(x) with a private neighbor w in V-D. Then,
w must dominate V-D and v can not dominate D, since v has at least one
neighbor in V-D. Thus, x and w dominate G, and {x, v, w} dominates G.
Hence, {x, v, w} is a global dominating set. That is, [n/2] < y,(G) < 3 and,
hence, n € {1, 3, 5}. Since G # K, and all graphs on 3 vertices have either G or
G disconnected, we must have n = 5. Then, since G is 2-regular, G = Cs, a
contradiction. Therefore, since G is connected, there must be a vertex v € N(x)
that has neighbors in V-D, but no private neighbors. Then, D-{v} is a global
dominating set with [n/2]—1 < y,(G) vertices, a contradiction that completes the
proof. |

We now assume at least one of p(G) or p(-G-) is at least two. When p(G) =
p(5) = 2, Theorem 6 shows y(G) = y.,(a) = 2. Therefore, since Y(G) < v.(G)
and y5(G) < Y(G)+¥( 5), the following holds.

Corollary 18. If p(G) = p(G) = 2, then y,(G) <4.
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Theorem 19. If p(G) 2 2 and 8(G) 2 1, then either y,(G) < |n/2] or G =H.
Proof: Let G be a graph for which p(G) >2 and &(G) > 1. When G =H, it is
easily checked that p(H) = 2, 8(H) = 1 and yz(H) = [n/2] > | n/2]. Therefore, we
may assume G # H and, from Theorem 8, that G is connected. Suppose X is any
maximum packing of G. From Lemmas 12 and 13, y,(G) < min{1+N(X)|, n-
IN(X)[}. It follows that yz(G) < 1+{N(X)| < 14n~y4(G). Thus, y4(G) < [n/2], and
the conclusion holds when n is even.

Assume n is odd and [n/2] < y4(G) = [n/2]. Since, v,(G)-1 < [N(X)| < n-
2(G), IN(X)| = |n/2). Thus, N(X), which dominates G, can not dominate G,
since [N(X)| < v¢(G). It follows that there is a vertex z in V-N[X] that dominates
NX).

The set X contains k > 0 degree one vertices that, if k > 0, are labeled x;, x,,
..., Xx with corresponding neighbors in N(X) labeled y), ys, ..., yx. The
remaining vertices in N(X) are labeled yy+1, Yi+2, ..., ¥jo2)- Notice that k < p(G)
if and only if p(G) < |n/2). Suppose k < p(G). Then, for any y;, k+1 <i < [n/2],
let x be its neighbor in X, and x' any member of X other than x. If y; has a
neighbor in N(X), let D = N(X)—{y:}+{x'}, otherwise let D = N(X)—{y;}+{x}. In
either case, D is a dominating set of G. Thus, since |D| = |n/2] < yg(G), D can
not dominate G. Hence, for k+1 < i < |n/2], y; must have at least one private
neighbor in V-N[X]. Thus, V-N[X] must have at least |n/2]-k vertices that are
private neighbors plus z which is not the private neighbor of any vertex in N(X).
That is, since [V-N[X]| = [n/2]-p(G), 1+|n/2|k < [n/2]-p(G), or p(G) <k, and
contradicts the assumption that k < p(G). Hence, k = p(G) = [n/2]. Then, X must
consist of [n/2] degree one vertices, each with a unique neighbor in N(X), and
V-N[X] = {z}. Suppose there are non adjacent vertices y and y' in N(X). Let x
and x' be their respective neighbors in X. Then, X-{x}+{y} is a global
dominating set, a contradiction, since this set has |n/2| < y,(G) vertices. Thus,

V-X is complete with [n/2] vertices.
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Therefore, G consists of a Kjuz and |n/2] degree one vertices with each
having a unique neighbor in the K. If [0/2] 2 3, X—{x;}+{y\} is a global
dominating set of |n/2] vertices, a contradiction. Hence, we must have n < 5.
That is, G = H. ]

Lemma 20. If p(G) # p(G), then ¥:(G) < max{y(G), WG)}+2.

Proof: We may assume, without lose of generality, that p(G) > 2. Then, from
Theorem 2 and the assumption that p(G) # p(G), p(G) = 1. From Lemma 5,
Y{(G) < 2. Therefore, from Theorem A and the fact that y(G) < y(G), ¥(G) <

YG)H(G) <max{y(G), WG)}+2. W

4. Conclusion

In summary, we have the following result.

Theorem 21. For any graph G,

=1 G= K[,

=3 GE {Cs, H},

= max{y(G), Y(G)} < [(n+k)/2] max{r(G), 1(G)} = 3, k is
the number of isglated
vertices in Gor G,

Y4(G) < min{max{y(G), y(G)}+1, [n/2]} p(G) # p(G), 1(G) = 1(G)

= 2,_8nd one of G
or G is triangle-free,

< min{max{y(G), ¥(G)}+2, |n/2} p(G) # p(G), 1(G) = (G)
=2, and neither is
triangle-free,

< min{4, [n/2]} p(G)=p(G)=2,G#H,

< min{8(G)+1, 8 G)+1, |n/2]} p(G)=p(G)=1, and

G € {Ki, Cs}.
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Proof: We treat each bound in turn and refer to them as line 1, line 2, etc. Lines
1 and 2 are easily checked. Line 3 follows from Theorem 8. Line 4 follows from
Theorem C and Theorem 19, since G # H. Line 5 follows from Lemma 20, since

p(G) # p(G), and Theorem 19, since G # H. Line 6 follows from Corollary 18,
Theorem 19, and the fact that G # H. Finally, Line 7 follows from Corollary 15,
Theorem 17, and the assumption that G & {K,, Cs}. ]
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