The v-Spectrum of a Graph
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ABSTRACT

Let G be a graph of order n and size m. A v-labeling of G is a
one-to-one function f : V(G) — {0,1,2,...,m} that induces a
labeling f/ : E(G) — {1,2,...,m} of the edges of G defined by
f'(e) = |f(u) — f(v)| for each edge e = uv of G. The value of a
~-labeling f is defined as

val(f) = Y flle).
e€E(G)

The v-spectrum of a graph G is defined as
spec(G) = {val(f) : f is a v-labeling of G}.

The 7-spectra of paths, cycles, and complete graphs are deter-
mined.
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1 Introduction

For a graph G of order n and size m, a y-labeling of G is defined in (1] as
a one-to-one function f : V(G) — {0,1,2,...,m} that induces a labeling
f': E(G) — {1,2,...,m} of the edges of G defined by

f'(e) = |f(u) — f(v)| for each edge e = uv of G.

Therefore, a graph G of order n and size m has a ~-labeling if and only
if m > n ~ 1. In particular, every connected graph has a y-labeling. If
the induced edge-labeling f’ of a v-labeling f is also one-to-one, then f is
a graceful labeling, one of the most studied graph labelings. An extensive
survey of graph labelings as well as their applications has been given by
Gallian [4].

In [1] each y-labeling f of a graph G of order n and size m is assigned
a value denoted by val(f) and defined by

val(fy= Y f(e)-

e€E(G)

Since f is a one-to-one function from V(G) to {0,1,2,...,m}, it follows
that f’(e) > 1 for each edge e in G and so

val(f) 2 m. (1)

In (1) the mazimum value and the minimum value of a y-labeling of a graph
G are defined, respectively, as

valmex(G) = max{val(f): f is a y-labeling of G}
valnin(G) = min{val(f): f is a v-labeling of G}.

A v-labeling g of G is a y-max labeling if val(g) = valmax(G) or a ~-
min labeling if val(g) = valmin(G). These concepts were introduced and
studied in [1] and [2]. As an illustration, Figure 1 shows nine y-labelings
f1, f2, ..., fo of the path Ps of order 5, where the vertex labels are shown
above each vertex and the induced edge labels are shown below each edge.
The value of each y-labeling is shown in Figure 1 as well. Since val(f;) =4
for the y-labeling f; of Ps shown in Figure 1 and the size of Ps is 4, it
follows by (1) that fy is a y-min labeling of P;. As we will see later, the
v-labeling fo shown in Figure 1 is a y-max labeling.

For a v-labeling f of a graph G of size m, the complementary labeling
F:V(G) = {0,1,2,...,m} of f is defined in [1] by

f(v) =m— f(v) for v € V(G).
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0—O0—0—0—0 0—0—0—0—0 0—0—0—0—0
h 1o1°1° a1 f2 I°1 2 1 fs 1 1 3 1
val(f1) =4 val(f2) =5 val(fs) = 6

3 2 0 1 4 2 1 3 4 0 0 3 2 4 1

! 0—0—0—0—0 ! O~—O0——0~—0—0 : O—O——O0—0—0
fa 1 20 1° 3 fs 1 2 14 fo 3°1- 2° 3
val(fa) =7 val(fs) =8 val(fe) =9

4 0 3 1 2 2 0 3 1 4 3 0 4 1 2

i O=rO—0—50—0 : O5-0—70—0—0 : O——0—0—70—0
fr fs 3 2 3 fo 3 1

val(f?) = 10 val(fg) = 10 val(fo) = 11

Figure 1: Some v-labelings of P;

Not only is f a v-labeling of G as well but val(F) = val(f). Therefore,
a 7-labeling f is a 7-max labeling (y-min labeling) of G if and only if
is & y-max labeling (y-min labeling). Figure 2 shows the complementary
labelings of the v-min labeling f; and the y-max labeling fy of Ps as well
as the value of each of these two v-labelings.

val(fo) = val(fy) = 11
Figure 2: Complementary labelings of v-labelings

The ~y-spectrum of a graph G is defined in [1] as
spec(G) = {val(f) : f is a y-labeling of G}.

Thus, {4,5,6,7,8,9,10,11} C spec(Ps). (In fact, {4,5,6,7,8,9,10,11} =
spec(F;).) Observe that valmin(G), valmax(G) € spec(G) for every graph G.
For integers a and b with a < b, let

[a,b] = {a,a+1,...,b}
be the set of integers between a and b. Thus for every graph G,
spec(G) C [valmin(G), valmax(G)].
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The spectrum of a star K, ¢, where ¢ > 2, was determined in [1], which we
state next.

Theorem 1.1 ([1]) For each integert > 2,

spec(Kl,g)={(t+12_k) +(k;1) : OskSt}.

In this work, we determine the <y-spectra of some well-known classes of
graphs, namely paths, cycles, and complete graphs. We refer to the book
(3] for graph theory notation and terminology not described in this paper.

2 The v-spectrum of a path

For each integer n > 2, let P, : vy, v2,...,v, be the path of order n. The
maximum and minimum values of a 4-labeling of P, were determined in

[1].
Theorem 2.1 ([1]) For any path P, of order n > 2,

Valmin(Pn) =n—1 and valmax(Pn) = I.u"'{zJ )

The v-labeling fuin of P, defined by fmin(vi) =i—-1(1 < i< n) has
val(fmin) = 7 — 1 and 80 fmin is a y-min labeling of P,. In fact, fmin
and its complementary labeling f,,;, are the only y-min labelings of P, for
each integer n > 2. On the other hand, this is not the case for the y-max
labelings of P,. A 4-max labeling of P, was given in [1] for each integer
n as follows: For an odd integer n = 2k + 1, a y-max labeling f, of P, is
defined by

k+31l ifiisoddandi<n
fo(vi) =< k ifi=n
_i:2_2_ if ¢ is even.
For an even integer n = 2k, a y-max labeling f. of P, is defined by

k+ 5 ifiisodd
felvi) = { =2 if 1 is even.
There are other y-max labelings for P,. For example, for an odd integer
n = 2k + 1, define a ~4-labeling g, of P, by

{n—l—z‘ ifiisoddand1<i<k

9o(Vk+1-:) i—1 ifiisevenand 2<i<k

go(Vk+1) = O

n—1 ifiisodd
Go(Vrk+14+4) = | if i is even.
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Then g, is a y-max labeling of P, for each odd integer n > 3. For an even
integer n = 2k, define a «-labeling g. of P, by

( ) = i—1 ifiisoddand1<i<k
9e\Vkt+1-i) = \ n—i ifiisevenand2<i<k
(i) = n—1t ifiisoddand1<i<k
GelVk+i) = i—1 ifiisevenand2<i<k.

Then g is a y-max labeling of P, for each even integer n > 2. Figure 3
shows the «y-max labelings g, and g. for Py and P, respectively.

val(ge) = 31

Figure 3: The y-max labelings g, and g, for Py and P;, respectively

In order to determine the y-spectrum of the path P, of order n > 2, we
first establish some additional definitions and notation. For a «-labeling f
of P, and each integer j € {2,3,...,n — 1}, a j-right arrangement R;(f)
of f is defined as a «-labeling of P, for which

f(ve) fl1<e<j-1
Ri(f)(ve) = flvesr) ifj<L<n-—1
f(vg) ifé=n.

That is, if f is a y-labeling of P,: v1, v, ..., v, such that the labels are
assigned by f to the vertices of P, are in the order

(f(n1), f(v2), ..., F(vj_1), F(3), fF(Wi1) ..., F(wn)),

then R;(f) is the y-labeling of P, for which the labels are assigned by R;(f)
to the vertices of P, are in the order

(f(vl)7 f(v2)’ ey .f(vj—l)’ f(vj"l-l)! ey f(vn)$ f(vj)) .
Analogously, a j-left arrangement L;(f) of f is defined as
f(vj) ife=1

Li(f)(ve) = flve-1) if2<e<j
fo)  fi+l<e<n.
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We are now prepared to present the main result of this section.

Theorem 2.2 For each integer n > 2,

2

spec(Pn) = [Valmin(Pa), Valmax(Pa)] = [n— 1, [" 2-2”.

Proof. We show, for each integer
s € [valmin(Pr), valmex(Pr)],

that there exists a y-labeling of P, whose value is s. We consider two cases,
according to whether n is even or n is odd.

Case 1. n is even. Define the sets '} for 0 < k < "—2‘—2- by

{[O,n—-l] ifk=0

1"2= . n—2
[0, n—l]—{1,2,...,k,n—1—k,...,n—2} lflSkS =5

Then
TRl =n-2k
for 0 < k < 252. Suppose that
I': = {an,a2,...,0n-2k}
such that a; < a2 < -+ < an_ok. Let
Ap = 2k(n—k-1)for0< k< 232
Ay = AL ,+1.

We now define a y-labeling f*, where 0 < k < 232, of P, by

4 ) = n—i—1 ifiisoddand1<i<k
k+1-i) = i ifiisevenand2<i<k
Forps) = a f1<i<n—2
F* (v ) i ifiisoddand 1<i<k
n=kti n—i—1 ifiisevenand2<i<k.

Observe that

ffw) € {

[0, n - 1] - F',: ifve V(P,,,) - {vk+1,vk+2, vee ,'Un_k}

I‘;: ifve {’Uk+1, Vk42y .- ,vn_k}.

Furthermore,
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val(f°) = n -1
andforlslcs"—;g
va,l(fk)=n—1+2(’n—2)+"’+2(n—2k)=n_1+Agk'

For each integer s € |n—1, 2-2-2‘—2-], we construct a ~y-labeling whose value
is s by the following procedure:

1. findk € [0, "T‘z] such that
s—n+1€ (A%, Ay, -1];

2. find a smallest nonnegative integer ¢ such that t = s—n+1if k = 0 and

t=s—n+1(mod Aj) otherwise.

8. if t = 0, then f* is the solution; else
4. if k is even, then
4.1. if 1 <t <n—2k -2, then find £ € [k + 2, n — k — 1] such that
fr(ve) =t +k;

the solution is L¢(f*); else
4.2, ifn-2k—1<t<2n—4k -5, then
4.2.1 set f* = Lo_;_1(f*);
4.2.2 find £ € [k + 2, n — k — 1] such that

fRw) =2n—-3k—t—4;
the solution is Lg(f*);

5. if k is odd, then proceed with 4. and replace L by R.

Observe that if k is even, then f*(v;) = k. Thus, for ¢ and ¢ as described
in 4.1., we have

val(Le(f*)) = val(f*) + (¢ + k — k) = s.
In the condition 4.2.,

val(f*) = val(f*) + (n—k — 2 — k)
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and

val(Le(f*)) = val(f*) + [n —k—2 — (2n -3k —t — 4)] = s.

Case 2. n is odd. Define the sets '} for 0 < k < 252 by

([0, n—1] if k=0
[0, n—1] - {1,2} if k=1
I} = ¢ 0, n-1-{1,....k,n—-k-2,...,n-3} if k is and even
2<k e
0, n-1}-{1,...,k+1,n—-k—-1,...,n -3} ifkisodd and
\ 3k 23R,

Thus
ITZ| =n and [T}| =n -2k

for 1 < k < 253, We now define the y-labeling f° of P, by
fov)=i-1for1<i<n

and the 7-labeling g* (0 < k < 252) of P, as follows:

g*(ky1) = n-2
¥ (k14i) = a; (1<i<n-2k-1)

where
It -{n-2}={a,a2,...,6n-2k-1}
with a; < a2 < -+- < ap—2k—1 and
*(Wer1-:) = g (Vn-ksi) — 1
_ {z . fiisoddand 1<i<h

n—i—2 ifiisevenand 2<i<k.

Furthermore, define
A% =3n—8+2k(n—k—4) for0< k< 258

and

At =A% - +1.
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Then val(f%) =n — 1, val(g°) = 2n — 3, and for 0 < k < azs,

k+1)

val(g val(¢®) +2(n—3) +2(n = 5) + .-+ + 2(n — 2k — 3)
= n-1+A4A%.
For each integer s € [n—1, 1‘%], we construct a v-labeling of P,
whose value is s by the following procedure:
1. iffs-n+1€0, 3n—9], then
1.1. if s— n+ 1 =0, then the solution is f9;
1.2. if s—n+1€ (1, n— 2], then the solution is Ly—p42(f°);
1.8. if s—n+ 1€ [n—1, 2n - 5], then solution is L3,—,-3(g%);
14. ifs—n+1€[2n -4, 3n 9], then
1.4.1. set § = L3(g°);
1.4.2, find £ € [4, n — 1] such that
G(ve) =s—-3n+7,
the solution is L¢(g); else
2. find k€ [0, 25%] such that s—n+1¢ [A;‘k, Afyr) — 1];
3. find a smallest nonnegative ¢ such that
s—n+1=t(mod A});
[Note that Ag > 0 if k =0.]
4. if t = 0, then g**! is the solution; else
5. if k is even, then
5.1. if 1 <t < n — 2k — 5, then the solution is Rx4s4+3(g%*!); else
5.2. ifn—2k—-4<t<2n—-4k-11, then
5.2.1 set §* = R,_j_2(g**!);
5.2.2 find £ € [k + 4, n — k — 3], such that

§*(ve) =2n -3k —t - 8;
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the solution is Re(g*); else
6. if k is odd, then
6.1. if 1 <t < n— 2k —5, then the solution is Ln—k—¢—1(g**!); else
6.2, if n—2k—4 <t <2n—4k - 11, then
6.2.1 set §* = Liya(g*t?);

6.2.2 find £ € [k + 5, n — k — 2] such that §*(ve) = 3k —n+t +7; the
solution is Ly(§*).

It can be verified that

val(Lo—n+2(f%)) = val(f) +s-n+1=s

and
val(Lan-s-3(g°)) = val(¢®) +n—2 - (3n —s—5) = s.
Also,
val(§) = val(g®) +n—-2-1=3n—-6
and

val(Le(§)) = val(g) + (s —3n+7) —1=3s

for ¢ as described in 1.4.2.
Notice that in 5.,

val(Rkye43(g"t?)) = val(g**) +t+k+2-(k+2)=s
and

val(§¥) +n—k—3— (2n — 3k —t — 8)
(val(g"*!) +n—k—3—(k+2)) + 2k +t—n+5)

= 8.

val(Re(3"))

These equalities still hold for val(Le(§*)), where k and t are described in
6.2. Finally, we observe that

val(Lp—k-t-2(g**")) = val(g"*) +n—k -3 - (n—k—t-3) =3,

for t as described in 6.1. n

We now illustrate the proof of Theorem 2.2. The table below shows all
variables in the proof of Theorem 2.2 that we use to find spec(FPs).
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s=val(f) of Ps € [n—1,2572| = [7,31]

k=0s-n+l€[A5,A5,, ~1]=[0,11]

3 s=n+1 t labeling vy va vs wvq wvs ve v7 vUs
7 0 0 7° 0 1 2 3 4 & 6 7
8 1 1 L2(f° :1 0 2 3 4 & 6 7
9 2 2 La(f°) :2 0 1 3 4 & 6 7
10 3 3 La(f%) :3 0 1 2 4 5 6 17
11 4 4 Ls(fY :4 0 1 2 3 5 6 7
12 5 5 Lg(f°) :5 0 1 2 3 4 6 7
13 6 G Ls(f°) :6 0 1 2 3 4 85 7
fO=Ly(f%:6 0 1 2 3 4 &5 7
14 7 7 L:(f% :5 6. 0 1 2 3 4 7
15 8 8 Le(f®) :4 6 0 1 2 3 8 7
16 9 9 Ls(f% :3 6 0 1 2 4 5 7
17 10 10 Lo(f :2 6 0 1 38 4 5 7
18 11 11 L3(f% :1__6 0 2 3 4 & 7
=1s-n+1€ [A3,,,A%, — 1] =[12,19)
E] g—n+1 t labeling vy vy vs vq vg ve U7 vg
19 12 0 I 6 0 2 3 4 5 7 1
20 13 1 Rs(f1) :6__0 3 4 6 7 1 2
21 14 2 R,(fTY (6 0 2 4 5 7 1 3
22 15 3 Rs(f1) :6 0 2 3 6 7 1 4
23 16 4 Ro(f®)y 60 2 38 4 7 1 &5
fl=Re(f1):6 0 2 3 4 7 1 5
24 17 5 Rs(f}) :6 0 2 3 7 1 5 4
25 18 G Ry(ft) :6 0 2 4 7 1 5 3
26 19 | 7 Ra(f) :6 0 3 4 7 1 5 2
k=2s-n+1€[a},, Ay, —1] =[20,23)
ILs | s=mn+11] ¢t labeling vy va vs vg vs wvg
27 20 0 7 :2 6 0 3 4
28 21 1 Li(f°) :3 2 6 0 4
29 22 2 Ls(f*) :4 2 8 0 3
fP=Ls(f):4 2 6 0 3
30 23 3 Ls(f?) :3 4 2 6 0
k=3,s—n+1e[Ay, A" — 1] = [24, 24]
E] s~-n+1 t | labeling v vg vy vy vy vg
31 24 0 J i 4 2 6 0 7
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The table below shows all variables that we use to find spec(Po).

s=val(f) of Py € [n~1,252 =[8,39)
s—n+1€J0,3n — 9] =0, 18]
) s—n+1 | labeling Vg WvUs Vg Vs Vs Uy v Ug val(f) |
8 0 T_ 7° o0 1 2 3 4 B 6 71 8 8
9 1 L2(f°) :1 0 2 3 4 5 6 7 8 9
10 2 Ly(f°) :2 0 1 3 4 &6 6 7 8 10
11 3 Lo(f/° :3 0 1 2 4 5 6 7 8 11
12 4 Ls(f°) :4 0 1 2 3 5 6 7 8 12
13 5 Le(f°) :5 0 1 2 3 4 6 17 8 13
14 6 Lz(f°) :6 0 1 2 3 4 5 7 8 14
15 7 Le(f°) :7 06 1 2 3 4 &5 6 8 15
g° :7 0 1 2 3 4 5 6 8
16 8 Lg(®) :6 7 0 1 2 3 4 b5 8 16
17 9 L7(g°) :5 7 0 1 2 3 4 6 8 17
18 10 Lo(¢®) :4 7 ©0 1 2 3 5 6 8 18
19 11 Ls(g®) :3 7 0 1 2 4 5 6 8 19
20 12 La(g”) :2 7 0 1 3 4 5 6 8 20
21 13 La(g") :1 7 0 2 3 4 5 6 8 21
g=1La(¢°):1 7 0 2 3 4 5 6 8
22 14 Lq 2 1 7 0 3 4 b5 6 8 22
23 156 Ls 3 i 7 0 2 4 5 6 8 23
24 16 Lo i 7 0 2 3 b5 6 8 24
725 17 L+( 1 7 0 2 3 4 6 8 25
26 18 Lg(g 1 7 0 2 3 4 &5 8 %6 |
k=0,5—n+1€[A}, A%, = 1] =[19,26]
s | s—n+1] || labeling vy vz vs va Vs Vs U7 Us U val( T
27 19 0 ' :1 7 0 3 4 & 6 8 2 27
28 20 1 Rsi(g') :1 7 0 4 5 6 8 2 3 28
29 21 2 Rs(g’) :1 7 0 3 6 6 8 2 4 29
30 22 3 Rg(g) :1 7 0 3 4 6 8 2 5 30
31 23 4 Re(g’) :1 7 0 3 4 5 8 2 6 31
®=Rzg'):1 7 0O 3 4 5 8 2 6
32 24 5 Ro(¢®) :1 7 0 3 4 8 2 6 5 32
33 25 6 Rs(g%) :1 7 0 3 5 8 2 6 4 33
34 26 7 R4(g®) :1 7 0O 4 5 8 2 6 3 34
k=1s-n+1€[A),, Ajy = 1| = [27,30]
s | s—n+1 | || labeling vy vz vs ve s ve vz vs__ vo || valf m .
35 27 0 g° 5 1 7 O0 3 4 8 2 6 36
36 28 1 Lo(g?) :4 6 1 7 0 3 8 2 6 36
37 29 2 Ls(g®) :3 5 1 7 0 4 8 2 6 37
g=Ls(¢®>):3 & 1 7 O 4 8 2 6
38 30 3 Lo(g') :4 3 5 1 7 0 8 2 6 38
k=2s-n+1€ |03, 000 = 1] = [A5n). 80 s —1] =31,31) ]
s |s—n+1] [ labeling vy vz vs vg Us Ue Uz Us Vg val(f) |
39 31 To] g° :3 6 1 7 0 8 2 6 4 39
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If n = 8 and s = 30, then ¥ = 2 (since 23 € [20,23]) and ¢ = 3.
Applymg 4.1. and 4.2., we obtain the +-labelings f2 and f2 of Ps as
shown in Figure 4. Then the solution is Ls(f2), which is also shown in
Figure 4, and val(Ls(f?)) = 30.

val(Ls(f2)) = 30
Figure 4: The y-labelings f2, /2, and Ls(f2) of Ps

Ifn=9and s = 32, then k = 0 (since 24 € [19,26]) and t =
Applying 5.1. and 5.2., we obtain the ~-labelings ¢! and §® of P, as
shown in Figure 5. Then the solution is Re(§°%), which is also shown in
Figure 5, and val(Rg(g%)) = 32.

1.
. o——0—0—0—0—0—0——0——0
g 6 7 3 1 1 1 2° 6
val(g') = 27
1 7 0 3 4 5 8 2 6
§° = R7(g'): o0—o0—o0
g 7(g9%) g0 70307 O 0500 ° ,
val(§%) = 31

-0 1 7
Rg(3%) : O—o—o—o—o—;—o—eo-To—o

6 7 38 1
val(Re(3%)) = 32

Figure 5: The ~-labelings g*, §% and Re(3°) of Ps
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3 The 7v-spectrum of a cycle

For an integer n > 3, let Cp: v1,v2,...,Vn,v1 be the cycle of order n. The
maximum and minimum values of a y-labeling of C,, were determined in

(1)-
Theorem 3.1 ([1]) For every integer n > 3,
valnin(Cn) = 2(n-1)
{ L_)i_l"-12"+3 if n is odd
an+2) if n is even.

2

valmax(cn) =

In order to determine the vy-spectrum of C, for each integer n > 3, we
first establish two lemmas. The proof of the first lemma is straightforward
and is therefore omitted.

Lemma 3.2 Let f be a y-labeling of a graph G. If Py : uy,u2,- -, ur is a
path of order k in G such that f(u;) < f(uip1) for 1< i< k-1, then

val(f) = [flwe) = fu)l+ Y, fle)

e€E(G)-E(P)

Lemma 3.3 For every v-labeling f of Cn, where n > 3, the value val(f)
of f is even.

Proof. Let f be a v-labeling of Cy,. If 0 is in the sequence of the images
of f, we may assume, without loss of generality, that f(v;) = 0; otherwise
f(v1) =1. Let

(f(vil): f(vi1+l)’ (R ,f(viz))
(f(viz)) f(vi2+1)v cen ,f(vis))

S1(f)
Sa(f)

Sk-l(f) = (f(vik—1)7f(vik—1+l)""’f(vik))
Sk(f) = (.f(vik)a f(vik+l)) sy f(vik-)-l ))
be k& maximal monotone sequences of the vertices of C,, where 2 < k < n

and
1=t =% <t <+ <.

Since f(v1) = 0 or f(v1) = 1 if 0 is not an image of f, it follows that S;(f)
is an increasing sequence; Sa(f) is decreasing and so on. (Notice that k is
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always even.) By Lemma 3.2,

V&l(f) = [f(vi:e) - f(vix)] + [f(via) - f(vis)] + [f(vic) = f(vis)] +-
+ [f (i) = flvi_y)] + [ (o) = flvi)]
= 2 [f('Ui,) + f(via) +--+ f(vik)]
=2 [f(vi) + Flois) + - + i y)]

which is even, as desired. ]

For even integers a and b with a < b, let
Ela,b] ={a,a+2,a +4,---,b}

be the set of all even integers ¢ for which @ < i < b. We are now prepared
to present the main result of this section.

Theorem 3.4 For each integer n > 3,
spec(Cy) = E [valmin(Cn), Valnax(Cr)).
Proof. By Lemma 3.3,
spec(Cy) C E [valmin(Cr), valmax(Ch)].
Next, we show that for each even integer
8 € E [alnin(Cr), valmax(Ch)],

there exists a v-labeling of C,, whose value is s. Certainly, the statement is
true if 8 = valpin(Cr) or s = valyax(Cn).
For s = valmin(Crn)+2, let Cy, : u3,u2,...,un,u; and define a y-labeling

h of C, by
me={7 f2Zicn
Then
val(h) = [A(un) — h(u1)] + [R(2n) — R(u1)] = 27 = valmin(Cn) + 2.
We now assume that
8 € E[valmin(Cn) + 4, valmax(Cn) - 2.
There exists an integer k with 0 < k < [254] such that
s € [AR +2, ALy,

where
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r=2n+k(n—k-1))
Label the vertices of C,, as
Cn 1Ty 21,22y 009 Zn—2k—4y Y1, T2, Y2, T3, Y3y - - -y Tht1y Yot 1s Th425 Y42, T1-

Define a y-labeling f of C,, by

flz)=i-1 fl<i<k+2

flg)=n—-i+1 f1<i<k+1

Fw)=k+2)+(E-n)—k(n-k-1)-1 fi=k+2

fz)e2, n-1-W if1<i<n-2k-4
where

W = {f(z1), f(11), f(z2), f(wa)s - .-, f(zr42), fYRa2)}
and
f(21) < f(z2) < -+ < f(Zn—2k-1)-
Then

k+1 k+1

val(f) = D (Fws) = £(z)) + D _(F(mis1) = F®:))
i=1

i=1

+f(yks2) — f(zhs2) + f(Yrs2) — f(z1)
= [n+n—-2+n—4+-.-+n-2k|

+n—1+n=34+---+n-(2k+1)

+2 [(k+2)+(§—n) —k(n-k—l)—l] —(k+1)-0
 (2k+1)(2k+2)

2

+2 [(k+2)+(§—n)-k(n-k-1)-1] —(k+1)=s,

= (2k+2)n

as desired. L

We now illustrate the y-labeling f of C,, described in the proof of The-
orem 3.4. If n = 8 and s = 32 € spec(Cs) = E[18, 38|, then k = 1.
Let

Cs : 71, 21, 22, Y1, %2, Y2, T3, Y3, Z1.

The ~v-labeling f of Cs is shown in Figure 6 with val(f) = 32.
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Figure 6: The y-labeling f of Cs with val(f) = 32

4 The y-spectrum of a complete graph
For each integer n > 2, let K, be a complete graph of order n with
V(Kn) = {v1,v2,...,v,}.

The maximum and minimum values of a «-labeling of K, were determined
in [1].

Theorem 4.1 ([1]) For every integer n > 2,

valpin(Kp) = (n;-l)

3_ 2 - . .
{ n(3n®-5n%+6n—4q) if n is even

24

Valmax(Ky)
ﬁﬁ?‘:—-%ﬂ if n is odd.

The minimum value valmin (K») of a y-labeling of K, is attained by the

v-labeling f; defined by
fe(vi)=€+i-1,

where £ € [0, 5("2—"31 , While the maximum value valp,ax(K») of a y-labeling
of K, is attained by a ~y-labeling of K, that assigns the labels in the set

{or[51-2.() - 31+ () - 5] +2 ()}

to the vertices of K,, (see [1]).
In order to determine the y-spectrum of a complete graph K, forn > 2,
we need an additional definition. If f is a v-labeling of K, such that
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flvi)=a;for1 £i<nand

05a1<---<ans(:), (2)
then
1%]
val(f) = ) _(n — 2+ 1)(@n—i+1 — a:).
i=1
Setting

ai=an_L&J+i—al§J —i4+lfori=1,2,..., l%J,
we obtain an increasing sequence {c;} such that

(i) a; 2 a1 +2fori=2,3,...,l%],

(i) 5] < (3), and
(iii) a3 > 2 if n is odd, while a; > 1 if n is even.

On the other hand, if {;} is an increasing sequence with properties (i)-
(iii), then there exist n integers a1, az, ..., an satisfying (2) such that a; =
Gn—i41 — ai for i = 1,2,...,|2|. Therefore, an increasing sequence {o}
is called a v-sequence of K, if {a;} satisfies properties (i)-(iii). The 7-
spectrum of the complete graph K, is then given in terms of y-sequences
of K.

Theorem 4.2 For each integer n > 2,

if n is odd, then

L%)
spec(K,) = Z 2ia; : {a;} is a y-sequence of K, 2,
i=1
if n is even, then
13)
spec(Ky) = 2(22' —1)o; : {04} is a y-sequence of Ky
i=1

The following is an immediate consequence of Theorem 4.2.

Corollary 4.3 Ifn > 3 is odd, then the value of every v-labeling of K,
s even.
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As an illustration of Theorem 4.2, we see that

spec(Ky) = {Saz+a; : 62>2as>a1+22>3}
= {10,13,14,16,17,18,19,20,21,22};

spec(Ks) = {4a2+2a; : 102 a2y +22>4}
E[20,56) — {22}.

Notice that there are integers in [valmin(K»), Valmax(Kn)] for which
there is no 7-labeling with that value. For example, if s € [valpin(K,) +
1, valmin(Kyn) +n — 2], then there is no +-labeling of K,, whose value is s.
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