The γ -Spectrum of a Graph

C. M. da Fonseca 1

Departamento de Matemática Universidade de Coimbra 3001-454 Coimbra, Portugal

Varaporn Saenpholphat ²
Department of Mathematics
Srinakharinwirot University,
Sukhumvit Soi 23, Bangkok, 10110, Thailand

Ping Zhang

Department of Mathematics Western Michigan University Kalamazoo, MI 49008, USA

ABSTRACT

Let G be a graph of order n and size m. A γ -labeling of G is a one-to-one function $f: V(G) \to \{0, 1, 2, ..., m\}$ that induces a labeling $f': E(G) \to \{1, 2, ..., m\}$ of the edges of G defined by f'(e) = |f(u) - f(v)| for each edge e = uv of G. The value of a γ -labeling f is defined as

$$\operatorname{val}(f) = \sum_{e \in E(G)} f'(e).$$

The γ -spectrum of a graph G is defined as

$$\operatorname{spec}(G) = {\operatorname{val}(f) : f \text{ is a } \gamma\text{-labeling of } G}.$$

The γ -spectra of paths, cycles, and complete graphs are determined.

Key Words: γ -labeling, γ -spectrum. AMS Subject Classification: 05C78.

¹Research supported by CMUC - Centro de Matemática da Universidade de Coimbra.

²Research supported in part by Srinakharinwirot University, the Thailand Research Fund and Commission on Higher Education, Thailand (MRG 5080075).

1 Introduction

For a graph G of order n and size m, a γ -labeling of G is defined in [1] as a one-to-one function $f: V(G) \to \{0, 1, 2, ..., m\}$ that induces a labeling $f': E(G) \to \{1, 2, ..., m\}$ of the edges of G defined by

$$f'(e) = |f(u) - f(v)|$$
 for each edge $e = uv$ of G .

Therefore, a graph G of order n and size m has a γ -labeling if and only if $m \geq n-1$. In particular, every connected graph has a γ -labeling. If the induced edge-labeling f' of a γ -labeling f is also one-to-one, then f is a graceful labeling, one of the most studied graph labelings. An extensive survey of graph labelings as well as their applications has been given by Gallian [4].

In [1] each γ -labeling f of a graph G of order n and size m is assigned a value denoted by val(f) and defined by

$$\operatorname{val}(f) = \sum_{e \in E(G)} f'(e).$$

Since f is a one-to-one function from V(G) to $\{0,1,2,\ldots,m\}$, it follows that $f'(e) \geq 1$ for each edge e in G and so

$$val(f) \ge m. \tag{1}$$

In [1] the maximum value and the minimum value of a γ -labeling of a graph G are defined, respectively, as

$$\operatorname{val}_{\max}(G) = \max\{\operatorname{val}(f) : f \text{ is a } \gamma\text{-labeling of } G\}$$

 $\operatorname{val}_{\min}(G) = \min\{\operatorname{val}(f) : f \text{ is a } \gamma\text{-labeling of } G\}.$

A γ -labeling g of G is a γ -max labeling if $val(g) = val_{max}(G)$ or a γ -min labeling if $val(g) = val_{min}(G)$. These concepts were introduced and studied in [1] and [2]. As an illustration, Figure 1 shows nine γ -labelings f_1, f_2, \ldots, f_9 of the path P_5 of order 5, where the vertex labels are shown above each vertex and the induced edge labels are shown below each edge. The value of each γ -labeling is shown in Figure 1 as well. Since $val(f_1) = 4$ for the γ -labeling f_1 of f_2 shown in Figure 1 and the size of f_2 is 4, it follows by (1) that f_1 is a f_2 -min labeling of f_2 . As we will see later, the f_2 -labeling f_2 shown in Figure 1 is a f_2 -max labeling.

For a γ -labeling f of a graph G of size m, the complementary labeling $\overline{f}: V(G) \to \{0, 1, 2, ..., m\}$ of f is defined in [1] by

$$\overline{f}(v) = m - f(v) \text{ for } v \in V(G).$$

Figure 1: Some γ -labelings of P_5

Not only is \overline{f} a γ -labeling of G as well but $\operatorname{val}(\overline{f}) = \operatorname{val}(f)$. Therefore, a γ -labeling f is a γ -max labeling (γ -min labeling) of G if and only if \overline{f} is a γ -max labeling (γ -min labeling). Figure 2 shows the complementary labelings of the γ -min labeling f_1 and the γ -max labeling f_2 of F_3 as well as the value of each of these two γ -labelings.

Figure 2: Complementary labelings of γ -labelings

The γ -spectrum of a graph G is defined in [1] as

$$\operatorname{spec}(G) = {\operatorname{val}(f) : f \text{ is a } \gamma\text{-labeling of } G}.$$

Thus, $\{4,5,6,7,8,9,10,11\}\subseteq \operatorname{spec}(P_5)$. (In fact, $\{4,5,6,7,8,9,10,11\}=\operatorname{spec}(P_5)$.) Observe that $\operatorname{val}_{\min}(G),\operatorname{val}_{\max}(G)\in\operatorname{spec}(G)$ for every graph G. For integers a and b with $a\leq b$, let

$$[a,b] = \{a, a+1, \ldots, b\}$$

be the set of integers between a and b. Thus for every graph G,

$$\operatorname{spec}(G) \subseteq [\operatorname{val}_{\min}(G), \operatorname{val}_{\max}(G)].$$

The spectrum of a star $K_{1,t}$, where $t \geq 2$, was determined in [1], which we state next.

Theorem 1.1 ([1]) For each integer $t \geq 2$,

$$\operatorname{spec}(K_{1,t}) = \left\{ \binom{t+1-k}{2} + \binom{k+1}{2} : \ 0 \le k \le t \right\}.$$

In this work, we determine the γ -spectra of some well-known classes of graphs, namely paths, cycles, and complete graphs. We refer to the book [3] for graph theory notation and terminology not described in this paper.

2 The γ -spectrum of a path

For each integer $n \geq 2$, let $P_n: v_1, v_2, \ldots, v_n$ be the path of order n. The maximum and minimum values of a γ -labeling of P_n were determined in [1].

Theorem 2.1 ([1]) For any path P_n of order $n \geq 2$,

$$\operatorname{val}_{\min}(P_n) = n - 1$$
 and $\operatorname{val}_{\max}(P_n) = \left\lfloor \frac{n^2 - 2}{2} \right\rfloor$.

The γ -labeling f_{\min} of P_n defined by $f_{\min}(v_i) = i-1$ $(1 \le i \le n)$ has $\operatorname{val}(f_{\min}) = n-1$ and so f_{\min} is a γ -min labeling of P_n . In fact, f_{\min} and its complementary labeling \overline{f}_{\min} are the only γ -min labelings of P_n for each integer $n \ge 2$. On the other hand, this is not the case for the γ -max labelings of P_n . A γ -max labeling of P_n was given in [1] for each integer n as follows: For an odd integer n = 2k+1, a γ -max labeling f_o of P_n is defined by

$$f_o(v_i) = \left\{ egin{array}{ll} k + rac{i+1}{2} & ext{if i is odd and $i < n$} \ k & ext{if $i = n$} \ rac{i-2}{2} & ext{if i is even.} \end{array}
ight.$$

For an even integer n = 2k, a γ -max labeling f_e of P_n is defined by

$$f_c(v_i) = \begin{cases} k + \frac{i-1}{2} & \text{if } i \text{ is odd} \\ \frac{i-2}{2} & \text{if } i \text{ is even.} \end{cases}$$

There are other γ -max labelings for P_n . For example, for an odd integer n = 2k + 1, define a γ -labeling g_0 of P_n by

$$\begin{array}{ll} g_o(v_{k+1-i}) & = & \left\{ \begin{array}{ll} n-1-i & \text{if i is odd and } 1 \leq i \leq k \\ i-1 & \text{if i is even and } 2 \leq i \leq k \end{array} \right. \\ g_o(v_{k+1}) & = & 0 \\ g_o(v_{k+1+i}) & = & \left\{ \begin{array}{ll} n-i & \text{if i is odd} \\ i & \text{if i is even.} \end{array} \right. \end{array}$$

Then g_o is a γ -max labeling of P_n for each odd integer $n \geq 3$. For an even integer n = 2k, define a γ -labeling g_e of P_n by

$$g_e(v_{k+1-i}) = \begin{cases} i-1 & \text{if } i \text{ is odd and } 1 \leq i \leq k \\ n-i & \text{if } i \text{ is even and } 2 \leq i \leq k \end{cases}$$

$$g_e(v_{k+i}) = \begin{cases} n-i & \text{if } i \text{ is odd and } 1 \leq i \leq k \\ i-1 & \text{if } i \text{ is even and } 2 \leq i \leq k. \end{cases}$$

Then g_e is a γ -max labeling of P_n for each even integer $n \geq 2$. Figure 3 shows the γ -max labelings g_o and g_e for P_9 and P_8 , respectively.

Figure 3: The γ -max labelings g_o and g_e for P_9 and P_8 , respectively

In order to determine the γ -spectrum of the path P_n of order $n \geq 2$, we first establish some additional definitions and notation. For a γ -labeling f of P_n and each integer $j \in \{2, 3, \ldots, n-1\}$, a j-right arrangement $R_j(f)$ of f is defined as a γ -labeling of P_n for which

$$R_j(f)(v_\ell) = \begin{cases} f(v_\ell) & \text{if } 1 \le \ell \le j-1 \\ f(v_{\ell+1}) & \text{if } j \le \ell \le n-1 \\ f(v_j) & \text{if } \ell = n. \end{cases}$$

That is, if f is a γ -labeling of P_n : v_1, v_2, \ldots, v_n such that the labels are assigned by f to the vertices of P_n are in the order

$$(f(v_1), f(v_2), \ldots, f(v_{j-1}), f(v_j), f(v_{j+1}), \ldots, f(v_n)),$$

then $R_j(f)$ is the γ -labeling of P_n for which the labels are assigned by $R_j(f)$ to the vertices of P_n are in the order

$$(f(v_1), f(v_2), \ldots, f(v_{j-1}), f(v_{j+1}), \ldots, f(v_n), f(v_j))$$
.

Analogously, a j-left arrangement $L_j(f)$ of f is defined as

$$L_j(f)(v_\ell) = \left\{ egin{array}{ll} f(v_j) & ext{if $\ell=1$} \\ f(v_{\ell-1}) & ext{if $2 \leq \ell \leq j$} \\ f(v_\ell) & ext{if $j+1 \leq \ell \leq n$.} \end{array}
ight.$$

We are now prepared to present the main result of this section.

Theorem 2.2 For each integer $n \geq 2$,

$$\operatorname{spec}(P_n) = [\operatorname{val}_{\min}(P_n), \operatorname{val}_{\max}(P_n)] = \left[n-1, \left\lfloor \frac{n^2-2}{2} \right\rfloor \right].$$

Proof. We show, for each integer

$$s \in [\operatorname{val}_{\min}(P_n), \operatorname{val}_{\max}(P_n)],$$

that there exists a γ -labeling of P_n whose value is s. We consider two cases, according to whether n is even or n is odd.

Case 1. n is even. Define the sets Γ_k^n for $0 \le k \le \frac{n-2}{2}$ by

$$\Gamma_k^n = \left\{ \begin{array}{ll} [0, \ n-1] & \text{if } k=0 \\ [0, \ n-1] - \{1, 2, \dots, k, n-1-k, \dots, n-2\} & \text{if } 1 \le k \le \frac{n-2}{2}. \end{array} \right.$$

Then

$$|\Gamma_k^n| = n - 2k$$

for $0 \le k \le \frac{n-2}{2}$. Suppose that

$$\Gamma_k^n = \{a_1, a_2, \ldots, a_{n-2k}\}$$

such that $a_1 < a_2 < \cdots < a_{n-2k}$. Let

$$\Delta_{2k}^n = 2k(n-k-1) \text{ for } 0 \le k \le \frac{n-2}{2}$$

 $\Delta_n^n = \Delta_{n-2}^n + 1.$

We now define a γ -labeling f^k , where $0 \le k \le \frac{n-2}{2}$, of P_n by

$$f^k(v_{k+1-i}) = \begin{cases} n-i-1 & \text{if } i \text{ is odd and } 1 \leq i \leq k \\ i & \text{if } i \text{ is even and } 2 \leq i \leq k \end{cases}$$

$$f^k(v_{k+i}) = a_i \quad \text{if } 1 \leq i \leq n-2k$$

$$f^k(v_{n-k+i}) = \begin{cases} i & \text{if } i \text{ is odd and } 1 \leq i \leq k \\ n-i-1 & \text{if } i \text{ is even and } 2 \leq i \leq k. \end{cases}$$

Observe that

$$f^k(v) \in \begin{cases} [0, n-1] - \Gamma_k^n & \text{if } v \in V(P_n) - \{v_{k+1}, v_{k+2}, \dots, v_{n-k}\} \\ \Gamma_k^n & \text{if } v \in \{v_{k+1}, v_{k+2}, \dots, v_{n-k}\}. \end{cases}$$

Furthermore,

$$\operatorname{val}(f^0) = n - 1$$

and for $1 \le k \le \frac{n-2}{2}$

$$val(f^k) = n - 1 + 2(n - 2) + \dots + 2(n - 2k) = n - 1 + \Delta_{2k}^n.$$

For each integer $s \in \left[n-1, \frac{n^2-2}{2}\right]$, we construct a γ -labeling whose value is s by the following procedure:

1. find $k \in \left[0, \frac{n-2}{2}\right]$ such that

$$s-n+1\in \left[\Delta^n_{2k},\quad \Delta^n_{2(k+1)}-1\right];$$

2. find a smallest nonnegative integer t such that t = s - n + 1 if k = 0 and

$$t \equiv s - n + 1 \pmod{\Delta_{2k}^n}$$
 otherwise.

- 3. if t = 0, then f^k is the solution; else
- 4. if k is even, then
- **4.1.** if $1 \le t \le n-2k-2$, then find $\ell \in [k+2, n-k-1]$ such that

$$f^k(v_\ell) = t + k;$$

the solution is $L_{\ell}(f^k)$; else

- **4.2.** if $n-2k-1 \le t \le 2n-4k-5$, then
- **4.2.1** set $\tilde{f}^k = L_{n-k-1}(f^k)$;
- **4.2.2** find $\ell \in [k+2, n-k-1]$ such that

$$\tilde{f}^k(v_\ell) = 2n - 3k - t - 4;$$

the solution is $L_{\ell}(\tilde{f}^k)$;

5. if k is odd, then proceed with 4. and replace L by R.

Observe that if k is even, then $f^k(v_1) = k$. Thus, for t and ℓ as described in 4.1., we have

$$val(L_{\ell}(f^k)) = val(f^k) + (t + k - k) = s.$$

In the condition 4.2.,

$$\operatorname{val}(\tilde{f}^k) = \operatorname{val}(f^k) + (n-k-2-k)$$

and

$$\operatorname{val}(L_{\ell}(\tilde{f}^{k})) = \operatorname{val}(\tilde{f}^{k}) + [n - k - 2 - (2n - 3k - t - 4)] = s.$$

Case 2. n is odd. Define the sets Γ_k^n for $0 \le k \le \frac{n-3}{2}$ by

$$\Gamma_k^n = \left\{ \begin{array}{ll} [0,\ n-1] & \text{if } k=0 \\ [0,\ n-1] - \{1,2\} & \text{if } k=1 \\ [0,\ n-1] - \{1,\ldots,k,n-k-2,\ldots,n-3\} & \text{if } k \text{ is and even} \\ 2 \leq k \leq \frac{n-3}{2} \\ [0,\ n-1] - \{1,\ldots,k+1,n-k-1,\ldots,n-3\} & \text{if } k \text{ is odd and} \\ 3 \leq k \leq \frac{n-3}{2}. \end{array} \right.$$

Thus

$$|\Gamma_0^n|=n$$
 and $|\Gamma_k^n|=n-2k$

for $1 \le k \le \frac{n-3}{2}$. We now define the γ -labeling f^0 of P_n by

$$f^0(v_i) = i - 1$$
 for $1 \le i \le n$

and the γ -labeling g^k $(0 \le k \le \frac{n-3}{2})$ of P_n as follows:

$$g^k(v_{k+1}) = n-2$$

 $g^k(v_{k+1+i}) = a_i \quad (1 \le i \le n-2k-1)$

where

$$\Gamma_k^n - \{n-2\} = \{a_1, a_2, \dots, a_{n-2k-1}\}$$

with $a_1 < a_2 < \dots < a_{n-2k-1}$ and

$$g^{k}(v_{k+1-i}) = g^{k}(v_{n-k+i}) - 1$$

$$= \begin{cases} i & \text{if } i \text{ is odd and } 1 \leq i \leq k \\ n-i-2 & \text{if } i \text{ is even and } 2 \leq i \leq k. \end{cases}$$

Furthermore, define

$$\Delta^n_{2k} = 3n - 8 + 2k(n-k-4) \text{ for } 0 \le k \le \frac{n-5}{2}$$

and

$$\Delta_{n-3}^n = \Delta_{n-5}^n + 1.$$

Then
$$\operatorname{val}(f^0) = n - 1$$
, $\operatorname{val}(g^0) = 2n - 3$, and for $0 \le k \le \frac{n-5}{2}$,
$$\operatorname{val}(g^{k+1}) = \operatorname{val}(g^0) + 2(n-3) + 2(n-5) + \dots + 2(n-2k-3)$$

$$= n - 1 + \Delta_{2k}^n.$$

For each integer $s \in \left[n-1, \frac{n^2-3}{2}\right]$, we construct a γ -labeling of P_n whose value is s by the following procedure:

- 1. if $s n + 1 \in [0, 3n 9]$, then
- **1.1.** if s n + 1 = 0, then the solution is f^0 ;
- **1.2.** if $s n + 1 \in [1, n 2]$, then the solution is $L_{s-n+2}(f^0)$;
- **1.3.** if $s n + 1 \in [n 1, 2n 5]$, then solution is $L_{3n s 3}(g^0)$;
- **1.4.** if $s n + 1 \in [2n 4, 3n 9]$, then
- **1.4.1.** set $\tilde{g} = L_3(g^0)$;
- **1.4.2.** find $\ell \in [4, n-1]$ such that

$$\tilde{g}(v_{\ell}) = s - 3n + 7;$$

the solution is $L_{\ell}(\tilde{g})$; else

- 2. find $k \in \left[0, \frac{n-5}{2}\right]$ such that $s-n+1 \in \left[\Delta_{2k}^n, \Delta_{2(k+1)}^n 1\right]$;
- 3. find a smallest nonnegative t such that

$$s-n+1 \equiv t \pmod{\Delta_{2k}^n}$$
;

[Note that $\Delta_0^n > 0$ if k = 0.]

- **4.** if t = 0, then g^{k+1} is the solution; else
- 5. if k is even, then
- **5.1.** if $1 \le t \le n 2k 5$, then the solution is $R_{k+t+3}(g^{k+1})$; else
- **5.2.** if $n-2k-4 \le t \le 2n-4k-11$, then
- **5.2.1** set $\tilde{g}^k = R_{n-k-2}(g^{k+1});$
- **5.2.2** find $\ell \in [k+4, n-k-3]$, such that

$$\tilde{g}^k(v_\ell) = 2n - 3k - t - 8;$$

the solution is $R_{\ell}(\tilde{g}^k)$; else

6. if k is odd, then

6.1. if
$$1 \le t \le n - 2k - 5$$
, then the solution is $L_{n-k-t-1}(g^{k+1})$; else

6.2. if
$$n-2k-4 \le t \le 2n-4k-11$$
, then

6.2.1 set
$$\tilde{g}^k = L_{k+4}(g^{k+1})$$
;

6.2.2 find $\ell \in [k+5, n-k-2]$ such that $\tilde{g}^k(v_\ell) = 3k-n+t+7$; the solution is $L_\ell(\tilde{g}^k)$.

It can be verified that

$$val(L_{s-n+2}(f^0)) = val(f^0) + s - n + 1 = s$$

and

$$val(L_{3n-s-3}(g^0)) = val(g^0) + n - 2 - (3n - s - 5) = s.$$

Also,

$$val(\tilde{g}) = val(g^0) + n - 2 - 1 = 3n - 6$$

and

$$\operatorname{val}(L_{\ell}(\tilde{g})) = \operatorname{val}(\tilde{g}) + (s - 3n + 7) - 1 = s$$

for ℓ as described in 1.4.2.

Notice that in 5.,

$$val(R_{k+t+3}(g^{k+1})) = val(g^{k+1}) + t + k + 2 - (k+2) = s$$

and

$$val(R_{\ell}(\tilde{g}^{k})) = val(\tilde{g}^{k}) + n - k - 3 - (2n - 3k - t - 8)$$

$$= (val(g^{k+1}) + n - k - 3 - (k+2)) + (2k + t - n + 5)$$

$$= s.$$

These equalities still hold for $\operatorname{val}(L_{\ell}(\tilde{g}^k))$, where k and t are described in **6.2.** Finally, we observe that

$$val(L_{n-k-t-2}(g^{k+1})) = val(g^{k+1}) + n - k - 3 - (n-k-t-3) = s,$$

for t as described in **6.1**.

We now illustrate the proof of Theorem 2.2. The table below shows all variables in the proof of Theorem 2.2 that we use to find $\operatorname{spec}(P_8)$.

	$s = \text{val}(f) \text{ of } P_8 \in \left[n - 1, \frac{n^2 - 2}{2}\right] = [7, 31]$													
k =	= 0, s - n + 1	ΕIΛ	$\binom{n}{0}, \Delta_{2(1)}^n - 1$				2	. (-)	1					
8	s-n+1	1 1	labeling									TI (7.45		
7			ٽـــــــــــــــــــــــــــــــــــــ		υ ₂	<i>v</i> ₃	1/4	v ₅	v ₆	υ7	บล	val(f)		
8	0	0	f ⁰	: 0	1	2	3	4		6	7	7		
9	1 2	1 2	$L_2(f^0)$: 1	0	2	3	4	5	6	7	8		
10	3 -	$\frac{2}{3}$	$L_3(f^0)$ $L_4(f^0)$: 2	0	$\frac{1}{1}$	3	4	5_	6	7	9		
11	1 4	4	$\frac{L_4(f)}{L_5(f^0)}$: 4	0	1	2	3	5	6	7	10		
12	5	5	$L_6(f^0)$: 5	- 0	1	$\frac{2}{2}$	3	4	- 6	7	11		
13	6	6	$L_7(f^0)$: 6	0	1	2	3	4	5	7	13		
=	 	+	$\tilde{f^0} = L_7(f$		0	1	2	3	4	5	7	11 -10		
14	7	7	$\frac{J - L_7(J)}{L_7(\tilde{f}^0)}$: 5	6.	-	1	$\frac{3}{2}$	3	4	7	14		
15	8	8	$L_6(\tilde{f^0})$: 4	6	-	$\frac{1}{1}$	$\frac{2}{2}$	3	5	7	15		
16	9	9	$L_5(f^0)$: 3	6	-	1	2	- 4	5	7	16		
17	10	10	$L_4(f^0)$:2	- 6	-	- î	3	$\frac{-\frac{7}{4}}{4}$	5	7	17		
18	11	11	$L_3(\tilde{f^0})$:1	- 6	-	2	3	4	5	7	18		
$k = 1, s - n + 1 \in \left[\Delta_{2(1)}^n, \Delta_{2(2)}^n - 1 \right] = [12, 19]$														
8	s-n+1	t	labeling	:v ₁	บว	v_3	v ₄	v_5	v_6	υ7	v ₈	$\operatorname{val}(f)$		
19	12	0	f^1	: 6	0	2	3	4	5	7	1	19		
20	13	1	$R_3(f^1)$: 6	0	3	4		7	1_	2	20		
21	14 15	3	$R_4(f^1)$: 6	0	2	4	5	7	1	3_	21		
23	16	4	$\frac{R_5(f^1)}{R_6(f^1)}$: 6 : 6	0	2	3	5	7	1	4_	22		
	10							_			5	23		
			$f^1 = R_6(f^1)$	-	0_	2	3	4	7	1	5			
24	17	5	$R_5(f^1)$: 6	0	2	3	7	_1_	5	4	24		
25	18	6	$R_4(f^1)$: 6	0	2	4	7	1	5	3	25		
26	19	7	$R_3(f^1)$: 6	0	3	4	7	1	5	2	26		
k ==	2, s-n+1	$\in \Delta_2^n$	$(2), \Delta_{2(3)}^n - 1$	= [2	20, 23]									
s	s-n+1		labeling	:ບ1	v ₂	v_3	U 4	υδ	v_6	U7	บอ	val(f)		
27	20	0	f^2	: 2	6	0	3	4	7	1	5	27		
28	21	1	$L_4(f^2)$: 3	2	6	0	4	7	1	5	28		
29	22	2	$L_5(f^2)$: 4	2	6	0	3	7	1	5	29		
			$\bar{f^2} = L_5(f^2$): 4	2	6	0	3	7	1	5			
30	23	3	$L_5(f^2)$: 3	4	2	6	0	7	1	5	30		
k =	$3, s-n+1 \in$	$\in [\Delta_3^n]$	$\Delta_n^n - 1] = [2$	4, 24]										
s	s-n+1	t.	labeling	:v1	v_2	υs	υ4	v ₅	υ ₆	บๆ	บล	val(f)		
31	24	Ü	f^3	: 4	2	6	0	7	1	5	3	31		

The table below shows all variables that we use to find $\operatorname{spec}(P_9)$.

39	s	8	38		37	36	35	g	۶- ۱۱	34	33	32		31	3	29	28	27	6	* =	26	25	24	23	22		21	8	<u>19</u>	æ	5	5		딞	=	ಷ	12	=	5	9	∞	٩	П	
31	s-n+1	2,s-n+1	30		29	28	27	s-n+1	1, s-n+1	26	25	24		23	22	21	20	19	s-n+1	0,s-n+1	18	17	16	15	14		13	12	11	10	9	8		7	6	51	4	3	2	-	0	s-n+1		
0		€ △	з		2		0		€ Δ	7	6	Ct		4	ပ	2	니	٥		$\in \Delta$											-													
g^3 : 3		$\binom{n}{2(2)}, \binom{n}{2(3)} - 1 =$		$g^1 = L_5(g^2)$: 3	$L_5(g^2)$: 3			beling	$\left[\frac{n}{2(1)}, \Delta_{2(2)}^{n} - 1 \right] =$	$R_4(g^0)$: 1	$R_5(g^0)$: 1	$R_6(g^0)$:	$g^0 = R_7(g^1)$: 1	$R_7(g^1)$: 1	$R_{6}(g^1):1$		_	g^1 : 1	labeling :v1	$\binom{n}{0}, \Delta^{n}_{2(1)} - 1 = [1]$	$L_8(ilde{g})$: 6	l			$L_4(\tilde{g})$:	~]						La(q0) : 6	ď		$L_7(f^0)$: 6	3	ر ا	ر ان	کوا ا	٥	f ⁰ ; 0	labeling :v1	9-n+	s = val(f) of
5	υ2	$\Delta_{2(2)}^n$	3	51	5	Ç1	_	ย	[27, 30]	7	7	7	7	7	7	7	7	7	υ2	19, 26]	-	_	H	1	-	7	7	7	7	7	7	7	╢	۰	۰	۰	۰	۰	•	۰	_	υ2	1 € 0	<i>P</i> ₉ ∈
-	ขู), Δ,	51	-	-	-	7	ชู	ے	0	٥	0	0	0	0	0	٥	0	υg		7	7	7	7	7	۰	٥	ᅱ	ᅵ	9	0		-	-	-	-	ᆈ	니	-	2	2	บร	3n -	n - 1
7	4	-3 -	1	7	7	7	9	ų.		4	ω	3	ω	ω	3	ω	4	ω	v4			o	0	٥	9	2	2	-	-	ᆈ	-	-	S	2	ر اد	2	2	2	ယ	اس	ω	υ ₄	9 =	1, 72-3
0	208]=[7		0	0	ω	2		57	G	4	4	4	4	5	GT.	4	v ₅		N	2	2	2	ω	ω	ω	۵	N	20	2	2	ω∥	ω	ယ	ω	ယ	4	4	_ _	4	υ	0, 18	io
ω	80	31, 31	0	4	4	w	4	θυ		∞	∞	æ	5	57	6	6	6	51	υ _θ		ω	ω	ω	4	4	4	4	4	4	۵	ω	ω .	$\ $ _	4	_	4	5	5	or	م. ا	cq.	υ ₆		[8, 39]
2	ę,		œ	∞	00	œ	l	υ7		2	2	2	8	∞	8	œ	æ	6	υ7		4	4	5.	5.	στ	51	GT.	51	57	57	4	4	5	5	5	6	၈	6	6	ြ	6	υ7		
6	8		2	2	2	2	ы	80		6	6	6	2	N	2	2	2	8	9u		5	6	6	6	6	6	6	6	6	6	6	٦,	۵	6	7	7	٦	7	7	٦	7	บ ₈		
4	υg		6	6	6	6	6	ยูง		۵	4	CT.	6	6	G	4	3	2	9 19			œ	00	œ	8	œ	∞	00	œ	œ	œ	8			8	œ		œ	∞	8	œ	υρ		
39	val(f)		38		37	36	35	$\operatorname{val}(f)$		34	33	32		31	30	29	28	27	val(f)		26	25	24	23	22		21	20	19	18	17	16		15	14	13	12	E	ö	9	8	val(f)		

If n=8 and s=30, then k=2 (since $23 \in [20,23]$) and t=3. Applying 4.1. and 4.2., we obtain the γ -labelings f^2 and \tilde{f}^2 of P_8 as shown in Figure 4. Then the solution is $L_5(\tilde{f}^2)$, which is also shown in Figure 4, and $\operatorname{val}(L_5(\tilde{f}^2))=30$.

Figure 4: The γ -labelings f^2 , \tilde{f}^2 , and $L_5(\tilde{f}^2)$ of P_8

If n=9 and s=32, then k=0 (since $24 \in [19,26]$) and t=5. Applying 5.1. and 5.2., we obtain the γ -labelings g^1 and \tilde{g}^0 of P_9 as shown in Figure 5. Then the solution is $R_6(\tilde{g}^0)$, which is also shown in Figure 5, and val $(R_6(\tilde{g}^0))=32$.

Figure 5: The γ -labelings g^1 , \tilde{g}^0 , and $R_6(\tilde{g}^0)$ of P_9

3 The γ -spectrum of a cycle

For an integer $n \geq 3$, let C_n : $v_1, v_2, \ldots, v_n, v_1$ be the cycle of order n. The maximum and minimum values of a γ -labeling of C_n were determined in [1].

Theorem 3.1 ([1]) For every integer $n \geq 3$,

$$\operatorname{val}_{\min}(C_n) = 2(n-1)$$

$$\operatorname{val}_{\max}(C_n) = \begin{cases} \frac{(n-1)(n+3)}{2} & \text{if } n \text{ is odd} \\ \frac{n(n+2)}{2} & \text{if } n \text{ is even.} \end{cases}$$

In order to determine the γ -spectrum of C_n for each integer $n \geq 3$, we first establish two lemmas. The proof of the first lemma is straightforward and is therefore omitted.

Lemma 3.2 Let f be a γ -labeling of a graph G. If $P_k : u_1, u_2, \dots, u_k$ is a path of order k in G such that $f(u_i) < f(u_{i+1})$ for $1 \le i \le k-1$, then

$$val(f) = [f(u_k) - f(u_1)] + \sum_{e \in E(G) - E(P)} f'(e).$$

Lemma 3.3 For every γ -labeling f of C_n , where $n \geq 3$, the value val(f) of f is even.

Proof. Let f be a γ -labeling of C_n . If 0 is in the sequence of the images of f, we may assume, without loss of generality, that $f(v_1) = 0$; otherwise $f(v_1) = 1$. Let

$$S_1(f) = (f(v_{i_1}), f(v_{i_1+1}), \dots, f(v_{i_2}))$$

$$S_2(f) = (f(v_{i_2}), f(v_{i_2+1}), \dots, f(v_{i_3}))$$

$$\vdots$$

$$S_{k-1}(f) = (f(v_{i_{k-1}}), f(v_{i_{k-1}+1}), \dots, f(v_{i_k}))$$

$$S_k(f) = (f(v_{i_k}), f(v_{i_k+1}), \dots, f(v_{i_{k+1}}))$$

be k maximal monotone sequences of the vertices of C_n , where $2 \le k \le n$ and

$$1 = i_{k+1} = i_1 < i_2 < \dots < i_k.$$

Since $f(v_1) = 0$ or $f(v_1) = 1$ if 0 is not an image of f, it follows that $S_1(f)$ is an increasing sequence; $S_2(f)$ is decreasing and so on. (Notice that k is

always even.) By Lemma 3.2,

$$val(f) = [f(v_{i_2}) - f(v_{i_1})] + [f(v_{i_2}) - f(v_{i_3})] + [f(v_{i_4}) - f(v_{i_3})] + \cdots + [f(v_{i_k}) - f(v_{i_{k-1}})] + [f(v_{i_k}) - f(v_{i_1})] = 2[f(v_{i_2}) + f(v_{i_4}) + \cdots + f(v_{i_k})] -2[f(v_{i_1}) + f(v_{i_3}) + \cdots + f(v_{i_{k-1}})],$$

which is even, as desired.

For even integers a and b with a < b, let

$$E[a,b] = \{a, a+2, a+4, \cdots, b\}$$

be the set of all even integers i for which $a \le i \le b$. We are now prepared to present the main result of this section.

Theorem 3.4 For each integer $n \geq 3$,

$$\operatorname{spec}(C_n) = E\left[\operatorname{val}_{\min}(C_n), \operatorname{val}_{\max}(C_n)\right].$$

Proof. By Lemma 3.3,

$$\operatorname{spec}(C_n) \subseteq E\left[\operatorname{val}_{\min}(C_n), \operatorname{val}_{\max}(C_n)\right].$$

Next, we show that for each even integer

$$s \in E\left[\operatorname{val}_{\min}(C_n), \operatorname{val}_{\max}(C_n)\right],$$

there exists a γ -labeling of C_n whose value is s. Certainly, the statement is true if $s = \operatorname{val}_{\min}(C_n)$ or $s = \operatorname{val}_{\max}(C_n)$.

For $s = \operatorname{val}_{\min}(C_n) + 2$, let $C_n : u_1, u_2, \dots, u_n, u_1$ and define a γ -labeling h of C_n by

$$h(u_i) = \begin{cases} 0 & \text{if } i = 1\\ i & \text{if } 2 \le i \le n. \end{cases}$$

Then

$$val(h) = [h(u_n) - h(u_1)] + [h(u_n) - h(u_1)] = 2n = val_{min}(C_n) + 2.$$

We now assume that

$$s \in E[\operatorname{val}_{\min}(C_n) + 4, \operatorname{val}_{\max}(C_n) - 2].$$

There exists an integer k with $0 \le k \le \left\lceil \frac{n-4}{2} \right\rceil$ such that

$$s \in [\Delta_k^n + 2, \Delta_{k+1}^n],$$

where

$$\Delta_k^n = 2[n + k(n-k-1)].$$

Label the vertices of C_n as

$$C_n: x_1, z_1, z_2, \ldots, z_{n-2k-4}, y_1, x_2, y_2, x_3, y_3, \ldots, x_{k+1}, y_{k+1}, x_{k+2}, y_{k+2}, x_1$$

Define a γ -labeling f of C_n by

$$\begin{cases} f(x_i) = i - 1 & \text{if } 1 \le i \le k + 2 \\ f(y_i) = n - i + 1 & \text{if } 1 \le i \le k + 1 \\ f(y_i) = (k + 2) + \left(\frac{s}{2} - n\right) - k(n - k - 1) - 1 & \text{if } i = k + 2 \\ f(z_i) \in [2, n - 1] - W & \text{if } 1 \le i \le n - 2k - 4 \end{cases}$$

where

$$W = \{f(x_1), f(y_1), f(x_2), f(y_2), \dots, f(x_{k+2}), f(y_{k+2})\}\$$

and

$$f(z_1) < f(z_2) < \cdots < f(z_{n-2k-4}).$$

Then

$$val(f) = \sum_{i=1}^{k+1} (f(y_i) - f(x_i)) + \sum_{i=1}^{k+1} (f(x_{i+1}) - f(y_i)) + f(y_{k+2}) - f(x_{k+2}) + f(y_{k+2}) - f(x_1)$$

$$= [n+n-2+n-4+\cdots+n-2k] + [n-1+n-3+\cdots+n-(2k+1)] + 2[(k+2) + (\frac{s}{2}-n) - k(n-k-1) - 1] - (k+1) - 0$$

$$= (2k+2)n - \frac{(2k+1)(2k+2)}{2} + 2[(k+2) + (\frac{s}{2}-n) - k(n-k-1) - 1] - (k+1) = s,$$

as desired.

We now illustrate the γ -labeling f of C_n described in the proof of Theorem 3.4. If n=8 and $s=32 \in \operatorname{spec}(C_8)=E[18,\ 38]$, then k=1. Let

$$C_8: x_1, z_1, z_2, y_1, x_2, y_2, x_3, y_3, x_1.$$

The γ -labeling f of C_8 is shown in Figure 6 with val(f) = 32.

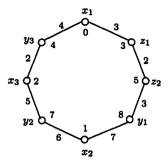


Figure 6: The γ -labeling f of C_8 with val(f) = 32

4 The γ -spectrum of a complete graph

For each integer $n \geq 2$, let K_n be a complete graph of order n with

$$V(K_n) = \{v_1, v_2, \ldots, v_n\}.$$

The maximum and minimum values of a γ -labeling of K_n were determined in [1].

Theorem 4.1 ([1]) For every integer $n \geq 2$,

$$\begin{aligned} \mathrm{val}_{\min}(K_n) &= \binom{n+1}{3} \\ \mathrm{val}_{\max}(K_n) &= \begin{cases} \frac{n(3n^3 - 5n^2 + 6n - 4)}{24} & \text{if n is even} \\ \frac{(n^2 - 1)(3n^2 - 5n + 6)}{24} & \text{if n is odd.} \end{cases}$$

The minimum value $\operatorname{val}_{\min}(K_n)$ of a γ -labeling of K_n is attained by the γ -labeling f_{ℓ} defined by

$$f_{\ell}(v_i) = \ell + i - 1,$$

where $\ell \in \left[0, \frac{n(n-3)}{2}\right]$, while the maximum value $\operatorname{val}_{\max}(K_n)$ of a γ -labeling of K_n is attained by a γ -labeling of K_n that assigns the labels in the set

$$\left\{0,1,\ldots,\left\lceil\frac{n}{2}\right\rceil-1,\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor+1,\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor+2,\ldots,\binom{n}{2}\right\}$$

to the vertices of K_n (see [1]).

In order to determine the γ -spectrum of a complete graph K_n for $n \geq 2$, we need an additional definition. If f is a γ -labeling of K_n such that

 $f(v_i) = a_i$ for $1 \le i \le n$ and

$$0 \le a_1 < \dots < a_n \le \binom{n}{2}, \tag{2}$$

then

$$val(f) = \sum_{i=1}^{\left\lfloor \frac{n}{2} \right\rfloor} (n - 2i + 1)(a_{n-i+1} - a_i).$$

Setting

$$\alpha_i = a_{n - \left \lfloor \frac{n}{2} \right \rfloor + i} - a_{\left \lfloor \frac{n}{2} \right \rfloor} - i + 1 \text{ for } i = 1, 2, \dots, \left \lfloor \frac{n}{2} \right \rfloor,$$

we obtain an increasing sequence $\{\alpha_i\}$ such that

(i)
$$\alpha_i \geq \alpha_{i-1} + 2$$
 for $i = 2, 3, \ldots, \lfloor \frac{n}{2} \rfloor$,

(ii)
$$\alpha_{\lfloor \frac{n}{2} \rfloor} \leq {n \choose 2}$$
, and

(iii) $\alpha_1 \geq 2$ if n is odd, while $\alpha_1 \geq 1$ if n is even.

On the other hand, if $\{\alpha_i\}$ is an increasing sequence with properties (i)-(iii), then there exist n integers a_1, a_2, \ldots, a_n satisfying (2) such that $\alpha_i = a_{n-i+1} - a_i$ for $i = 1, 2, \ldots, \lfloor \frac{n}{2} \rfloor$. Therefore, an increasing sequence $\{\alpha_i\}$ is called a γ -sequence of K_n if $\{\alpha_i\}$ satisfies properties (i)-(iii). The γ -spectrum of the complete graph K_n is then given in terms of γ -sequences of K_n .

Theorem 4.2 For each integer $n \geq 2$,

if n is odd, then

$$\operatorname{spec}(K_n) = \left\{ \sum_{i=1}^{\left \lfloor \frac{n}{2} \right \rfloor} 2i\alpha_i \ : \ \{\alpha_i\} \ \text{ is a γ-sequence of K_n} \right\},$$

if n is even, then

$$\operatorname{spec}(K_n) = \left\{ \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} (2i-1)\alpha_i : \{\alpha_i\} \text{ is a } \gamma\text{-sequence of } K_n \right\}.$$

The following is an immediate consequence of Theorem 4.2.

Corollary 4.3 If $n \geq 3$ is odd, then the value of every γ -labeling of K_n is even.

As an illustration of Theorem 4.2, we see that

$$\operatorname{spec}(K_4) = \{3\alpha_2 + \alpha_1 : 6 \ge \alpha_2 \ge \alpha_1 + 2 \ge 3\}$$

$$= \{10, 13, 14, 16, 17, 18, 19, 20, 21, 22\};$$

$$spec(K_5) = \{4\alpha_2 + 2\alpha_1 : 10 \ge \alpha_2 \ge \alpha_1 + 2 \ge 4\}$$
$$= E[20, 56] - \{22\}.$$

Notice that there are integers in $[\operatorname{val}_{\min}(K_n), \operatorname{val}_{\max}(K_n)]$ for which there is no γ -labeling with that value. For example, if $s \in [\operatorname{val}_{\min}(K_n) + 1, \operatorname{val}_{\min}(K_n) + n - 2]$, then there is no γ -labeling of K_n whose value is s.

5 Acknowledgments

We are grateful to the referee whose valuable suggestions resulted in an improved paper.

References

- [1] G. Chartrand, D. Erwin, D. W. VanderJagt, and P. Zhang, γ -Labelings of graphs. *Bull. Inst. Combin. Appl.* 44 (2005) 51-68.
- [2] G. Chartrand, D. Erwin, D. W. VanderJagt, and P. Zhang, On γ -labelings of trees. *Discuss. Math. Graph Theory.* **25** (2005) 363-383.
- [3] G. Chartrand and P. Zhang, Introduction to Graph Theory. McGraw-Hill, Boston (2005).
- [4] J. A. Gallian, A dynamic survey of graph labeling. Electron. J. Combin.
 5 (1998) Dynamic Survey 6, 43 pp.