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Abstract

A path in an edge-colored graph G, where adjacent edges may be
colored the same, is called a rainbow path if no two edges of the path
are colored the same. For a x-connected graph G and an integer k
with 1 < k < «, the rainbow k-connectivity rcix(G) of G is defined as
the minimum integer j for which there exists a j-edge-coloring of G
such that any two distinct vertices of G are connected by k internally
disjoint rainbow paths. Denote by K » an r-regular complete bipar-
tite graph. Chartrand et al. in “G. Chartrand, G.L. Johns, K.A.
McKeon, P. Zhang, The rainbow connectivity of a graph, Networks
54(2009), 75-81" left an open question of determining an integer g(k)
for which the rainbow k-commectivity of K., is 3 for every integer
r 2 g(k). This short note is to solve this question by showing that
rex(Ky,r) = 3 for every integer r > 2k[%], where k > 2 is a positive
integer.
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All graphs considered in this paper are simple, finite and undirected.
Let G be a nontrivial connected graph with an edge coloring ¢ : E(G) —
{1,2,--- ,k}, k € N, where adjacent edges may be colored the same. A path
of G is called rainbow if no two edges of it are colored the same. A well-
known result shows that in every x-connected graph G with & > 1, there
are k internally disjoint © — v paths connecting any two distinct vertices
u and v for every integer k with 1 < k < k. Chartrand et al. [2] defined
the rainbow k-connectivity rci(G) of G, which is the minimum integer j
for which there exists a j-edge-coloring of G such that for any two distinct
vertices u and v of G, there exist at least k internally disjoint ©— v rainbow
paths.

The concept of rainbow k-connectivity has applications in transferring
information of high security in communication networks. For details we
refer to [2] and [3].

In [2], Chartrand et al. studied the rainbow k-connectivity of the com-
plete graph K, for various pairs k, n of integers. It was shown in [2] that for
every integer k > 2, there exists an integer f(k) such that reg(K,) = 2 for
every integer n > f(k). In [4], we improved the upper bound of f(k) from
(k+1)2 to ck? + C (here 0 < ¢ < 1 and C = o(k?)), i.e., from O(k?) to
O(k3). Chartrand et al. in [2] also investigated the rainbow k-connectivity
of r-regular complete bipartite graphs for some pairs &, r of integers with
2 < k < 7, and they obtained the following results.

Proposition 1. For each integer r > 2,

4 fr=2
rez(Krr) = { 3 itra,

Proposition 2. For each integer r > 3, rea(Krr) = 3.

Theorem 3. For every integer k > 2, there exists an integer r such that
rex(Krr) =38.

Moreover, they showed that r = 2k[ -’25] is a desired integer for Theorem 3.
However, they could not show a similar result as for complete graphs, and
therefore they left an open question: For every integer & > 2, determine an
integer (function) g(k), for which rci (K, ) = 3 for every integer r > g(k),
that is, the rainbow k-connectivity of the complete bipartite graph K, .
is essentially 3. This short note is to solve this question by showing that
rex(Kr,r) = 3 for every integer r > 2k[%]. We use a method similar to but
more complicated than the proof of Theorem 3 in [2]. For notation and
terminology not defined here, we refer to [1].
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Theorem 4. For every integer k > 2, there exists an integer g(k) such
that reg(Ky,r) = 3 for any r > g(k).

Proof. Let g(k) = 2k|'§'|. We will show that rcx (K, ) = 3 for every k > 2,
where r > 2k|'-’25'| is an integer. By Propositions 1 and 2, we know that the
conclusion holds for k = 2,3. So we assume &k > 4.

We first assume that k is even. Then, g(k) = 2k - % Since r > g(k),
then 7 = k; - (2k) + 1, where k1 > —',j, 1 <7 <2k—1. Let the bipartite
sets of G = Kr_,- = Kky(Zk)+r, Je1-(2R)+r4 be U and W. Let U’, W’ be the
set of first k; - (2k) vertices of U, W, respectively. U\ U’ = {uy,...,up }
and W\ W' = {wy,...,w,,}. Suppose that

U'=Uju...uUp, W =Wju...uW,,
where U] = {ui1,...,uik, } and W] = {w;1,...,wjx, } for 1 < 4,5 < 2k.

Let G’ be an induced subgraph of G with bipartite sets U’ and W’. Suppose

that
U=U1V...UUx,W =W, U...UWy,

where U; = Uj U {w;}, W; = WU {w;} for 1 < 4,5 < and U; = U,
W,-=W;forr1+15i,j52k.

We now give G a 3-edge coloring as follows: Let G| be the spanning
subgraph of G’ such that E(G]) = {uipwjp:1<4,j <2k1<p<k,i
and j are of the same parity}. Let G; be the spanning subgraph of G such
that E(G1) = E(G})U{usw; : 1 <4,j < r1,i and j are of the same parity}.
Let G2 be the spanning of subgraph of G such that

G2 =H; U...UHy,

where H; has bipartite sets Uy and Wa, H; (2 < i < 2k) has bipartite sets
U; and W;_;. So, H; = K n({m,n} = {k1,k1 + 1}). See Figure 0.1 for
the case r = 18, k = 4, ry = 2. Finally, let

G3 =G - (E(G1) U E(Gy)).
Assign each edge of G;(1 < 7 < 3) the color i.

Next we will show that the above edge-coloring is a k-rainbow coloring,
that is, there are at least k internally disjoint rainbow paths connecting any
two distinct vertices u,v of G. We will consider the following two cases:

Case 1. u € V(G’). Without loss of generality, let u = u;,3.
Subcase 1.1. u and v belong to the same bipartite set of G.

Subsubcase 1.1.1. v € U;. Then G contains the k internally disjoint
u1,1 — v rainbow paths u; 1, w;1,v where 1 <4< 2k — 1 and 4 is odd.
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Figure 0.1 The figure for the case r =18, k=4, r; = 2.

Subsubcase 1.1.2. v € U;, 3 < ¢ < 2k—1, and ¢ is odd, say v €
Us. Then G contains the 2k; > k internally disjoint u — v rainbow paths
u1,1,w2,j,v and uy,1, Wak,j,v, where 1 < j < k.

Subsubcase 1.1.3. v € U;, 2 < i < 2k, and i is even, say v € Up. Then
G contains the 2k; > k internally disjoint « — v rainbow paths uy 1, wy,;,v
and uy,1, wok,j,v, Where 1 < j < k.

Subcase 1.2. u and v belong to different bipartite sets, and sov € W.

Subsubcase 1.2.1. v € W;, where 1 < i < 2k — 1 and ¢ is odd, say
v € W;. Then G contains the 2k; > k internally disjoint u — v rainbow
paths uj1,ws,j,u2 5, v and uy 1, Wek,j, U2k,j, v, Where 1 < j < k.

Subsubcase 1.2.2. v € W;, where 2 < ¢ < 2k and ¢ is even, say
v € Wy, If v € Wj, without loss of generality, let v = wp 1, then G
contains the u;,; — v path u; 1, v together with the u;; — v rainbow paths
u1,1, W35, U3,5, V; U1,1, W31, Ud,5, v and uy,1, Wak,j, U2k,j, ¥, Where2 < j < k.
The cases for v = wy and v € Wo are similar.

Case 2. u € V(G) \ V(G’), that is, u € {u1,...,ur;w1,...,wr }.
Without loss of generality, let © = u;. By Case 1, we only need to show
that there are at least & internally disjoint rainbow paths connecting v and
v for every v € V(G) \ V(&).
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Subcase 2.1. u and v belong to the same bipartite set of G.

Subsubcase 2.1.1. v = u;, 3 < i <2k -1 and ¢ is odd, say v =
u3. Then G contains the 2k; > k internally disjoint u — v rainbow paths
Uy, w2, 5, U3 and U1, Wak,j, U3, where 1 < J < kl.

Subsubcase 2.1.2. v = u;, 2 < 7 < 2k and ¢ is even, say v = us. Then
G contains the 2k; > k internally disjoint u — v rainbow paths u1,w,,;, u2
and u;,wok,j, uz, where 1 < 5 < k.

Subcase 2.2. v and v belong to different bipartite sets of G.

Subsubcase 2.2.1. v = w;, 1 <1 < 2k—1and i is odd, say v =
w;. Then G contains the 2k; > k internally disjoint u — v rainbow paths
uy, Wa,j, U2,j, w1 and uy, Wak,j, Uzk,j, W1 Where 1 < j < ky.

Subsubcase 2.2.2. v = w;, 2 < ¢ < 2k and i is even, say v =
wy. Then G contains the 2k; > k internally disjoint ¥ — v rainbow paths
u1, W5, U3,j, W2 and vy, Wok,j, U2k,j, W2 Where 1 < j < ky.

So the conclusion holds for the case that k is even.

Next we assume that & is odd. Then g(k) = 2k - i‘{—l- Since r > g(k),
then r = kg-(2k) +72, where k2 > &£1,1 < 15 < 2k—1. Then with a similar
argument to the case that k is even, we can show that the conclusion also
holds when & is odd. |

Remark 2.5. In [4] we showed that for every pair of integers k£ > 2 and
T 2> 1, there is an integer f(k,r) such that if £ > f(k,r), then the rainbow
k-connectivity of an r-regular complete £-partite graph is 2, where r-regular
means that every partite set has the same number 7 of elements. That is, for
sufficiently many number £ of partite sets, the rainbow k-connectivity of an
r-regular complete Z-partite graph is 2. Theorem 4 of this note implies that
for sufficiently large size r of every partite set, the rainbow k-connectivity
of an r-regular complete ¢-partite graph is at most 3. So, an interesting
question is to think about the question of determining some bounds on
k,r,£ that tell us the rainbow k-connectivity of an r-regular complete ¢-
partite graph is 2 or 3.
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