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Abstract

Given a configuration of pebbles on the vertices of a graph G,
a pebbling move consists of taking two pebbles off a vertex v and
putting one of them back on a vertex adjacent to v. A graph is called
pebbleable if for each vertex v there is a sequence of pebbling moves
that would place at least one pebble on v. The pebbling number of
a graph G, is the smallest integer m such that G is pebbleable for
every configuration of m pebbles on G. A graph G is class 0 if the
pebbling number of G, is the number of vertices in G. We prove that
Bi-wheels, a class of diameter three graphs are class 0.
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Introduction

Let G(V, E) be a simple connected graph. A configuration p of pebbles on
G is a function p : V(G) — NU {0}. The value of p(v) equals the number
of pebbles placed at vertex v and let the size |p| be the total number of
pebbles in p, that is |p| = ZUGV(G) P(v). A pebbling move from a vertex v
to a neighbor u takes away two pebbles at v and adds one pebble at u. A
pebbling sequence is a sequence of pebbling moves.

Suppose we are given a configuration p and a ‘target’ vertex v. The
configuration is v solvable if v has a pebble after some pebbling sequence
starting from p.
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Definition 1. For a graph G, let f(G,v) be the least k such that every
configuration of k pebbles on G is v solvable. A configuration p is solvable
if every vertex is reachable under p. The pebbling number of a graph G
denoted by f(G), is the smallest integer m such that for every configuration
of m pebbles to the vertices of G, one pebble can be moved to any specified
target vertex.

Note that if v is a vertex in a connected graph G, then by placing one
pebble each on all vertices in G, except at v, a pebble cannot be moved
on to v. Thus we have that f(G) > |V(G)|, the order of G. Graphs that
satisfy f(G) = |V(G)| are known as class 0 graphs. The goal of this paper
is to find a class of diameter 3, class 0 graphs.

T A Clarke et al. [3] characterized diameter two class 0 graphs. They
established that a diameter two graph G is class 0, if it has no cut vertex
and if G has a cut vertex, then f(G) = |V(G)|+1. In [2], Chung proved that
f(@Q™) = 2™, where Q™ is an n-cube. In 1], an upper bound for the pebbling
number of diameter three graphs was established as f(G) < 3n+ O(1).

Definition 2 (Bi-wheels). Bi-wheels Ba,1o are graphs having a cycle Co,
of length 2n. Let {u;,v,u2,v2,...,u%n,Vn,u1} be the vertex set of Cay.
There are, in addition, two distinguished vertices « and v such that u
(respectively v) is adjacent to u; (respectively v;) for all i.

The Bi-wheel Bg is simply the 3-cube as illustrated in the figure 1. All
bi-wheels are diameter three graphs. We will show that all bi-wheels are
class 0 graphs.

——> Cyp n=3

------ 'vd\———> (Centre)
»
u vi

Figure 1: Representation of the 3-cube as a Bi-wheel

Before proving the main result, we have the following lemmas.
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Lemma 1. Suppose that S is a set of vertices of G. Let z adj y;, V; € S.
Let p(y:;) > 1, V y; € S, where p(y;) represents the number of pebbles at
¥i. Let r denote the number of excess pebbles in S. i.e.,

r=3" plg) -S|

WES

then [§] pebbles can be moved to .

Proof. We prove the result by induction on .
When r = 1 there is one more pebble than the number of vertices in S.

= p(y;) > 2, for at least one y; € S.
= one pebble can be moved to z.

Assume that the result is true when n < r. To prove that the result is
true for n =r.

Case 1: When r = 2k

By induction, when there is an excess of 2k — 1 pebbles, [352“—1] =k
pebbles can be moved to z. A fortiori, k = %’i pebbles can be moved to z

if r = 2k.
Case 2: When r =2k +1

The number of extra pebbles in at least one vertex of S, say y;, must be
odd. Now, remove one pebble from y; and consider the resulting pebbling
configuration. The number of extra pebbles now equals 2k and by induction
k pebbles can be moved to . We then replace the pebble at y;. Now y; has
at least two pebbles remaining. Using the two pebbles, one more pebble
can be moved to z.

Therefore k+1 = [-%.}1-] ;pebbles can be moved to z. Hence the lemma.
(]

Remark 1. We can actually prove that ’—'.ﬁ,‘—" pebbles can be moved to z

where s = |{i : p(y;) is even}|.

Remark 2. Lemma 1 is used mainly in computing the number of pebbles

which can be transferred to the centre of a star from the end vertices.
Similarly, we can prove the following result.

Lemma 2. Let S and T be disjoint nonempty subsets of V(G). Let p be a
pebbling configuration of G with r excess pebbles in S. Assume that every
vertex of S is adjacent to atleast one vertex of 7. Then [51 pebbles can
be transferred to T" from S by pebbling process.
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Theorem 1. f(Bypi2)=2n+2,n2>3

Proof. When n = 3, we get the 3-cube which is a class 0 graph as already
noted. So, hereafter we assume n > 4. The following figure represents
Bi-wheel Bay 42, with 2n 4 2 vertices.

Let G = Byp 42, given in figure 2.

u v

Figure 2: The graph Bap4o

Since f(G) = |V(G)| = 2n+2, it is enough to prove that f(G) < 2n+2.
Notation: We follow the notation given below.

L. p(w) = o, p(u) = a,p(v;) = B; and p(v) = B.

2. G, denotes the graph induced by {u,u;,u2,...,un}
3. G2 denotes the graph induced by {v,v;,v2,...,v5}.
4. p(U) is the total number of pebbles in U C V(G).

5. 8 =max{f; : 1<i<n},T={i: B 22}, t=|T|,
r={i:Bi=2}, s=|{i: Bi=3}|
Note that G; and G are isomorphic to Kj», a diameter two graph
with a cut vertex, and hence f(G;) = f(G2) =n +2.

In Section 1, we prove that the pebbling number of an arbitrary vertex
in the outer cycle (say u;) to be 2n + 2. In Section II, we prove that the
pebbling number of a distinguished vertex (say u) to be 2n + 2.
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Section 1. We prove that f(G,u1) =2n+2, n >4

It is enough to prove that we can pebble u; from any configuration of
2n+2pebblesinG. If ay 2 1,022,612 2 or B, > 2, u; can be pebbled.
We may assume none of these conditions hold.

1.1. We assume that $; = 1 and show that u; can be pebbled.

If p(G2) = f(G2)+1 = n+3, one more pebble can be moved to v; from
any configuration of (n + 2) pebbles in G3. The resulting configuration
will have at least two pebbles at v; and hence u; can be pebbled. If
p(G1) = n+2, u; can be pebbled. Therefore we may assume p(G;) < n+1
and p(G2) < n+2. Since p(G1)+p(G2) = 2n+2, there are two possibilities.

1.1.1. We assume p(G1) = (n + 1) = p(G3).

If there is some gap in G, [i.e., some vacant u;,i > 1], u; can be
pebbled. Therefore we may assume there is no gap in G;. The only non
pebbling situation is

a=0,a; =0,0; =3 for some i,a; =1, V j#1,i.

If there are two gaps in Gz, v; lies in a K} ,_p. With a total number of
(n + 1) pebbles, two pebbles can be placed at v;. Now u; can be pebbled.
Therefore there is at most one gap in G2. Therefore, there is no gap in
one of the sections [vy,u;] or [u;,vs] (figure 3). Therefore one pebble can
always be moved to u;.

uy

Figure 3: Diagram showing paths through which a pebble can be moved to
ui.

~ Next, we consider the other possibility.
1.1.2. We assume p(G;) = n,p(G2) =n+2

If there are two gaps in Gy, u; can be pebbled. We may assume at
most one gap in G, (say at u;). As before, we may assume there is no gap
in Ga2. So, similar to the previous case, the only non pebbling situation is
B =0,8; =3 for some i.
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Similarly, the case 8, = 1 may be reduced to the case f; = 1 by
relabeling the vertices and we can prove that u; can be pebbled.

As before, one of the sections [v;, v;] or [v;, v,] contains no gap. We can
now move a pebble to u;.

1.2. If @ = 1, we prove that u; can be pebbled.

From 1.1, we may assume $; = 8, = 0. First we note that, if a; =

Bi = 1 for some %, u; can be pebbled. For, if a; > 2 for some j,u; can be
pebbled. Therefore we may assume a; <1V j.

Therefore p(G1) < n, and p(G2) > n + 2. Further v; lies in a Kj -2
in Ga. Therefore one more pebble can be moved to v;. In the resulting
configuration B8; = 2,a; = 1, and a = 1. Therefore u; can be pebbled.

Clearly, if 8* > 4,u; can be pebbled. Assume 8* < 3. Hence (o, 5;) is
one of the type (0,0), (1,0),(0,1),(0,2) or (0,3).

Also (a1, 81)=(0,0). According to our notation, r=|{z : (ai, 8;)=(0,2)}|
and s = [{i : (o4, 8:) = (0,3)}].

Therefore, we have

(2n+2) £ (m—-1-r—8)+1+2r+3s+8
= n+r+2s+p4
= n+2 < r+2s+8 (1)

If r + s+ B > 4, we can have four pebbles at v and u; can be pebbled.
Therefore we may assume r + s + 8 < 3 which implies s < 3. Therefore
using (1), n+2 < 6. Since we have assumed n > 4,n = 4. Then (1) implies
6 < 3+ 3. But if n =4, s > 3, there must be 7 such that 8; = Bi4+1 =3,
which implies 2 pebbles can be moved to a;. Thereafter one more pebble
can be moved to « and u; can be pebbled.

From 1.1 and 1.2, we may assume a =1 =1 =, =0
1.3. If a; = 3 for some i, we prove that u; can be pebbled.

If a; = 2 for some j # 4,u; can be pebbled. Thus we may assume
a;j <1, V j #i. Therefore p(G1) < n+1and p(G2) 2n+1.

First suppose that i = 2. Then, two pebbles can be moved to v;, one
pebble from uz and another from K ,,—; containing n+ 1 pebbles in which
v; lies. Hence u; can be pebbled. Therefore we may assume «o; = 3 for
some ¢ # 1,2, n.

Also if B; > 2,(j #i—-1,4+1) and o; > 1 or @;4; = 1,u; can be

pebbled. Therefore for every j for which B; > 2, there is a gap in G,.
Hence G; must contain at least ¢ gaps. (2)
Again, we may assume f;—; = 0. This is because, if 8;—1 > 2, u; can
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be pebbled. If 8;—; = 1, then v;—; lies in a K; n_o containing at least
(n + 1) pebbles, which is one more than the pebbles needed for this graph.
Therefore we can move one more pebble to v;—; and u; can be pebbled.
Therefore we may assume f;_; = 0. Similarly, we may assume 8; = 0.

Hence, we assume o = a; = B; = Bi—1 = B; = Bn = 0. Therefore, there
are at least (n + 1) pebbles in K; n—4 in Ga.

If, either t + 8 > 4 or 8* > 4,u; can be pebbled. So, we assume 3* < 3
and £ + 8 < 3. Now,

P(G2) < (n-4—-t+3t+B)=n—-4+2t+p8 and
p(G1) = 2n+2 — p(G2)
>n+6-2t-8

>n+3—tsincet+8<3.

Now (2) implies that u; lies in a K n—; which contains at least n — ¢ + 3
pebbles. Hence u; can be pebbled.

1.4. We assume o; = 2 for some ¢, a; < 1, j # ¢ and show that u; can
be pebbled. '

Hence p(G,) < n and p(G2) 2 n+2. If 8 > 4 or * > 4, u; can be
pebbled. If r + s+ 38 > 4, then 4 pebbles can be placed at v and u; can be
pebbled. Thus we may assume r+s+ 8 < 3,8 < 3 and 8* < 3. Thus we
have,

n+2<p(Ga)Sn—-2—-r—-5+2r+3s+p4
=n—-2+r+2s4 8.

Hence 4 < r+2s+ 8. We have assumed r+s+8 < 3. These two inequalities
imply s > 1.

Suppose B; = 3. Further, if r+(s—1)+8 > 2, we can place two pebbles
on v (without affecting v;). Then 4 pebbles can be placed at v; and u; can
be pebbled. Thus, we may assume r + s + 8 < 2. This together with the
inequality r + 234+ 8 > 4 impliess s =2 and r = 8 =0.

Hence there exists j # i such that 8; = 3. If now a; > 0, we can place
2 pebbles at a;. Two pebbles can then be moved to u (considering the
pebbles at u; and u;). Thus u; can be pebbled. Thus a; = 0. Similarly, if
Br = 3 with k # j,i then o = 0. If B; = 8,a;47 = 0. If j = i + 1, then
a similar argument gives a2 = 0. Thus in any case, there exist distinct
j and k # 1 such that a; = o = 0. We have p(Gz) < n + 2,p(G1) > n.
Now, u; can be pebbled since u, lies in a K; ,_» on which n pebbles are
placed.

1.5. We assume a; < 1, V i and show that u; can be pebbled.
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Letc=|{i : oy =0,i # 1} andd = |{j : B = 0,5 # 1,n}|. Then
p(G1)=n-c-1,p(Gs)=n+3+c.
Let s = {v; : B #0},|s| =n—d—2. Let T = V(G)). p(s) =n+3—c-5.
Therefore |p(s)| — |s| = 5+ ¢+ d — B. (We note that if 8 > 4, u; can be
pebbled.). Therefore using lemma 1, we can transfer [si%"‘-é] pebbles

from S to v. Taking into account the 8 pebbles already present at v, the
total number of pebbles at v is atleast [teid—£] 4 g = [Stetdif],

If c+d+ 8 > 2, there will be 4 pebbles of v and u; can be pebbled. So,
we have to consider only the case c+d+ 8 < 1.

1.5.1. We suppose c=d=5=0.

In the case p(G1) = n — 1,p(G2) =n + 3. The n + 3 pebble on G are
placed on the n — 2 vertices vg,vs,...,vn—; Without any gap. Thus, there
are (n+3) —(n—2) = 5 excess pebble in p(G2) of which 3 can be transfered
to G using lemma 2. But p(G;) becomes n + 2 allowing u; to be pebbled.
All the cases involving 8 = 0 can be proved similarly.

1.5.2. We suppose c=d=0,8=1.

In this, we will be able to transfer only two pebbles to G;. But, it can
be done in such a way that one pebble each is transfered to two different
u;’s with p(u;) > 1 allowing v, to be pebbled.

Section 2. We prove that f(G,u) =2n+2,n > 4.

Suppose p is a pebbling configuration with |p| = 2n 4+ 2. We then prove
that « can be pebbled.

Each of the following five conditions defines a situation where u can be
pebbled.

Da>1, (2)o>2forsomei, (3)82=8,
(4) (ai:ﬂi) = (1:2) for some i (5) ﬁ‘ >4

We assume none of those conditions hold.
2.1. We prove that if o; = 1,V ¢, u can be pebbled.

If B* > 2, u can be pebbled. If 8* < 1, p(G:1) < n and p(G2) 2 n+ 2
implies 8 > 2. If B; = 1 for some i,u can be pebbled. Otherwise 8 >
n -+ 2 > 6, u can be pebbled. We note that a similar proof holds if a; =1
for all but one i.

2.2. We prove that if o; = 0,V ¢, u can be pebbled.

For, a; = 0 Vi = p(G;) = 0 which implies p(G2) = 2n + 2. We
consider the four possibilities which arise.

2.2.1. We suppose 8* = 3.
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If (t— 1)+ B > 2 we can place two pebbles at v. We can then move one
more pebble to the vertex v; which has 3 pebbles. Now 8* = 4 and u can
be pebbled.

Suppose t + 8 < 2, then,
Mm+2<(n-t)+34H+B=n+2t+4

That is, n + 2 < 2t + S < 4, which is not possible as n > 4.
2.2.2. We suppose * = 2.
Again, if (r — 1) + 8 > 4, the previous argument shows some S3; can be
made at least 4. So assume (r — 1) + 8 < 3. That is, 7 + 8 < 4. Then
p(G2)<(n—r)+2r+p
=n+r+p
<n+4

That is,
2n+2<n+4 = n<2

But by assumption n > 4.
2.2.3. We suppose 8* = 1.
We have

2n+2<p(G2) <n+B
=  B>n+2>6

Again, u can be pebbled.

2.2.4. We suppose 8* =0.

Here 8 =2n+ 2 > 10 and u can be pebbled.

2.3.If a; = 1 and a; = 0 for some %, j, © can be pebbled.

Divide {uj,us,...,un} into blocks R; and S;, 1 < ¢ < n such that
p(z)=1 ifzeR;,1<i<k
p(z) =0 ifz€eS;,1<i<k

We may assume a; € R; and o, € S;.
Let r; =p(R;) and r =) my.
(We may assume r < n — 2 from remark following 2.1).

There are at least (74 k) v;’s adjacent to at least one u; with p(u;) # 0.
If any such B; has value at least 2, we are done.
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S

Figure 4: Diagram showing blocks into which the vertices in
{u1,ug,...,un} are divided.

If pebbling u is not possible, 8; < 1 for all such v;.

Therefore for a non pebbling situation, at most r+k pebbles are at these
locations. Therefore there are at least (2n+2) —(r+k)—r =2n+2-2r—k
pebbles unused. They are to be placed in n — (r + k) + 1 locations in Ga.
Therefore there are n — r + 1 extra pebbles.

(i) B; =1 for at least one such ¢

Suppose B = 1. One more pebble can then be moved to v as (n—r) > 1.
Now 8 = 2 and u can be pebbled.

We also note that the pebbles involved in moving one more pebble to v
must come from outside the v;’s adjacent to u;’s since we are considering
locations in G other than the r + k positions.

Next suppose 8=0: There are (n —r + 1) extra pebbles. Asn—r > 2,
n—r+1 > 3, two pebbles can be moved to v and u can be pebbled.
Movement of pebbles is similar to that of 8 = 1.

(ii) All such 8; =0
Then the total number of extra pebbles =2n+2 — 7.

Using lemma 1, the total number of pebbles which can be placed on v
is at least

[2n+2—r—ﬁ.|+ﬂ2 [2n+2—r] > [2n+2-(n—1)]=[n+3] >4

2 2 2 2
asn > 4.
Hence, at least 4 pebbles can be placed on v.
Since at least one a; = 1, this implies u can be pebbled. 0O
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