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Abstract

The Merrifield-Simmons index of a graph G, denoted by i(G), is
defined to be the total number of its independent sets, including the
empty set. Let 8(a1,a2,--,ax) denote the graph obtained by con-
necting two distinct vertices with k independent paths of lengths a,,
a2, -+, ax respectively, we named it as multi-bridge graphs for con-
venience. Tight upper and lower bounds for the Merrifield-Simmons
index of (a1, a2, -+ ,ax) are established in this paper.

1 Introduction

The Merrifield-Simmons index was introduced in 1982 in a paper written
by Prodinger and Tichy [1], although it was called Fibonacci number of a
graph there. It is one of the most popular topological indices in chemistry,
which was extensively studied in a monograph [2-5]. Let G = (V,E) be a
graph whose sets of vertices and edges are V(G) and E(G), respectively.
Two vertices of G are said to be independent if they are not adjacent in G.
An independent k set is a set of k vertices, no two of which are adjacent.
Denote by i(G, k) the number of the k-independent sets of G. It follows
directly from the definition that is an independent set. Then i(G,0) =1
for any graph G. The Merrifield-Simmons index of G, denoted by i(G), is
defined as

n
i(G) = i(G,k)
k=0
The Merrifield-Simmons index is one of the topological indices whose
mathematical properties were studied in some detail, whereas its appli-
cability for QSPR and QSAR was examined to a much lesser extent. In
[1], Prodinger and Tichy shown that, for n-vertex trees, the star( S,) has
the maximal Merrifield-Simmons index and the path( P,) has the mini-
mal Merrifield-Simmons index. In [6], Alameddine determined the sharp
bounds for the Merrifield-Simmons index of a maximal outer planar graph.
Gutman [7], Zhang and Tian [8,9] studied the Merrifield-Simmons indices
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of hexagonal chains and catacondensed systems, respectively. Ren and
Zhang [10] determined the minimal Merrifield-Simmons index of double
hexagonal chains. In [11], Li et al. characterized the tree with the max-
imal Merrifield-Simmons index among the trees with given diameter. In
[12], Yu and Tian studied the Merrifield-Simmons index of the graphs with
given edge-independence number and cyclomatic number. Yu and Lv [13,
14] studied the Merrifield-Simmons indices of trees with maximal degree
and given pendent vertices, respectively. Ye et al., ordered the unicyclic
graphs with given girth according to the Merrifield-Simmons index in [15].
Pedersen and Vestergaard [16] determined upper and lower bounds for the
number of independent sets in a unicyclic graph in terms of its order. Li
and Zhu [17] determined the sharp upper bound for the number of inde-
pendent sets in a unicyclic graph of a given diameter. In (18], Deng et al.,
determined the upper bounds for number of independent sets among bi-
cyclic graphs. In [19], Li et al., determined tricyclic graphs with maximum
Merrifield-Simmons index. In [20}, Deng characterized (n,n+1)-graphs with
the smallest Merrifield-Simmons index. For a more detailed study of the
properties of the Merrifield-Simmons index we refer to[21-26].

All graphs considered here are both connected and simple if not stated
in particular. For any v € V(G), we use Ng(v) to denote the set of
the neighbors of v, and let Ng[v] = vU Ng(v), let d(v) be the number
of edges incident with v. For each integer k > 2, let 8 be the multi-
graph with 2 vertices and k edges. For any a),a3, --,ar € N, we denote
6(a1,az, -+, ax) the graph obtained by replacing the edges of 6 with paths
of length ay, az,- - -, ax respectively. The graph 6(a1, a2, - -,ax) is called a
multi-bridge( or more precisely, a k-bridge graph). 6(1, a2, a3) is called a 6
graph and 6(a;, a2, a3) is called a generalized 8 graph. Note that if a; = 0,
then 8(a;,az,---,ax) is a graph obtained by gluing Co,+2, Cag+2, Cay+2
at a common edge, which is a polygon tree.

w11 w2 Wi,ay
w2,1W3,2 wa)gq
u v
Wk,1 Wk,2 Wk,ap
9(a1,a2,-++,0k)

Figure 1. The graph 6(a,,az,--,ax)
Let ©% = {6(ay,az,---,ak): @1+ a2+ - +ar=n-— 2}, without loss
of generality, we assume that a; < az < -+ < ak, k2 4. In this paper, we
shall determine upper and lower bounds for the Merrifield-Simmons index
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of graphs in ©%, and characterize the graph in ©% with the largest and
smallest Merrifield-Simmons index.

2 Preliminaries

Let E' C E(G), we denote by G- E' the subgraph of G obtained by deleting
the edges of E/. W C V(G), G — W denote the subgraph of G obtained by
deleting the vertices of W and the edges incident with them. If a graph G
has components G;,Gs, - -, Gy, then G is denoted by Uf=° Gi.

Let F(n) denote the n-th Fibonacci number. Recall that F(n) = F(n—
1) + F(n — 2) with initial conditions F(0) =0, F(1) = 1.

The following basic results will be used and can be found in the refer-
ences cited.

Lemma 1. Let z and y be two vertices in G. Then

(i) i(G) = i(G - {z}) + i(G — N¢|=z]);

(ii) If z and y are not adjacent in G, then

i(G) = (G — {z,y}) +i(C — {} UNgly]) +i(G - {y} U Noa])
+i(G — Ng[z] U Ng(y])
(iii) If z and y are adjacent in G, then

i(G) =1i(G — {z,y}) +i(G — Ng{y]) + i(G — Ng[z]);
(iv) If G is a graph with components G, G2, G3, - -+, Gx. Then

k
i(G) = [[i(Gy).

i=1

(v) i(Pr) = F(n+2),i(Sp) =1+2""1.
(vi) Given for all k,!, F(k +1) = F(k —1)F(l) + F(k)F(l +1).

3 Graphs in ©f with maximal Merrifield-Simmons
index

We consider the upper bounds of © with respect to the Merrifield-Simmons
index in this section.

Let T1 = 0(ay, a2, -, ak) — u;

T2 = 9(01, agy: - iak) - {uswl,l7w2,1, e )wk,l}'

Theorem 1. Let 8(a;,a9,::-,ax) be the multi-bridge graph depicted
in Figure 1, then

k k k
i(0(ar,az,---,ax)) = [[ Fla: +2) + 2] [ Flas + 1) + [ Flas)
=1

i=1 =1
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Proof. Let G = 6(a;,az,- -, ak), by definition of Merrifield-Simmons
index and Lemma 1, we have
i(G) = i(G — u) + (G — {u, w1,1,w2,1," "+, Wk1})

= i(Th) + i(T2)

=i(Ty — v} +i(Th — {v, W18, W2,a5," " yWiyax }) + (T2 —v)
+Z(T2 - {'U, Wi,ayy W2,az)° "y Wk,ax })

= F(ay +2)F(ag +2)--- F(ax +2) + 2F(a1 + 1)F(az + 1) --
F(a;e +1)+ F(al)F(az) F(ak)

= _I'I F(a,+2)+2HF(a,+1)+ HF(a‘)

This completes the proof
Theorem 2. Let 8(a;,az, - -,ax) € O with a; > 1, then

i(e(al, ag, - ,ak)) < i(O(l,az, cee,a1t+ap — 1))
Proof. By Theorem 1, we have
1(0(1 ag, -+,a1 +ag — 1))

= ]'[2 F(ai +2)F(3)F(a1 + ar +1) +2 H F(a; + 1)F(2)

F(a; +ax) + 1'1 F(a:)F(1)F(ay +ax — 1)
= 2F(a;+ax+1) n F(a; +2) + 2F(ay + ax) 1'[ F(a; +1)

+F(a) +ax —1) H F(a;)

im0
Thus, '
A= 7:(0(0‘11 az,::- ’+ak)) - i(0(17a21 sre,01 a0k — 1))

- krj: Flas +2)[F(ex + 2)F(ak +2) — 2F(ar +ax + 1]+

2 ] Flau + DlF(er + DF(ox + 1)~ F +eull+

klj: F(a0)[F(a1)F(ax) — F(as +ax — 1)

By Lem;r;a 1(vi), we have
F(ay +2)F(ax +2) — 2F(a; + ax + 1)
= F(a1 +2)F(ax +2) — 2[F(a1)F(ax) + F(a1 + 1)F(ax + 1)]

= —F(a.l - 1)F(ax — 1)

Similarly, F(a; 4+ 1)F(ax + 1) — F(a1 + ax) = F(a1 — 1)F(ax — 1);
F(a1)F(ax) — F(ay + ax — 1) = —F(a1 - 1)F(ax — 1).
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By combing above, we arrive at

k-1
A =F(a ~ 1)F(ax - )2 ] Fle: +1) - 1'[ F(a, +2)— H F(a;)]
=2 1=2

-1
Let [; =2 H Fla; +1) - H F(a; +2)— H F(a;). We have
i=2 i=2

CLAIM 1: [, <0.
We prove it by induction on {(2 < i < k—1).
(i) When ¢ = 2. In this case,
I =2F(a2+1)—F(a2+2)—F(a2) =—F(a2—2) <0
(ii) Assume that the claim 1 holds for i = j such that 2 < j <k —1.

Then we have
2F(ap + 1)F(ag +1)---F(a; +1)
< F(az +2)F(as + 2)--- F(a; + 2) + F(a2)F(a3) - - F(a;)
When i =j+1,

Jj+1 j+1 j+1
2HFO.,‘+1 —-1'[F(a,~+2)—HF(a,~)
< [H F(a; +2) + HF(a, |F(aj41+1) — H F(a; +2) - HIF(ai)

r*2

= H F(a; +2)[F(aj+1 +1) — F(ajs1 +2)] + H F(a:)[F(aj+1+1)
-F(a1+l)]

= —F(aj41) H F(a; +2) + F(aj41 - 1) H F(a:)

<0
Therefore, for any 2 <1 < k — 1, the claim 1 follows.

Hence, A < 0, i.e., i(f(a1,az, -+, ak)) <i(8(1,a2,-,01 + ar —1)).

The proof is completed.
Repeating using Theorem 2, we arrive at
Corollary 3. Let 8(a;, a2, -,ax) € OF with a; > 1, then

i(6(a1,az,- -+ ,ak-1,ax)) < i(0(1,1,---,1,n —k ~1)).
k-1

Note that, i(8(1,1,---,1,n—k—1)) = 2*"1F(n+1-k)+ F(n+2—k).
L

k-1
Lemma 4. Let 8(a;,az,--+,ax) € ©% with a; > 1, then

7'(0(0! ag,::-,a1 + a'k)) < 7:(0(0.1,0,2, e 1ak))‘
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Proof. By Theorem 1, we have
z(O(O ag, - ,a1 +ak))

= F(a1+ax+2) 1'[ F(a; +2) +2F(a1 +ar +1) II F(a; +1)

Thus,
AI
= 3(9(a1,04, -,ax)) —i(0(0, a2, -, a1 + ax))

1'[ F(ai + 2)[F(a1 +2)F(ax + 2) — F(a1 +ax +2)]
+2 H F(a; +1)[F(ay + 1)F(ax + 1) — F(a1 +ax + 1)) + H F(a;)

= F(al)F(ak)[H Fla; +2)-2 n F(a; +1) + H F(a:)]

>0
By Corollary 3 and Lemma 4, we obtain
Theorem 5. Let 8(a1,a3, -+, ak) € ©F, then

i(6(ar, a2, - ak)) S 25T F(n+1-k) + F(n+2 - k)

the equality holds if and only if 8(a1, a2, ae) 26(1,1,---,L,n—k—1).
k—1

4 Graphs in ©f with minimal Merrifield-Simmons
index

We consider the lower bounds of ©% with respect to the Merrifield-Simmons
index in this section.

By Theorem 1, we have
1(0(0 2 Qag,- -, 0k~ 1,(11 +ax +ar — 2))
= 3F(a; + a2 + ax) 1'1 Fla; +2)+4F(a1 + a2 +ax ~ 1) 1'[ F(a; +1)
Theorem 6. If a2 > 3 t.hen
i(6(0,2, a3, -, ak-1,01 + a2 + ax = 2)) > £(6(0,az," -, a1 + ax)),
if k = 4;
i(6(0,2, a3, +,ak—1,01 + @2 + Qk — 2)) < i(8(0,as," -+, a1 + ak)),
ifk>4.
Proof. By Theorem 1, we have
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A”
= 1(0(0, a2, -+,a1 + ak)) - 1(9(0, 2,03, -,ak-1,a1 + a2 +ar — 2))

= k]j: F(a; + 2)[F(az + 2)F(a1 + ax + 2) — 3F(a; + a2 + ax)|+
| 2,‘1:—]: F(a; + 1)[F(az + 1)F(a1 + ax + 1) — 2F(a; + a2 + ax — 1)]
= F(az — 2)F(a1 + ar — 2)[kI_:[31F(a, + 2) - 2I.CI_:I:F(G,' + 1)]

k=1 k=1
Let I = [] F(ai +2)—2 [] F(ai +1). We have
i=3 i=3

L I2<0, if k=4
CLAIM 2: { >0, if k>4
We prove it by induction on k, note that & > 4.
Case 1. When k =4. I = F(ag+2) —2F(ag +1) = —F(azg — 1) < 0.
Case 2. When &k > 4.
(i) Let k = 5, it is suffice to see that
I, =F(az+2)F(ag+2)—2F(az +1)F(ag +1)
= [F(as + 1) + F(a3)][F(as + 1) + F(as)] — 2F(az + 1)F(ag + 1)
= 2F(a3)F(a4) - F(a3 — l)F(a4 - 1) >0
(ii) Assume that the claim holds for k = j > 4, then we have

J j
[[Fa:+2)>2]] Fla: +1)
i=3 =3

and
i+l j+1
II F(ai +2)—2T]] F(a; +1)
i=3. i=3

>2 @F(ai +1)F(aj+1+2) -2 lf[:;F(ai +1)F(aj41 +1)
=2 li[aF(az + 1)[F(0,j+1 + 2) — F(aj+1 + 1)]

=2 lf[sF(a, + 1)F(a,~+1)

>0
Therefore, the claim follows.
Hence, A” < 0 when & = 4, and A” > 0 when k > 4.
The proof is completed.
Similar to Theorem 6, we have
Corollary 7. If ay,a2, - -,ai41 2 3,7 2 1, then
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i(0(0t2,2a"'"2yai+2a"‘1ak—l,al +ag+ -+ @ip1 + ak — 2i))
<i(9(03212a"')25ai+11'"aak—l’al+a2+"'+ai+ak—2i+2))
——

i-1
By Corollary 7, we have

Remark I:
1(6(0,2,a3," -, @k-1,01 + G2 + Qk — 2))

> 1(6(0) 27 2,04, ey QR-1,01 + az + a3 +ar — 2))

;i(9(0,2,2,---,2,n—2k+2))
N e
Lemma 8. ff—cij.,.g >3,7>1, then
i(O(O,u,Zaj%, e ,ak_l,jg::ai +ax—-j—2)
’ j+1
< i(O(O,&;,_ll, 42,343, "1 Gk—1, pzl a;i +ax — 3 —2))

j
Proof. Theorem 1, we have
j+2
2(0(0, 11 * '.' y 1’2aa‘j+3v Tty Q=1 .=Z1 a; +ax — J - 2))

M

. k-1
= 3.20.Fla;+---+ajp2+ar—J) [I Fla:+2)
i=j+3
k-1
+4F(a1+-'-+aj+2+ak—j—1) H F(ai+1)
i=j+3
and
) i+l .
2(0(0,1,'--,l,aj+2,aj+3,"“ak—1,£§ a; +ak — 7))
d k-1
= 2j-F(a1+"‘+aj+2+ak-j+2) I1 F(a:i+2)
i=j+2
k-1
+2F(a1 + - +ajp+ax—j+1) 1 Flai+1)
i=j+2
Thus
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i+2
A = 7’(9(0’ la ° ’ 1721aj+3’ reryQk—1, igl a; +ar — J - 2))
. J j+1 -
—1'(0(01 1) ] laaj+2’aj+37' “‘ak—l’igl a; + ax _.7))

J
= F(a1+2 - 2)F(a1 +tajp1tar—3—2)

k=1
(-2 H Fai+2)+2 ]I F(a,+1)]
i=j+3 i=j+
<0
Since,
3F(ay +---+aj41 + 042 + ax — J)
—-F(ajt2 +2)F(a1+- +ajp1+ ok —j+2)
=3[F(a1 + -+ + ajs1 +ax — j — 1)F(aj42) + Fay + -+ - + a1
+ap — j)F(ajez + 1)) — [F(aj+2 + 1) + F(a;42)][F(a1 + -+
ajt1+ak—j+1)+Fla +---+ajn + ax — 7))
= —F(aj+2 —2)F(a1+ -+ ajq1+akx—j—2)

and
2F(ay + -+ +aj+1 +ajpa+ak—j—1)— Faje2 +1)
Fla1+-:-+ajp1+ax—j—2)
= 2[F(a1 + -+ a4 +ax — j — DF(ag — 1)
+F(ay + -+ ajq1 + ax = 5)F(aj42)]
—[F(aj42) + F(ajy2 — 1)][F(a1 + -+ + aj+1 + ax -7
+F(ay+---+ajn +ar—j—1)
= F(aj;+2 -2)F(ay + -+ aj41 +ar—j3-2)
The proof is completed.
Similar to Lemma 8, we have
Lemma 9. If a;yj42 > 3,4,5 > 1, then
i(g(oy1!"':112)'"12aai+j+3v”')ak—l,al +ag -+t a2
i i+l
+ax —1i—2j—2))
<i(9(0,1,--',1,1,---,1,a,~+_.,~+2,aj+3,---,ak_l,al +a2+"'
S e’ N e

i i
+0i4j41 + ax — i — 27))
Remark II: In order to find the lower bound on the Merrifield-Simmons
index of graphs in ©%, by Remark I, Theorem 6, Lemma 8 and Lemma

9, it suffices to determine
min{i(8(0,2,2,---,2,n — 2k + 2)),4(6(0,1,2,2,-.-,2,n — 2k + 3)),
D —

k-2 k-3
i(60,1,1,2,2,-+,2,n — 2k + 4)),-++,i(6(0,1,1,---,1,n — k))}
k-4 k-2

Lemma 10.
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i(6(0,1,1,---,1,2,2,--+,2,n — 2k + i+ 2))
R e

i k—i~2
<i(6(0,1,1,-++,1,2,2,-+,2,n — 2k +i +3))
e i Vo

i+1 k—i-3
the equality holds if and only i =1 and k = 4.
Proof. By a simple calculation, we have
i(6(0,1,1,---,1,2,2,--+,2,n — 2k + i+ 2))
i k—i-2
i -
= (2)'3*2F(n+4 -2k +i) + 2" 1F(n + 3 -2k +1)
i(9(0,1,1,--+,1,2,2,---,2,n = 2k + i +3))
i+1 k—i—3
i+ —i—
=(2)i-2-353F(n+5—2k+4) + 2" 2F(n+4 -2k +1)
So,
A =i(60,1,1,---,1,2,2,---,2,n — 2k + i +2))—
N e’ N

i k—-i=2
i0(0,1,1,++,1,2,2,+++,2,n — 2k +i +3))
i

i+1 k—i-3
= (2)'8*3[3F(n+4 -2k +i) - 2F(n+5 - 2k +19)] + 2k—i-2
[2F(n + 3 — 2k +1) — F(n +4 — 2k +1)]
= F(n+1 -2k +i)(2k2 - Z..3k—-2)
< 0( with equality if and only if i = 1, and k = 4)
Using Lemma 10 repeatedly, we arrive at
min{i(6(0,2,2,--,2,n — 2k +2)),i(6(0,1,2,2,--,2,n — 2k + 3)),
N, s’ N s’

k—2 k-3
1(0(0,1,1,2,2,--+,2,n—2k + 4 ,-+,i(0(0,1,1,---,1,n— k
i(6( ) : ) (6( - N}

-4 _
=i(0(0,2,2,---,2,n—2k+2))
N’

k-2
= 3k2F(n — 2k + 4) + 2¥"1F(n - 2k 4+ 3)
Summing up, we have
Theorem 11. Let 6(a;, a2, -+, ax) € OF, then
i(8(a1, az,- -+, ax)) = 3*"2F(n — 2k + 4) + 2*"'F(n — 2k + 3)
the equality holds if and only if

G(al,ag,---,ak)'59(0,2,2,---,2,n—2k+2).
k—2
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