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Abstract

In this paper, it is shown that the graph Ty(p, g, ) is determined by its
Laplacian spectrum and there are no two non-isomorphic such graphs which
are cospectral with respect to adjacency spectrum.
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1 Introduction

Graphs considered in this paper are undirected graphs without loops and multiple
edges. Let G be a simple graph with n vertices. Denote by A(G) and D(G)
the adjacency matrix and the diagonal matrix with the vertex degrees of G on the
diagonal, respectively. The matrix L(G) = D(G) — A(G) is called the Laplacian
matrix of G. Denote by P(G, \) the adjacency polynomial det(A] — A(G)) of G.
The multiset of eigenvalues of A(G) (resp., L(G)) is called the adjacency (resp.,
Laplacian) spectrum of G. Since A(G) and L(G) are real symmetric matrices,
their eigenvalues are real numbers. So we can assume that Ay > Ay > --+ >
Anand py > po 2 -+ 2 up are the adjacency eigenvalues and the Laplacian
eigenvalues of G, respectively. Two graphs are said to be cospectral with respect
to the adjacency (resp. Laplacian) spectrum if they have the same adjacency (resp.
Laplacian) spectrum. A graph is said to be determined by its adjacency (resp.,
Laplacian) spectrum if there is no other non-isomorphic graph with the same
adjacency (resp., Laplacian) spectrum.

*This research was partially supported by the National Natural Science Foundation of China
(No.10971086) and the Fundamental Research Funds for the Central Universities(No.lzujbky-2011-
46).
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Determining what kinds of graphs are determined is an old problem, which is
far from resolved, in the theory of graph spectra. In their paper [14], the authors
conjectured that almost all graphs are determined by their spectrum. However,
it seems hard to prove a graph to be determined by its spectrum and only a few
graphs have been proved to be determined by their spectrum. Therefore it would
be interesting to find more examples of graphs which are determined by their
spectrum. For the background on this problem and related topics, the reader can
consult [14, 15]. For more recent results which have not been cited in [14, 15],
we refer to [2, 9, 10, 12, 11] and their references for details.

Because the problem above is very hard to deal with, van Dam and Haemers
[14] suggested a modest problem, say, “which trees are determined by their spec-
trum?” This paper will give a complete answer to this modified problem for a
class of special trees.

As usual, we denote by P, the path with k vertices. Let G be a graph. Denote
by £(G) the line graph of G. We denote by T4(p, g, ) the graph shown in Fig. 1.
T4(p, q,7) is a tree with 4 vertices of degree 3. For a Ty(p, g, 7) graph, we always
assume that 1 < p < g < r. The reader is referred to [1] for any undefined notion
and terminology on graphs in this paper.
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Figure 1: The graphs T4(p, ¢, 7) and £(Tu(p, g, 7)) where p,q,7 > 1.

In this paper we will show that T(p, ¢, ) is determined by its Laplacian spec-
trum and there are no two non-isomorphic graphs which are cospectral with re-
spect to adjacency spectrum.

2 Preliminaries

In this section, we will present some known results which will be used in this
paper.

Lemma 2.1 ({1}]) Two trees T and T are cospectral with respect to the Laplacian
matrix if and only if their line graphs are cospectral with respect to the adjacency
matrix.

Lemma 2.2 ([5]) If L(G) = L(H) with {G,H} # {K3,K1,3}. Then G = H.
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Let W,, be the graph obtained from the path P,_; (indexed in natural order
1,2,...,n — 2) by adding two pendant edges at vertices 2 and n — 3.

Lemma 2.3 ([6]) Let G be a connected graph that is not isomorphic to W,, and
Gy be the graph obtained from G by subdividing the edge uv of G. If uv lies on
an internal path of G, then A\1(Gyy) < A1(G).

Lemma 2.4 ([14]) Let G be a graph. The following can be obtained from the
adjacency spectrum and from the Laplacian spectrum:

(i) The number of vertices,

(ii) The number of edges.

The spectrum of the adjacency matrix determines:

(iii) The number of closed walks of any length.

The Laplacian spectrum determines:

(iv) The number of spanning trees,

(v) The number of components,

(vi) The sum of squares of degrees of vertices.

Let Ng(H) be the number of subgraphs of a graph G which is isomorphic to
H and let Ng (i) be the number of closed walks of length ¢ of G.

Lemma 2.5 ([9]) Let G be a graph. Then

(i) NG(Q) = 2m, Nc,'(3) = 6Ng(K3);

(ii) Ng(4) = 2m+4Ng(P;3)+8Ng(Cs), Ng(5) = 30N (K3)+10Ng(Cs)+
ION(;(GI);

(iii) Ng(7) = 126Ng(K3)+84Ng(G1)+14Ng(G2)+14Ng(G3)+14Ng(G4)+
28NG(Gs) +42Ng(Ge) +28NG(G7) +112Ng(Gg) 4+ T0Ng(Cs) + 14NG(C7).
(see Fig. 2).

TOY T Xage

Figure 2: The graphs G;, i=1,...,8.

Lemma 2.6 (/8]) Let G be a graph with V(G) # @ and E(G) # 0. Then

A(G) +1< iy < mag{ BT m;) : 2’"("’" ™) ww e BG))

where A(G) denote the maximum vertex degree of G, and m,, the average of
degrees of the vertices adjacent to the vertex v in G.
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Lemma 2.7 ([3], [13]) Let v be a vertex of a graph G and let C(v) denote the
collection of cycles containing v. Then the characteristic polynomial of G satisfies

P(G,2) = AP(G\{v}, )= 3 P(G\{w v}, )-2 Y P(G\V(2),)).

u~v ZeC(v)
For the sake of convenience, denote P(P,, ) by p, = pr(A) and set pg =
l,p_; =0and p_y = -1.

Lemma 2.8 ([11])pr = :—1;2_—;}- and p,(2) = r+1, where z satisfies > — Az +

1=0.

A centipede is a graph obtained by appending a pendant vertex to each vertex
of degree 2 of a path.

Lemma 2.9 ([2]) The centipede is determined by its Laplacian spectrum.

Lemma 2.10 (/15]) For bipartite graphs, the sum of cubes of degrees is deter-
mined by the Laplacian spectrum.

3 Ty(p, q,r) is determined by its Laplacian spectra

In this section, we will show that T4(p, g, 7) is determined by its Laplacian spec-
trum. To this aim, we need to compute the characteristic polynomial of the line
graph L(T4(p, q,7) of T4(p,q,r). By using Lemma 2.7 with v being the vertices
of degree three, we have
P(L(Ta(p,q,7)sA) = fla,7)(Ahp-1 — hp_2) — hp_1(hg-1hr —
P(L(T4(1,q,7)),A) = [flgr)(Apz — 2A — 2) — pa(hg—1hr +
hth—l + 2h -lhr—l),
where f(q,7) = he(Ahg—1 — hg_2) — hg_1hy — 1 and by = Apr_1(p2 — 2) —
P2Dk-2 — 2pk—1. Combining with Lemma 2.8 and using Maple, we have
(z® - 1)}z P(L(Tu(p,q,7)),A) = Co(miz)+W(p,q,7iz), (3.1)
(z® — 1)’ 2 P(L(Ty(1,9,7)), %) = Coniz) +W(l,q,7;2), (3.2)
where n = p+ g+ + 7, z satisfies 22 — Az + 1 = 0 and
Co(njz) = z?+9 _6x2n+7 _ gg2n+6 4 92+ | 362,27 +4 4 99520 +3
-30z7"+2 — 872"+ — 727" 4 9271 4 782202
+84£L‘2n—3 + 481:21!—4 + 15m2n—5 + 2$2n—6 _ 2.1:20 _ 151.19
—482'8 — 84z!7 — 78216 — 9215 4+ 72214 + 872! 4 30212
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W(p,q,7; )

o(n; z)

W(l’qﬂ';x)

—20z"! — 362" — 92° + 82° + 627 — 2,

22PHT 4 2047 | 20T | 42048 | 02048 | 4,248

L AZPHO 4 422949 4 472m+0 _ g 2p+10 _ g,20+10
_8z2r+10 _ 9020411 _ 99, 20+11 _ 9ga2r+1l _ 34,2p+12
34729412 | 34727+12 _ 42p+13 _ 12413 _ p2r+13 4
52x2p+14 +52x2q+14 + 52x2r+14 + 79x2p+15 + 79$29+15
+79z2r+18 4 58x%P+16 4 5o 20+16 4 5y 2rt18 4 1552+
+15220+17 | 1522717 _ 1052P+18 _ 19 20+18 _ 19, 2r+18
—1472PH19 _ 14729419 _ 1422r+19 _ g12p+20 _ g,20+20
-6 z2’r+20 _ x2p+21 _ x2q+21 _ m2r+2l + x2p+2q+7
+6x2p+2q+8 +1 4x2p+2q+9 + 12z2p+2q+10 _ 15x2p+2q+11
_5Rz2PH2a+12 _ 70, 2p+20+13 _ 5o, 2p+20+14 | 1 2p+2¢+15
+34x2p+2q+16 + 992P+29+17 + 8p2pt2g+18 _ 4p2P+29+19
_ 4x2p+2q+20 _ zZp+2q+21 + z2p+2r+7 + 6x2p+2r+8
+14x2p+2r+9 + 12$2p+2r+10 - 15$2p+2r+11 _ 5822p+2r+12
_79$2p+2r+13 _ 52x2p+2r+14 + 12p+2r+15 + 34x2p+2r+16
+29x2p+2r+l7 + 8z2p+2r+18 _ 4z2p+2r+19 - 4m2p+2r+20
_m2p+2r+21 + m2q+2r+7 + 6x2q+2r+8 + 1412q+2r+9
+12x2q+2r+10 _ 15x2q+2r+11 _ 58m2q+2r+l2
_7gx2q+2r+13 _ 52x2q+2r+14 + z2q-l'-2r+15

+34 2:2q+2r+16 + 29x2q+2r+17 + 8:!:29+2r+18

—4 x2q+2r+19 - 412q+2r+20 _ $2q+2r+21’

gents _ 5x2n+3 — 8p2nt2 + 3p2ntl + 242"

+28z%"~1 4 22772 — 302773 — 362°" 4 — 202" ~°
~10z%"~6 — 15227 — 202?"~8 — 152"~ — 62°"~10
—g=1 _ g19 _ 6% — 152'7 — 202'¢ — 152'° — 10214
~20z'% — 3622 — 30z'! + 221° + 282° + 242° + 32"
—8z8 — 5% + 8,

_m2q+5 _ x2r+5 _ 4x2q+6 _ 4x2r+6 _ 6$2q+7 _ 6x2r+7
—0x29+8 _ 9,2r+8 4 g,29+9 + gp2r+9 + 90x29+10
420727410 4 2552911 4 9552r+1L | 96529 H12 4 2620 12

+25729+13 4 95527+13 | 90g29+14 4 90 2r+14 | g 2¢+15
49z2r+16 _ 9 20416 _ 0 2416 _ g, 20417 _ g 2r+17

—4z20+18 _ 4 2r+18 _ 20419 _ ,2r4190
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In view of point above, if two graphs T4(p, ¢, 7) and T4(p’,q’,r’) are cospectral
with respect to Laplacian spectrum, then £(T4(p, g,7)) and L(Ty(p',¢', 7)) are
cospectral with respect to adjacency spectrum, hence p+q+7 = p' +¢' +r' and
soW(p,q,r;2) =W(p',q',r';2).

Lemma 3.1 No two non-isomorphism graphs Ty(p, q,r) are cospectral with re-
spect to Laplacian spectrum.

Proof. Suppose that G = Ty(p,q,r) and G’ = T4(p',¢’, ') are cospectral with
respect to Laplacian spectrum. Then G and G’ have the same number of vertices
and so p+ g+ 7 = p’' + ¢’ + r'. On the other hand, by Lemma 2.1, £(G) and
L(G") are cospectral with respect to adjacency spectrum, so they have the same
number of closed walks of any length, especially of length 5. Hence £(G) and
L(G") have the same number of G in it by Lemma 2.5 (ii).

Clearly, for2 < p<g¢g<m,2<¢ < ', 2 < ", Ne(To(par))(G1) =
8, Ne(ruqr,ary)(G1) = 8, Necrya1,04(G1) = 10. Hence L(Ty(p,g,7)),
L(T4(1,q',7')) and L£(T4(1,1,7")) are non-cospectral with each other with re-
spect to adjacency spectrum. It follows from Lemma 2.1 that Ty(p, g, r), T4(1,4',7")
and Ty(1,1,7") are non-cospectral with each other with respect to Laplacian
spectrum.

Suppose that G = Ty(p,q,r) with p > 1. Then G’ = Tu(p', ¢, ') with
p > 1. From (3.1), W(p,q,7;2) = W(p',q',7';z). Note thatp < ¢ < 7,
p<qgd<randp+q+r=p +q+r. Itfollowsthatp = p’, ¢ = ¢’ and
r = r'. Therefore G is isomorphic to G.

Let G = Ty(1,q,7) withqg > 1. Then G’ = Ty(1,¢’,7') and ¢’ > 1. By (3.2),
W(l,q,m;2) = W(1,q',7';z). It follows that ¢ = ¢’ and r = r'. Therefore G is
isomorphic to G’.

If G = T4(1,1,7), then G’ = T4(1,1,7'). It is easy to see that r = 7’ since
G and G’ have the same number of vertices. Hence G is isomorphic to G'.

Up to now, we have completed the proof of the lemma. O

Lemma 3.2 Let G be a tree and H be a graph cospectral to G with respect to
Laplacian spectrum. If u1(G) < 5, then the degree sequence of H is determined
by the shared spectrum.

Proof. Let H be any graph cospectral to G with respect to Laplacian spectrum.
Then by Lemma 2.4 (i) and (ii), H is also a tree. Clearly, A(G) < 4 by Lemmas
2.6. Let z; and y; be the numbers of vertices of degree i in G and H, respectively.
It follows from Lemmas 2.4 and 2.10 that

1+ T +23+T4=y1 +Y2+y3+Ya,

Ty + 223 + 3z3 + 4z4 = Y1 + 2y2 + 3y + 4ya,

T, + 4zg + 973 + 1624 = y1 + 4y + Yy3 + 16y4,
zy + 8z + 27z3 + 64x4 = y1 + 8y2 + 27ys + 64y,.
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It implies that y; = z; for ¢ = 1,2,3,4. Hence the degree sequence of H is
determined by its Laplacian spectrum. O

Corollary 3.3 Let G = Ty(p, q,r) and H be a graph cospectral to G with respect
to Laplacian spectrum. Then H has the same degree sequence as G.

Proof. Since G is a tree and u1(G) < 4.9 by Lemma 2.6, the result is followed
immediately from Lemma 3.2. [

Lemma 3.4 Let G = Ty(p,q,r) and H be a graph cospectral to G with respect
to Laplacian spectrum. Then H = Hy or H = H, (see Fig. 3) for some l;, k; > 1
fori=1,...,6ands;j,t; > 0forj =1,2,3. Inparticular, C(H) = L(H,) or
L(H) = L(H?) (see Fig. 3).

Proof. From Lemma 2.4 and Corollary 3.3, we know H is a tree, having 4 vertices
of degree 3, 6 vertices of degree 1 and other vertices of degree 2. So either all
vertices of degree 3 lie on a path or exactly 3 vertices of degree 3 lie on a path
and no cycle. Hence H = H; or H = H; (see Fig. 3) for some l;, k; > 1 for
i=1,...,6ands;,t; >0forj=1,2,3.0

P o
14 1h ' 1 (',I_.’...._b
. I"x A II:,
FUUURPS LRSS LIS LA LATUNP I St e
4 101 501 501 501 1, k 101 601 01 kg
H, H,

S R !
NS0 SN0 B0 SRR 2 G

o S0l om0l SHi12 4L & 2101 Wwo 1 Th1e
L(H) L(H,)

Figure 3: The graphs H; and L(H;), i=1,2, where l;,k; > 1fori = 1,...,6 and
sj,t; 2 0forj=1,2,3.

Lemma 3.5 Let G = Ty(p,q,r) withp > 2. Then G is determined by its Lapla-
cian spectrum.
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Proof. Let H be a graph cospectral to G with respect to Laplacian spectrum. Then
L(H) and L£(G) are cospectral with respect to adjacency spectrum by Lemma
2.1. So £(H) and L(G) have the same number of vertices, edges and triangles.
Obviously, A(L(G)) = 3 and A(L(H)) < 4. Let y; be the number of vertices of
degree i in L(H). Note that £L(G) has m = p + ¢ + r + 6 vertices, where 6 of
them have degree 3 and others have degree 2. It follows from Lemma 2.4 that

y1 + 2y2 + 3ys + 4dya = 2(m + 3),

{ nt+y2+yst+ys=m,
v2+ (3) s+ (3)va=6(3) +m—6.

Solving this system of linear equation, we obtain (y1,y2, ¥3,¥4) = (—y4,m—6+
3y4,6 — 3ya,y4). Hence y; = y4 = Osince y; > 0 for i = 1,2,3,4. Therefore

(¥1,v2,¥3,¥4) = (0,m — 6,6,0). By Lemma 3.4, there are two cases.

! L, : 'y !

Figure 4: The graphs L;, ¢ = 1,...,5, where k, s, > 1.

If L(H) = L(Hy), thenl; = 1ands; > O0fori=1,...,6andj =1,2,3
since L(H) has no vertex of degree 1 and 4. Hence L(H) = L, (see Fig. 4).
Obviously, Nz(c)(G1) = Newy(Gi) = 6, Neie)(Ge) = 3, N (Ga) = 2,
NL(G)(GS) =6, NL(H)(G:;) =6or8or10orl2, NC(G)(K3) = N[.(H) (K3) =
4, Nc((;)(ck) = NC(H)(Ck) =0fork = 5, 7 and Nc(a)(G.‘) = Ng(H)(G,') =
0fori = 4,5,6,7,8. It follows from Lemma 2.5 (iii) that Nz (g)(7) # Ny (7)-
This contradicts the fact that £(H) and £(G) are cospectral with respect to adja-
cency spectrum.

If L(H) = L(H2), then k; = 1and¢; > Ofori = 1,...,6 and j =
1,2,3 since £(H) has no vertex of degree 1 and 4. It implies that L(H) =
L(T4(p',q',7")) for some p’,q’,7' > 2. Hence H = Ts(p',q',7’') by Lemma 2.2.
It follows from Lemma 3.1 that H = Ty(p,q,7) = G. O

Lemma 3.6 Let G = Ty(1,q,7) with g > 1. Then G is determined by its Lapla-
cian spectrum.
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Proof. Let H be a graph cospectral to G with respect to Laplacian spectrum. Then
L(H) and £(G) are cospectral with respect to adjacency spectrum by Lemma
2.1. So L(H) and L(G) have the same number of vertices, edges and triangles.
Obviously, A(L(G)) = 4 and A(L(H)) < 4. Let y; be the number of vertices of
degree i in L(H). It follows from Lemma 2.4 that

Y1 + 2y2 + 3y3 + 4ys = 2(m + 3),
vo+ (3)ws+ (3)wa=(3) +4(3) +m -5,

Solving this system of linear equation, we obtain (y1, ¥z, ¥3,y4) = (1 —y4, m —
8+3y4, 7—3y4, y4). Hence either y; = 0 oryq = 1sincey; > Ofori = 1,2, 3,4.

Suppose that y4 = 0. Then (y1,y2,¥3,¥1) = (1,m — 8,7,0), that is, L(H)
has exactly one vertex of degree 1, m — 8 vertices of degree 2, 7 vertices of degree
3 and no vertex of degree 4. Whether L(H) = L(H;) or L(H) = L(H,) (see
Fig. 3), we always have Ng(z)(G1) = 7, Np(ay(K3) = 4 and Ny (Cs) = 0.
However, N¢(6)(G1) = 8, N (6)(Ka) = 4 and Ny (Cs) = 0. It follows from
Lemma 2.5 (ii) that Nz(g)(5) # Ny (5). This contradicts the fact that L(H)
and L(G) are cospectral with respect to adjacency spectrum.

Suppose that y4 = 1. Then (y1,¥2,¥3,¥4) = (Osm - 5,4,1). If E(H) =
L(H,), then L(H) = L, or L3 (see Fig. 4). Clearly,

N£6)(G1) = Ni,(G1) = N,y (G1) = 8,
Neo)(Ks) = Ni, (K3) = N,y (Ks) = 4,
Nr6)(Gs) = N, (Gs) = N1, (Gs) = 2,
Neoy(Ci) = N, (C;) = N, (Ci) =0, i = 5,7,

{ Y +y2+ys+ys=m,

However,

NL(G)(GZ) = 5, ]\f[,2 (Gg) = 4, NL:, (Gz) = 3, Nc(g) (Ga) =10o0r12o0r 14,
Ni,(G3) =100r12o0r14, Ny ,(G3) =9o0r1lor13.

It follows from Lemma 2.5 (iii) that Nz(G)(7) # N (#)(7). This contradicts the
fact that L(H) and £(G) are cospectral with respect to adjacency spectrum.

If L(H) = L(H,), then L(H) = L(T4(1,q’,7")) for some ¢’, 7' > 2. Hence
H =Ty(1,q',7') by Lemma 2.2. Therefore H = Ty(1,q,7) by Lemma 3.1. O

Lemma 3.7 Let G = Ty(1,1,r) withr > 2. Then G is determined by its Lapla-
cian spectrum. .

Proof. Let H be a graph cospectral to G with respect to Laplacian spectrum. Then
L(H) and £(G) are cospectral with respect to adjacency spectrum by Lemma
2.1. So L(H) and L(G) have the same number of vertices, edges and triangles.
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Obviously, A(£(G)) = 4 and A(L(H)) < 4. Let y; be the number of vertices of
degree i in L(H). It follows from Lemma 2.4 that

Y1+ 2y2 + 3yz + 4ys = 2(m + 3),
v+ (3) v+ (3)va=2(3) +2(3) +m -4

Solving this system of linear equation, we obtain (y1,y2,¥3,¥4) = (2 — ya,m —
10 + 3y4,8 — 3y4,y4). Henceyg =0orlor2sincey; > 0fori =1,2,3,4.

Suppose that y4 = 0. Then (y1,¥2,¥3,v4) = (2, m — 10, 8,0), that is, L(H)
has 2 vertices of degree 1 , m — 10 vertices of degree 2, 8 vertices of degree 3
and no vertex of degree 4. Whether L(H) = L(H;) or L(H) = L(H3), we
always have Nz(q)(K3) = Ney(Ks) = 4, Neio)(Cs) = Ney(Cs) = 0,
N)y(G1) = 8 and Ng()(G1) = 10. It follows from Lemma 2.5 (ii) that
N#y(5) # Ne(e)(5). This contradicts the fact that L(H) and £(G) are cospec-
tral with respect to adjacency spectrum.

Suppose that y4 = 1. Then (y1,¥2,¥s,y4) = (1,m —7,5,1), that is, L(H)
has 1 vertex of degree 1 , m — 10 vertices of degree 2, 8 vertices of degree 3 and 1
vertex of degree 4. Whether L(H) = L(H,) or L(H) = L(H3), we always have
Ng(H) (5) # N[_(G)(s), contradiction.

Suppose that yq = 2. Then (y1,%2,¥3,%4) = (0,m — 4,2,2). If L(H) =
L(H,), then L(H) = L, or Ls (see Fig. 4). Clearly,

Ni6)(Gr) = Ni(G1) = N, (G1) =10,
Ni6)(Gs) = N1 (Gs) = Ni,(Gs) = 4.
Ne(e)(Ks) = N (K3) = N, (K3) = 4,
N[:(G)(Ck) = Np(Cx) = N, (Cx) =0,k =5,7,

{ Nt+yp+ytya=m,

However,

Nee)(G2) =8, Np (G2) =4, Ni,(Gz2) =6,
Ng(e)(Gs) = 16 or 18, Np (G3)=120r14, Np,(G3)=150rl17.

It follows from Lemma 2.5 (iii) that Nz()(7) # Ny (7). This contradicts the
fact that C(H ) and L£(G) are cospectral with respect to adjacency spectrum.

If L(H) = L(H;), then L(H) = L(T4(1,1,7')) for some r' > 2. Hence
H = Ty(1,1,7') by Lemma 2.2. Therefore H = Ty(1,1,7) by Lemma 3.1. O

Lemma 3.8 Let G = T4(1,1,1). Then G is determined by its Laplacian spec-
trum.

Proof. Let H be a graph cospectral to G with respect to Laplacian spectrum.
By Lemma 3.2, the degree sequence of H is (3,3,3,3,1,1,1,1,1,1), so H is
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isomorphic to a centipede graph or T4(1,1,1). By Lemma 2.9, the centipede is
determined by its Laplacian spectrum. Hence H 22 Ty(1,1,1). 0

Now we may give our main result in this section.
Theorem 3.9 T(p, q,) is determined by its Laplacian spectrum.

Proof. It follows from Lemmas 3.5, 3.6, 3.7 and 3.8. O

Recall from [7] that the Laplacian eigenvalues of the complement of a graph
G are completely determined by the Laplacian eigenvalues of G. As a direct
consequence of Theorem 3.9, we have

Corollary 3.10 The complement of T4(p,q,7) is determined by its Laplacian
spectrum.

4 Adjacency spectral characterization of 7;(p, ¢, )

In this section, we will study the adjacency spectral characterization of Ty(p, q, 7).
It will be shown that there is no two non-isomorphism graphs Ty(p,q,r) are
cospectral with respect to adjacency spectrum.

Using Lemma 2.7 with v being the vertices of degree 3, we can compute the
characteristic polynomial of T4(p, g, r) in terms of the characteristic polynomials
of paths. Put P(T,) = P(T4(p,q,7),A) and f, = A(pr+1 —pr—1) for any integer
r. Then we have

Ap3 — 3)\%p2, ifp=q=r=1,
Apapafr — 2X2pafr — P3fr-1, ifl=p=g<r,
’\p2qur - Azqur "P2fq—1fr _piq.fr—la ifl=p<g<r,
'\qupfr - fq-lfpfr - qup—-lfr - qupfr—h "f 2< p<g<r.

P(Ty) =

Letn = p+q+r+7and ¢(p,q,7) =z (2% - 1)3 P(T4(p,q,7), ). By Lemma
2.8, we have
Ci(n; ), ifl=p=g<rm,
#(p q,7)) = { Con;2) +U(L,q,m52), ifl=p<q<rm @.1)
C3(n;z) + U(p! q,7; x)s 1f 2 < ¥4 < q < Ty

where z satisfies 22 — Az + 1 = 0 and

o) (n; 2:) = OQp2n—13 _ ,2n-12 + op2n—11 _ 4,2n-9 + z2n—8 _ gp2n-7
+222n—6 + 623 — 2322"—2 + 4r2n=1 _ g2n _ 9,2n+1
—9p2n+3 + pntd _ 9519 + 218 — 9217 + 418 - 14 + 613
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—22'2 — 62° + 22° — 427 + 2% + 225 + 22° — 22
Cz(‘n; :L‘) — +x2n—11 + x2n—10 _ xzn—Q + z2n—8 - 21.211-7 _ 31:2"—6
+z2n—5 — 3gp2n—4 + 9p2n—3 + 3g2n-2 + g2n-l + 3g2n
—og2ntl _ 42042 _ o2n+3 _ g2ntd Z2n+5 _ 17 _ 416
+.'l:15 -zl 4+ 2213 4 312 _ 11 + 3710 _ 249 — 328

-z’ -3z 4+ 2% + 2t 4 2+ 2 -z

Ca(n; 13) — 2:1:2"_8 - z2n—6 — 61:2"—4 + 3x2n—2 + 6x2n _ 3$2n+2
_2$2n+4 + x2n+6 _ 2.’814 + :L‘12 + 65310 _ 31.8 _ 6$6 +
3z% 4+ 27% — 1.
U(l, q,7; ﬂ:) = 22q+4 + x2q+6 - 3$2q+8 _ 3$2q+10 + 3$2q+12 + 3x2q+14

_g2a+16 _ 420418 | o2r+4 | 22r46 _ 3,2r48 _ 3,2r+10
1322712 | g 2r+14 _ 2r+16 _ p2r+18

U(p, q,7; :L‘) — $2p+4 - 3x2p+8 + 31.2p+12 _ w2p+16 + x2q+4 - 3:1:2 q+8
+3x2q+12 — p29+16 4 per+d _ 3p2r+8 + 3m2r+12
—g2r+ie + p2pt2q+d _ 3p2p+29+8 + 3p2pt2e+12
—x2P+29+16 4 p2pt+2rd 3p2p+2r+8 gp2ptr+12
_$2p+2r+16 + x2q+2r+4 _ 3x2q+2r+8 + 3x2q+2r+12
_$2q+2r+16'

Theorem 4.1 No two non-isomorphism graphs T4(p, g, ) are cospectral with re-
spect to adjacency spectrum.

Proof. Suppose that G = Ty(p,q,r) and G’ = Ty(p’, ¢, ') are cospectral with
respect to adjacency spectrum. Thenp+ g +7 = p' +¢' + ' and ¢(p,q,7) =
#(¥',q',7'), hence U(p,q,7;z) = U(p',¢',7';z). Obviously, for any positive
integers p,q,7 with 2 < p < ¢ < 7, ¢(1,1,7),4(1,9,7) and ¢(p, q, 7) are three
distinct polynomials. Therefore Ty(1, 1,7),T4(1,q,7) and Ty(p, q,r) are non-
cospectral with each other with respect to adjacency spectrum.

Let G = Ty(p,q,7) with 2 < p < ¢ < r. Then G' = Ty(p',q,r') with
2<p <q <7 andU(p,g,r;z) = U(P,¢,';z). It follows that p = p/,
g=¢ andr = r'. Therefore G = G'.

LetG = Ty(1,q,7) with2 < g < r. Then G’ = Ty(1,¢', ) with2 < ¢’ < 7'
and U(1,q,7;z) = U(1,¢',7'; 7). It follows that ¢ = ¢’ and 7 = r’. Therefore
G=G.

Let G = Ty(1,1,7) with 1 < r. Then G’ = Ty(1,1,7') with 1 < r' and so
r = 1/, Therefore G = G'.

Up to now, we have completed the proof of the theorem. [
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