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Abstract In this paper, we study the flexibility of embeddings of circular
graphs C(2n,2), n > 3 on the projective plane. The numbers of (nonequivalent)
embeddings of C(2n,2) on the projective plane are obtained, and by describing
structures of these embeddings, the numbers of (nonequivalent) weak embeddings
and strong embeddings of C(2n,2) on the projective plane are also obtained.
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1 Introduction

A surface is a compact 2-dimensional manifold without boundary. It can be rep-
resented by a polygon of even edges in the plane. Furthermore, it can be also
written by words, for example, the plane is written as Op = aa™, the projective
plane N1 = aa. See [8,13] for more detail. In this way, some topological trans-
formations and operations on surfaces can be represented by words easily. For
example, the following relations can be deduced, as shown in, e.g.,[8].

Relation 1: (AzByCz~Dy~) ~ ((ADCB)(zyz~y")),

Relation 2: (AzBz) ~ ((AB~)(zx)),

Relation 3: (Azzyzy~2") ~ ((A)(zz)(yy)(22)).

In which A4, B, C, and D are all linear orders of letters and permitted to be empty.
Parentheses are always omitted when the letters in parentheses represent surfaces.
~ means topological equivalence on surfaces.

An embedding of a graph G on a surface S is a homeomorphism & : G — S of
G into S such that every component of § — h(G) is a 2-cell. Two embeddings
h:G — Sand g:G — S of G on asurface S are said to be equivalent if there is
an homeomorphism f : S — § such that f o h = g. The connected components
of § — h(G) are called faces of the embedding. A weak embedding of a graph G
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is an embedding of G such that there are no repeated edges (repeated vertices
are allowed) on the boundary of each face. A strong embedding of a graph G is
an embedding of G such that there are no repeated vertices on the boundary of
each face.

Given a graph G, how many nonequivalent embeddings of G are there on a given
surface? This is an important problem in embedding flexibility, inaugurated by
Gross and Furst [3] and some results have been obtained, such as {1-6, 12-14] etc.
But as for the enumeration of weak (or strong) embeddings of graphs on surfaces,
the results are few [14].

A few years ago, Liu established the joint tree model (7] of a graph embedding,
by using this model, an embedding of a graph can be represented by a cyclic order
of letters with indices, called an associated surface [8,13] of the graph. In this
way, the problem of enumerating the number of nonequivalent embeddings for a
graph on a surface can be transformed into the problem of finding the number of
distinct associated surfaces in an equivalent class (up to genus). The joint tree
model has been verified useful in the research of this enumeration problem, lots of
works have been done with the joint tree model, such as [12-14] etc. The reader
is referred to [8,13] for more detail about the joint tree model.

The circular graphs C(n,m) is the graph with vertex set V = {v1,...,vs}
and edge set E = {(vi,vi+1), (v, viem) | £ = 1,2,...,n, subscripts modulo n}.
Figure 1 is the circular graph C(8,2). Ren and Deng (11} obtained the minimum
orientable genus and the minimum nonorientable genus of all circular graphs.
For example, the minimum orientable genus of C(2n,2) is 0, and the minimum
nonorientable genus of C(2n,2) is 1. But the number of embeddings on each
surface had not been investigated.

Figure 1 The graph C(8,2)

In this paper, we study the embeddings of circular graphs C(2n,2),n > 3 on
the projective plane. The numbers of (nonequivalent) embeddings of C(2n,2) on
the projective plane are obtained, and by describing structures of these embed-
dings, the numbers of (nonequivalent) weak embeddings and strong embeddings
of C(2n,2) on the projective plane are also obtained.

For the undefined terminologies see [8,10].

2 The number of embeddings of C(2n,2) on the pro-
jective plane

Let S be a surface. If 2,y € S are in the form as § = AzByCz*' Dy*? where
€i(i = 1,2) is a binary index, it can be +(always omit) or —, then they are said
to be interlaced; otherwise, parallel. Suppose A = @ia2---a¢,t 2> 1 is a word,
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then A™ = a; ---aj a7 is called the inverse of A.

Lemma 2.1 [8] An orientable surface S is a surface of orientable genus O if
and only if there is no form as AzByCxz~ Dy~ in it.

Lemma 2.2 [13] Let S be a nonorientable surface, if there is a form as
AzByCz~ Dy~ in S, then the genus of S will be not less than 3; if there is a
Jorm as AzByCz~ Dy or AzByCyDz in S, then the genus of S will be not less
than 2.

According to the joint tree model, we can choose the tree vivz---va, as a
spanning tree of C(2n,2), then label cotree edges v1v2, by o, viv:42 by ay, for
1 £ i < 2n, subscripts modulo 2n. The spanning tree we choose and the cotree
edge ao form a circuit in C(2n, 2), denote by C2, . In the embeddings of C(2n, 2),
the circuit C2, can be classified into two cases: contractible or noncontractible.

2.1 (., is contractible

When Ca, is contractible, from the joint tree model, the associated surface is
divided by ao and ag into 2 segments: A and B, as shown in Figure 2. And the
associated surface of C(2n,2) is aoAag B.

ag A ag
1 2 £ 2n—-2VIn—-1V2n
B

Figure 2 The joint tree of C(2n,2) on the projective plane when C,, is
contractible

Lemma 2.3 When Cyy, is contractible, the number of embeddings of C(2n,2),n >
3 on the projective plane is

40 whenn=3;
N1.1(C(2n,2)) = { 12n  whenn > 4.

Proof According to Lemma 2.2, apAag B ~ N if and only if one of the fol-
lowing two cases holds:
Casel A~ N;and B~ Oy; Case2 A~ QOpand B~ N;.

According to the symmetry, the numbers of embeddings of the two cases are the
same. So we only discuss Case 1.

Claim There are at most n edges in B and at most three twisted edges in
A,

According the graph C(2n,2), the edge a; is interlaced with the two edges
incident with the vertex vi4+1, 1 < i < 2n, subscripts modulo 2n, if they are all
in B or A. So there are at most n edges in B, otherwise two edges in B will be
interlaced, the genus of B will be at least one, from Lemma 2.1. For the same
reason, if there are more than three twisted edges in A, then at least one pair
of them will be parallel, so the nonorientable genus of it will be more than one,
from Lemma 2.2. The claim holds.

In the following, we classify the embeddings according to the number of twisted

edges in A.
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Subcase 1 There is one twisted edge in A.

From Lemma 2.2, all the edges are parallel with others in A, so there are at
most n edges in A. And from the claim above, there are n edges in both A and
B, and no edge interlace with others. So the associated surfaces in this subcase
are of forms:

0020205224053 - - - G2n-2033" 2 a52" ag G2n—1020-307, -3 * -+ G3G3 G187 Q3 1,
in which one of €2,€4...€24 is + (always omitted), the others are —.
or

€1 €3 In—3 _&2n-1 - - -
apa2n—-1a1a2y azaz’® - a2n-30«2n_3 Qg ) Qg A2n02n—202, 3 * - - G4G4 G2G3 Gop,
in which one of €1,€3...£2,-1 is +, the others are —.
So there are 2n embeddings in this subcase.

Subcase 2 There are two twisted edges in A.

The two twisted edges in A must be incident with the same vertex, otherwise
the two twisted edges will be parallel or one twisted edge will be interlaced with
an untwisted edge in A, or two untwisted edges will be interlaced in B, then the
genus will be more than one, from Lemma 2.2.

So A has the from as Ajaiai+242a:A30:i42 in which A2 = 0, otherwise one
twisted edge will be interlaced with an untwisted edge. By Relation 2,

Ar0iais20iA3ai42 ~ Ara; 2 A3ai420:04,

A1a7,2A3ai42a:0: ~ N1 & A1 ~ Oo, Az ~ Oo.

From the claim, | A1 | + | A3 |< 2(n—2),and | B|<2n,and | Ay |+ | A3 | + |
B|=2(2n-2), hence | B |=2n,| A1 | + | A3 |= 2(n - 2).

For | B |= 2n and B ~ Op, the form of B is in one of the two subcases:
Subcase 2.1 B = a2n-1024-3G3,_3 ' ' 2383 G180y Gg,_1,
Subcase 2.2 B = 22,a2n-283,_, "' 0407 205 Q3.
According to the symmetry, the numbers of embeddings in the two subcases are
the same. So we only discuss subcase 2.1. As for A = Ajaiais2eiAsaise, in
which 1 is even, 2 € i £ 2n, subscripts modulo 2n, and A; ~ O, A3 ~ Op, we
can get that A has the form as:

A = a202na204a7 - - ' G2n—2G3;,_202n

or A = @2n02040204060g * * * G2n—-2C2, 282,
or A = a2n020; 48624860805 ** ' A2n—2C03, 202,
or A = a2n0203 ** 02n-40204020=202n02n2.

And the number of embeddings in subcase 2 is 2n.

Subcase 3 There are three twisted edges in A.

The two of the three twisted edges must be incident with the same vertex,
otherwise one of the two twisted edges will be parallel with the third. The two
twisted edges incident with the same vertex are ai—1 and @iy, and the other
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twisted edge must be a;, 1 € ¢ £ 2n, subscripts modulo 2n (there are two
exceptions when n = 3, for C(6, 2), the three twisted edges can also be a2, a4, as
or ai,as,as), otherwise this twisted edge will be parallel with at least one of
these two twisted edges incident with the same vertex, then the genus will be
more than one.

The three twisted edge in A must be interlaced with each other, and no other
edges interlaced with any of the three twisted edges, so A has the form as

A1ai-10:Gi4185-10:a:41 A2,
A1Qi-10:ai4+18i-1a:8i+1A42 ~ N1 & A1 Az ~ Op.

And from the claim, | A; | + | A2 |€ 2(n —2), and | B |€ 2(n — 1), and

| A1+ | A2 | +| B |=2(2rn—3), hence | B |=2(n—1),| A1 | + | 43 |= 2(n—2).
For | B|=2(n—1), B ~ Op, and A = A18i-10:2i+1ai~10:2:+1 A2, the form of

B is in one of the two subcases:

Subcase 8.1 B = azn-1a2n-3a5,_3 - G2i+183;,,02i-3a5;_3 * - @383 G1G] Q3 _1,

1 £ i < n, subscripts modulo 2n,

Subcase 3.2 B = a2:a21-2a3,_5 "+ 02i+203;,,02i-2a5;_, - - G4G; G2a3 G5,,,

1 £i £ n, subscripts modulo 2n.

According to the symmetry, the numbers of embeddings in the two subcases are

the same. So we only discuss subcase 3.1. Similar with the discussion in subcase

2, we can get that, when B is given, the from of A follows, the associated surfaces

in this subcase are of forms:

0081202n0102040y * * * G2n~203,_202n0g G2n—102n-302,,_3 * * * G505 G3a3 G351,

@002n3203G40233048605 * * * A2n—202, 202,00 G2n-1G2n—-3C3,_3 * ' - 5G5 G1G] a1,

20020207 0405063405060805 * * * G2n—2032, 202,80 G2n=102n—3G3,_3 ** * Q18] Ggp_1,

G002n-1Q2n02Q3 G484 - * A2n—403,_402n—202n-102n02n-200 G2n—305;,_3 * * *A1Q7] .

For 1 £ i £ n, there are n embeddings in subcase 3.1. So there are 2n embed-
dings in subcase 3, when n > 4. When n = 3, we need to add 2n to the two
exceptions we mentioned above which are aoaiasazaiasazag asasa; aza; ag and
@0a2@6a4G2a6G405 A523a3 G18] G5 , S0 the number is 2n + 2 = 8.

Summarizing above, when n > 4, there are 6n embeddings in Case 1; when
n = 3, the number is 6n + 2. So the number of embeddings of C(2n,2) in Case
1 and Case 2 is 12n, when n > 4; and 12n + 4, when n = 3. The theorem is
obtained. (]

2.2 (3, is noncontractible

Similar to the proof in Lemma 2.3, we discuss the number of twisted edges in
the embeddings of C(2n, 2) on the projective plane, when Cz,, is noncontractible.
We list all embeddings in this condition instead of the proof and counting, because
it is similar to Lemma 2.3 and it is routine.
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When C, is noncontractible, the associated surfaces of C(2n,2)(n > 4) on the
projective plane are:

G0G2n~141,2n-303,, 13082 A2n—2,27,, (2.1)
@002n—1A1,2n-305,, _102n00A2n-2,2G2n, 2.2)
@0A1,2n-3020-10002n A2n 2,283,021, (2.3)
a0a2n—-1A41,2n-302,_102n—202n3082n—-2A2n—-4,202n, (2.4)
@002n-12162nA2,20-202,2082n-1A2n-3,301, (2.5)
@002n—-181A2,20-202n0002n—1A20-3,3G102n, (2.6)

a0G2n—141,2¢4+102¢+2A42¢4+4,2n—202n 00820 ~1 A2n—3,2¢ 4302t 4-2A2¢,2G2n,

(0<t<n-3), (2.7)
a002n—1A1,2¢4+102¢43A2¢44,2n-282n 00820 —1A2n-3,2¢ 4502 +3 A2t +2,202n,
0<t<n—4), (2.8)
@002n-1A1,2n-502n~3A2n-2,2n-202n3002n~102n -3 A2n—4,202n,  (2.9)
00a2n-141,2n-302n—202n0002n—-182n—-2A2n-4,202n, (2.10)
20Q2n—1a1a2A4,2n—2G2n0082n—1 A2n-3,304102020, (2.11)

@0a2n—1A41,264102¢4302e+4A2¢46,2n—-202n0002n —1 A2 —3,204582¢+302t +4 A2¢4+2,202n,
0<t<n—4), (2.12)
@002n-141,20-582n-302n—-20200002n-102n-302n—2A2n-4,202n, (2.13)

@0a2n—1A41,2¢4102¢ 4302t 42 A2t 44,2n-202n8002n—1 A2n—3,2t + 532t +-382¢+2 A2¢,2a2n,

O<t<n—4), (2.14)
20a2n—141,2n-502n—-302n—4 A2n—2,2n—-2021 20020 ~182n-382n—4 A2n—6,202n,
(2.15)

and their inverses, where

!
Gs42i0,y 0 Whenk=354+2,120, 521

i=0

1

Il as-2ia;_,; whenk=s-2,1>0,s>1;

i=0

As,k =
] otherwise.

When n = 3, the graph is C(6,2). The associated surfaces of C(6,2) on the
projective plane when Cz,. is noncontractible, are (2.1) — (2.7), (2.9) — (2.11),
(2.13), (2.15) with their inverses and the two listed below and their inverses:

aoa1a] 44G2050004062303 Gg 2205, (2.16)

aoa1a5a2a; G5 G3a620G404 216306, (2.17)

So when Cqy is noncontractible, C(6,2) has 14 x 2 = 28 embeddings on the
projective plane, C(2n,2)(n > 4) has 4n x 2 = 8n embeddings on the projective
plane. The lemma 2.4 follows.
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Lemma 2.4 When Cy. is noncontractible, the number of embeddings of C(2n,2)
on the projective plane is

28 whenn=3;
N1.2(C(2n,2)) = { 8n :he: 11: >4.

The summation of N1.1(C(2r,2)) and N1.2(C(2n,2)) is the number of embed-
dings of C(2n,2) on the projective plane. From Lemma 2.3 and 2.4, the theorem
follows.

Theorem 2.1 The number of embeddings of C(2n,2),n > 3 on the projective

plane is
68 whenn=23;
Ni(C(2n,2)) = { 20n  whenn > 4.

3 The numbers of weak embeddings and strong em-
beddings of C(2n,2) on the projective plane

From [9], we get that C(2n,2) have strong embeddings on the projective plane,
because C(2n,2) contain triangles. An embedding is a strong embedding, then
it is also a weak embedding. So C(2n,2) also have weak embeddings on the
projective plane. We have all associated surfaces of C(2n,2) on the projective
plane. And according to the face traversal procedure in [10] and the joint tree
model, the faces of an embedding can be got easily. By checking the faces of all
embeddings of C(2n,2) on the projective plane, one can obtain strong and weak
embeddings among them. .
Theorem 8.1 The number of strong embeddings of C(2n,2),n > 3 on the
projective plane is

0 w =3
smEe | fn thmns s

Proof In the proof of Lemma 2.3, we get all associated surfaces of C(2n,2) on
the projective plane, when C, is contractible. From the face traversal procedure
and joint tree model, we get that there is no strong embeddings in subcase 1,
because in each embedding the two vertices incident with the twisted edge are
repeated in one face. Figure 3 gives two examples in which the faces with repeated
vertices can be traced by the dash line, in Figure 3(a), a2 is the twisted edge,
vertices v2 and v, are repeated in a face; in Figure 3(b), a2y is the twisted edge,
vertices vz and v, are repeated in a face.

In subcase 2, there is no strong embedding in this subcase, because in each
embedding the vertex incident with the two twisted edges is repeated in one face.
Figure 4 gives two examples, vertices vz and vy are repeated in Figure 4(a) and
4(b), respectively.

Finding all the faces of embeddings in subcase 3, we get that all the embeddings
in this subcase are strong embeddings. So when Ca,, is contractible, there are 4n
embeddings are strong embeddings when n > 4; and 8x2 = 16 strong embeddings
whenn=3.
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(a)

@3n-1a; a; a3 az as Ggn~3 G2n.1

®) o=

an-1a1 a; 63 a5 as n-3 G20y

Figure 3 Two embeddings of C(2n,2) on the projective plane in subcase 1

a2 Gn G2 Q4 Gf G5 G3,_4 02n-2 G3,_3 G2n

(@ af=

an-101 67 @3 a; G5 n-3 %2n-1

azn

a3 G4 a3 G4 Qg Gg,_g4 O2n—2 G3,_2 Op,

azn-141 @; 83 g3 a5 0203 9n-1
Figure 4 Two embeddings of C(2n,2) on the projective plane in subcase 2

When Cz,, is noncontractible, by checking all the embeddings in this condition,
we obtain that there is no strong embedding when n > 4, when n = 3, there are
four strong embeddings, they are (2.16), (2.17) and their inverses.

Summarizing the above, there is 4n strong embeddings of C(2n,2) on the pro-
jective plane, when n > 4; and 16 + 4 = 20 strong embeddings when n = 3. The
theorem follows. O

Theorem 8.2 The number of weak embeddings of C(2n,2),n > 3 on the pro-
jective plane is
44 whenn=23;
WMhi(C(2n,2)) = { 12n  whenn > 4.

Proof With a similar argument to the proof of Theorem 3.1, We check each
embedding of C(2n,2) on the projective plane. When Ca. is contractible, there
is no weak embeddings in subcase 1, because in each embedding the twisted edge
is repeated in one face. See Figure 3 as an example.

In subcase 2, the vertex incident with the two twisted edges is the only one
vertex repeated in a face in each embedding. So no edge repeated in one face
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for all the embeddings in this subcase. From Lemma 2.3, the number of weak
embeddings in subcase 2 is 2n.

From the proof of theorem 3.1, all the embeddings in subcase 3 are strong
embeddings, so they are also weak embeddings. The number of weak embeddings
in subcase 3 is 2n, when n > 4; and 8, when n = 3, from Lemma 2.3.

Above all and from the proof of theorem 2.1, when C», is contractible, there
are 8n weak embeddings of C(2n, 2) on the projective plane when n > 4, and 28
weak embeddings, when n = 3.

When Cb, is noncontractible, by checking all the embeddings on by one, we
find that (2.2), (2.3), (2.6) — (2.10) with their inverses are weak embeddings and
when n = 3, (2.16)(2.17) with their inverses are strong embeddings, so they are
also weak embeddings. Hence, when Ca, is noncontractible, there are 2nx2 = 4n
weak embeddings of C(2n,2) on the projective plane when n > 4, and 4 x 3 +
2 x 2 = 16 weak embeddings, when n = 3.

Summarizing the above, the theorem is obtained. O
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