ASCENTS OF SIZE LESS THAN 4 IN SAMPLES OF
GEOMETRIC RANDOM VARIABLES:
MEAN, VARIANCE AND DISTRIBUTION

CHARLOTTE BRENNAN

ABSTRACT. We consider words ®1 7273 . .. Ty, of length n, where m; €
N are independently generated with a geometric probability
P{n = k} = pg*~! wherep+¢=1.

Let d be a fixed non-negative integer. We say that we have an ascent
of size d or more, an ascent of size less than d, a level and a descent
if wig1 2 m +d, mip1 < m +d, Tip1 = W, T > My respectively.
We determine the mean and variance of the number of ascents of
size less than d in a random geometrically distributed word. We also
show that the distribution is Gaussian as n tends to infinity.

1. INTRODUCTION

In this paper, we consider words, mmams ... 7, of length n, where the
letters m; € N are independently generated with a geometric probability
such that

P{X =k} =pg* ! wherep+¢=1.

We define an ascent whenever m; < m;41, a level whenever m; = w4y,
and a descent whenever m; > m;4+1. Moreover, if d is a fixed non-negative
integer, we say that we have an ascent of size less than d, if m;41 < m; +d,
and an ascent of size d or more if w341 = m; + d. For an ascent of size less
than d to exist, we need d to be greater than 1.

Consider the word 112137541422 of length 12. It has four ascents:
12, 13, 37, 14, two levels: 11, 22 and five descents: 21, 75, 54, 41, 52. If
d = 3, there are two ascents of size 3 or more: 37 and 14, and two ascents
of size less than 3: 12, 13.
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Ascents of size d or more in samples of random geometric variables have
already been done in [1, 2], hence ascents of size less than d are considered.
Ascents and descents in geometric random variables have also been studied
in [8, 9]. Ascents have also been investigated in partitions and compositions
in [4] and (3, 5] respectively.

In Section 2, we find the generating function G(z,w;r,s,t,u) where 2
counts the size of the word, w the value of the last part n,,, r the descents, s
the levels, ¢ the ascents of size less than d and u the ascents of size d or more.
To allow for the empty word we use G(z, w; 1, 8,t,u) = F(z,w;r,s,t,u)—1.
As the only variables of interest are the size of the word and the number
of ascents of size less than d, we put w = r = s = v = 1 and consider
F(z,t) := F(z,1;1,1,t,1). The other variables have been studied in 2, §]
and in particular for d = 1 in [11]. We extract the mean E(n) of the number
of ascents of size less than d using the standard technique

6F(z )

lewr-

E(n) = [2"]

In Section 3, we determine the variance V(n) using
0%F(z,t
V(m) = (5| B - ).

In Section 4, we use the “Meromorphic schema” by Flajolet and Sedgewick
in [7] to prove that the distribution of the number of ascents of size less
than d converges to a Gaussian distribution as n, the size of the word, tends
to infinity.

2. EXPECTED NUMBER OF ASCENTS OF SIZE LESS THAN d

2.1. Probability generating function. Let fi(z,w;r,s,t,u) be the prob-
ability generating function where z counts the length of the word k, w the
value of the last part, » the descents, s the levels, ¢ the ascents of size less
than d and u the ascents of size d or more.

To find the generating function, we use the “adding the slice” technique
which was originally used by P. Flajolet and H. Prodinger in [6], then by
A. Knopfmacher and H. Prodinger in [10] and more recently in {2, 5]. We
find a rule for proceeding from a sample with k parts to a sample with k+1
parts. We add a new part to the end of a word where the last part has
value j, i.e., m = j:

j+d—1
w? —»rszw’ -1 4 szpwiqi~ + tzp Z wiqgt! 4+ uzp z wig?
i=1 i=j+1 i>2j+d
TZpW 2p d .
= + s—1+ (t — s)wg + (u—t)(wq)?| (wg)’.
T+ e ls =+ (- sjua + (u = ()] (wa)
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This implies that

Tz
fe+1(z, wir, s, t,u) = l—p:u”qfk(z’ 1;7,8,t,u)

+ q(1 Z_qu) [s =+ (t = s)wg + (u — t)(wq)?] fu(z,wa; T, 8,2, u).

21

This is for a general k, hence we need to sum over all possible values of k.
To allow for the empty word we define

G(z,w;r, 8, t,u) 1= F(z,w;r, 5, t,u) - 1 = z:fk(z,w;r,s,t,u).
k>1

Thus
G(z,w;r, 8, t,u) = fi(z,w;r,s,t, u)+

G(z 1;7,8,t,u)

zZp d
+ —— -1+ (t-8)wg+ (v —¢t)(w G(z,wq;r,s8,t,u).
q(l—wq)[ ( ) q ( )( 9)] ( Q: 14 )
The function fi(z,w;r,s,t,u) represents words that consist of a single let-

ter, where
pzw

fl(z7w;r1 s,t,u) = Zzqu_lwk = T wq.

k>1
We obtain after the above substitution

G(z,w;r,s,t, u) 'rzpw G(z 1;r,s,t u)+ Pz

z
+Pq

T [s — 7+ (t — s)wg + (u — t)(wg)?] G(z,wg; T, s, t,u).

(2.2)

In order to solve this recursion, the following lemma is useful. It is similar
to the one found in [5].

Lemma 1. A recursion of the form F(z,w) = f(z,w) + g(z,w)F(z,wq),
has solution
i-1
F(zyw)=) (f(z,wq""l) Hg(z,wq"l)) , for0<g<1.
i1 i=1

Proof. We perform a few iterations starting with F(z,w) = f(z,w) +
9(z,w)F(z,wq):

F(Z, w) = f(Z, w) + g(z: w)[f(z’ wQ) + g(z,'wq)F(z, qu)]
= f(zv w) + g(z) w)f(z, wQ) + g(z, w)g(z:WQ)f(z1 wq2)
+ g(z,w)g(z,wq)g(z, wg?)F(z, wg?).
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If we keep iterating and use the fact that F(z,wq’) — 0 as j — oo we
obtain:

F(z,w) = f(z,w) + 9(z, w) f (2, wq) + g(z, w)g(2,wq) f (2, wg?)
+ g(2,w)g(z,wq)g(z,wg?) f(z,wg®) + - --

Jj=1
- (f(z, we'™) [ ot wq*-l)) .

i>1 i=1

Applying Lemma 1 to equation (2.2) we get

G(z,w;r,8,t,u) = ﬂ)-w—q—J—Cv'(z,l Ty 8, t,u) + p'wq’ X
1 —wgf —wgf

_1'>l
-1

X E ([s —7+(t - s)wg' + (u— t)(wq‘)d] i;;)

The variables of interest are z and ¢, so we put w=s =u =v = 1. For
simplicity let G(z,1;1,1,¢,1) = G(z,1;t), thus

Gl =3 (2 T (- iet - 925,

i>1 i=1

Solving for G(z,1;t) we have

g>1 'P'?.J?' Hr—-l ( -1)(¢" - Q'd) 1-¢F )
- T T2 THS (-0 - 09257 )

G(z,t) :==G(z,1;t) =

Thus,

Theorem 1. The generating function for samples with geometric random
variables with ascents less than d is

__7(z1)
Glzt) = 1—7(zt)’
where .
_—wd 4,2Pa""
T(z1) = 2. T—g II ((t—l)(q )_—_q" .
j>1 i=1
a
Thus,
1
F(z,t) = G(z,t)+1= m
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The expected value is [2"]%F|,_,, where

OF _ 7'(2)
Bt (1-1(z,1)%

. 22(g — ot
TI(Z,t) ¢=1=1 2(q qd) pqq = (lq+qq )1
and
1 _ 1
(1-7(2,8))?],0, (1-2)%

Hence,

" 2= _a @-d¢h)
e = e g = s e = U

Thus, finally we obtain

Theorem 2. The expected number of ascents of size less than d in a word
consisting of n geometric random variables is, ford > 1,

O

Brennan and Knopfmacher in (2], found the expected number of ascents of
size d or more in geometric samples to be

Ed or more(n) ('n' 1) 1+ q

Putting d = 1 gives the expected number of all ascents of geometric samples
to be

Eau(n) = (n — 1)m

Using the linearity property for the means E(X +Y) = E(X) + E(Y), we
can obtain the expected number of ascents of size less than d by a simple
subtraction

Etess than d(n) = Eall(n) —Eqgor mone(n)-
This, clearly, matches the result found in Theorem 2. Thus the mean found
in Theorem 2 could have been worked out without the generating function
found in Theorem 1. However, the linearity property is not true for the

variances as the two events are not independent. The generating function
found in Theorem 1 is therefore needed for the next section.
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3. VARIANCE OF THE NUMBER OF ASCENTS OF SIZE LESS THAN d IN
SAMPLES OF n GEOMETRIC RANDOM VARIABLES

Lemma 2. The variance V(n) is

V(n) = [ ZE 1) t)t +E(m) - (B
We need the following:
FF(z,t)|  _ m(z,t)(1 —7(2,1) +2(7'(,¢))?
ot? t=1 - (1 - T(z’ t))a g=1’
where
_ . ) _2X(g-q%
(1—T(Z,t)) t=1—1—z ’ T(z)t) t=1_ 1+g )
and
" zpq® zpg” 2pg~!
7(2,t) L 27- e [(q ) -2 (q qz“)l_—qg]
_ 2% - -d¥)p
(1-¢3(1+49)
Thus
PF(zt)| _ 22°a-a)@-a"p  _22%a—q)?
a2 |, (1-¢(A+g(1-2)2 (1+92%(1-2)%
Hence we get
m®F( )| ais 2a—ENP P n-qy 20g—¢%)?
|, = a0 - T Trera - e

_Ae—aNP -, @-a) o
i e (n-2)+ it q? (n-3)(n-2).

Putting it all together we obtain

V(z,n)
_2Aa-aNP -, o, @ o
= (1—q3)(1+q) (n-2)+ (1+q)? (n=3)(n-2)
(@-9¢%)?
+(n )(1+ ) ( - )2(1+q)2

+ (q - qd)2 (5 _ 3n)

= 2(q _ qd)(q - q2d)p(n 2) + (n (1 )2
+4q

(1-¢*)(1+q)

_1)(1+q)

Thus
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Theorem 3. The variance of the number of ascents of size less than d in
samples of n geometric random variables is, ford > 1,

—(n_ 2f - 38(g-q¢¥) , 1
Vi) = (e qd)([(l—q3)(1+q)_ (1+4) +1+q]"
_ AU -¢)p | Se-¢) 1 )
1-¢3(1+q9 (Q+9¢? 1+4+q/°

a

Note. The variance of the number of ascents of size d or more samples of
n geometric random variables in (2] was

_ 2qadp _ 3q2d qd
V(“)"[(l—qsxuq) (1+q)2+1+q]"
4q3dp 5q2d qd

T TPt  O+a? I+q

4. LIMITING DISTRIBUTION OF NUMBER OF ASCENTS OF SIZE LESS THAN
d

In this section, we prove that the limiting distribution of the number of
ascents of size less than d is Gaussian. For this we use Proposition IX.9
from Flajolet and Sedgewick (7], which we state below: We introduce the

notation .
" 1 fl 1 ! 1
o= L LD _ (£
fQ) @A) \FQ)
Proposition 1. “Meromorphic schema” Let F(z,u) be a bivariate function
that is bivariate analytic at (z,u) = (0,0) and has nonnegative coefficients
there. Assume that F(z,1) is meromorphic in z < v with only a simple
pole at z = p for some positive p < r. In [2], this was done for ascents of
size d or more.
Assume also the following conditions.
i) Meromorphic perturbation: there exists € > 0 end r > p such that
in the domain D = {|z| < r} x {Ju — 1| < €}, the function F(z,u)
admits the representation

B(z,u)

C(z,u)’
where B(z,u), C(z,u) are analytic for (z,u) € D with B(p,1) # 0.
(Thus p is a simple zero of C(z,1)).

ii) Nondegeneracy: one has 9,C(p,1)-8,C(p,1) # 0, ensuring the ez-
istence of a nonconstant p(u) analytic atu = 1, such that C(p(u),u) =
0 and p(1) = p.

F(z,u) =
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iii) Veriability: one has

v (ﬁ)) £0.

Then, the random variable with probability generating function
_ ["F(zy)
Polt) = GAF G, )
converges in distribution to a Gaussian variable with a speed of convergence
that is O(n~1/2). The mean and the variance of X, are asymptotically
linear in n.

In addition, we have the following results from (7).
We introduce the notation

C(z,u) ) (4.1)

T Bt (o)

then if p(u) denotes the analytic solution of the implicit equation
C(p(u),u) =0,

e o002 — 2¢1,001,1€0,1 + €2,064
p(v) = p— 2L (u—1)— 1 > *(u=1)*+0((u-1)%).
€1,0 1,0
(4.2)
Condition (ii) corresponds to
€0,1C1,0 74 0. (4.3)

The variability condition (iii) corresponds to
P2 oeo,2 — pe1ac1,100,0 + PC2,060,1 + Caac10 +HCoaciop #0. (44)

For our specific problem

] i—1
T v iy 2P
Clzt) =1 §l_qj};[1((t et -9 2L).

We have p(1) =p=1when 2=1.
According to (4.1)

_ 9 _ g-¢°
co1 = at(](z,t) . =~1%q¢
o
_ e— = —'1 .
€1,0 azC(Z,t) w
82 -2(q — ¢%)
R A PP T
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_ =2(e -2 (@® - ¢*)
(1,1) (1-¢3)(1+9

32
Co2 = '6750(2, t)

=0.

32
20 = 55C(z,1)
0822 a, 1)
Condition (ii) gives ¢j0co1 = %43 = # 0, which is true for all ¢ > 0 for
d > 1. This is fine since according to our definition, d = 1 does not yield
an ascent.

Using (4.2},
q p(g® - )(® - ¢*%) | 2(¢* - q)"’) 2
t)=1+———(t-1)+ + t—1
o rre-n+ (M ai + ) e
+ O ((t - 1)3) . (4.5)
The left hand side of the variability condition (4.4) is
1

__23+4+25+d__d+l+2d+2_d+3
———(1+q)2(1_q3)[ -2 +q*+2¢° +¢% — ¢ g% —¢q

git4 4 g2 4 2gPAH1 _ 3420+3 _ 9434 L 9 q3d+2]
which for 0 < ¢ <1 and d > 0 is never zero. Thus

Theorem 4. The distribution of the number of ascents of size less than
d in samples of n geometric random variables converges to a Gaussian
distribution with a speed of convergence of O(n~/2), where the mean u,
and the variance o2 are as given in Theorems 2 and 3, where d > 1.

Remark. In Flajolet and Sedgewick [7] it is also shown that under the

conditions of the proposition, the mean p,, and variance o2 are of the form

tn =m (p(l)) + O(1), o2=0p (p(l)) n + O(1),

(u) (u)
where
_ Q) _ ') @) (PN
"N=Fn = *D=TFm * T (f(l)) '
This gives
’ )
s = (%) lmn+0(1) =(n- 1)% +0(1).

which is in agreement with our exact result in Theorem 2.
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In the case of the variance

" ’ ' 2
=G | G - (G L) | »

- [ 2¢%'p 3¢ ¢ ] o
(1-¢)(1+q) (Q+9? 1+q]"

which corresponds to the main term of the exact result found in Theorem

3.
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