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Abstract

In this study, we obtain the relations among k-Fibonacci, k-
Lucas and generalized k-Fibonacci numbers. Then we define cir-
culant matrices involving k-Lucas and generelized k-Fibonacci num-
bers. In the last of this study, we investigate the upper and lower
bounds for the norms these matrices.
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1 Introduction

In the last years, it has been studied on Fibonacci, Lucas and general-
ized Fibonacci sequences. For n > 1, these sequences are defined by
recurrence relations F,4y = Fp, + F_1, (Fp =0, F; = 1), Lpy1 =
Lp+ Lny, (Lo =2, L1 = 1) and Gp41 = Gn + Gn-1, (Go =@, G1 =
b), (a,b € R) respectively [3]. In the literature, in [4-7], there are the some
generalizations of the Fibonacci and Lucas sequences. For instance, in [4-
5], Falcon and Plaza introduce k-Fibonacci sequence {Fkn}ne, by using
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Fibonacci and Pell sequences. Many properties of these numbers were de-
duced directly from elementary matrix algebra. In [6], it is given k-Lucas
sequence {Lk,n}:;o and obtain some identities related to these sequence.
Then, in [7], we defined a new generalization {Gk,n}, ¢y of k-Fibonacci fam-
ily. Additionally we also obtained some properties related these numbers.
We can also see that it has been investigated the norms of some special
matrices with these numbers in many studies. For instance, Solak, in [8],
defined the n xn circulant matrices. Additionally, he investigated the upper
and lower bounds of these matrices. Shen and Cen, in [9-10], have found
upper and lower bounds for the spectral norms of r-circulant matrices.

In this study, we have given new relations among k-Fibonacci, k-Lucas
and Generalized k-Fibonacci numbers. Moreover we define the circulant
matrices involving these numbers. Then, we have obtained some bounds
for these matrices.

Firstly, let us give well-known preliminaries related to our studies. The
circulant matrix C = [¢;;] € My 5 (C) is defined by the form

Cc1 C2 C3 ... Cn
Ch € C2 ... Cp
C=| ¢ci-1 & € .. Cn-2
C2 C3 C4 .. c1

For each i, j = 1,2,3,...,n and k£ = 0,1,2,...,n — 1, all the elements
(2, 7) such that (j —¢) = s(modn) have the same value c, , these elements
form the so-called sth stripe of C.

Let us take any matrix A = [a;j] € Mpn,(C). Then, in [1-3], the
following properties are hold:

n 3
o |AllF= [i > |a;j|2] (frobenius norm),
i=1j=1
o ||All, = max i (AH A) (spectral norm), where A¥ is the conjugate
<i<n

transpose of matrix A,

e ci1(A) = max, [T |a;|* (the maximum column length norm),
7 i

e r1(A) =max [ |a;,-|2 (the maximum row length norm).
3 :

J

The following inequality is hold between the frobenius and spectral
norms

—lﬁ 14l - < I14ll, < I14l5 - (1)
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2 Main results

For any positive real number k, Generalized k-Fibonacci sequence {Gk,n},,cn
is defined by recurrence relation

Gk,n+1 = ka,n + Gk,n—h n2>1 (2)

with initial conditions Gro = @, Gx,1 = b (a,b € R) [7]. Generalized
k-Fibonacci number is called to each element of Generalized k-Fibonacci
sequence. Fora =0, b=1and a = 2, b = 1, it is obtained k-Fibonacci
sequence and k-Lucas sequence, respectively. Also, generalized k-Fibonacci
sequence turn into integer number sequence for some special values of k.
For example, in generalized k-Fibonacci sequence {Gk,n}neN;

i. If k =1, then we have generalized Fibonacci sequence
{Gin}=1{a, b, a+b, a+2b, 2a+3b, ---}.

e For a =0, b = 1, it is obtained Fibonacci sequence known as
F,={0,1,1,2,3,5,--- }.

e For a =2, b =1, it is obtained Lucas sequence known as L, =
{2,1,3,4,7,11,---}.

ii. If k = 2, then we have generalized Pell sequence
{Gan} ={a, b, a+2b, 2a+5b, 5a+ 12b, 12a + 29b, ---}.

e For a =0, b =1, it is obtained Pell sequence known as P, =
{0,1,2,5,12,29, ---}.

e For a = 2, b =2, it is obtained Pell-Lucas sequence known as
P, =1{2,2,6,14,34,82, ---}.

In the following theorems, we give the relations among generalized -

Fibonacci, k-Fibonacci and k-Lucas numbers.
Theorem 1 We have the relation between {Gi,n}, ey and {Fi,n} ey :
Gk, n=0aFk n-1+ ka, n- (3)

Proof. Let us use the principle of mathematical induction on m. Since
Fi0=0, Fi1 =1, we can write Gy,1 = aFj o+ bF;; = b, the statement is
true for m = 1. Assume that the given statement is true for every m, that

18
Gk, m = aFg, m—1 + bFj;, m.
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Now, we must show that Gk, m+1 = aFk, m + bFk, m41. From (2), we can
write

Gk, m+l = ka, m+ Gk, m-1
= k(aFx, m—1+ bFk, m) + (aFk, m—2 + bF, m-1)
= a(kFk, m—-1+ Fi, m—2) + 6(kFi, m + Fk, m—1)

Considering the recurrence equality Fk, m+1 = kFk, m + Fk, m-1 for k-
Fibonacci numbers, we have

Gk, m+1 = aFg, m + bFk, m+1,
thus, for every m € N, the given equality is hold. m
Theorem 2 We have the relation between {ka}nen and {Lk’"}neN :

Gk, o= a(2Lk, n Lk, n—;;g-:l;(zllk, n+l — Lk’ n)' (4)

Proof. Let us use the principle of mathematical induction on m. Since
Lro=2, Ly =1and Lz = k+ 2, we have
Goy o @2Lk 1= Lis 0) +0Q@Lk 2~ Li 1) _
k1 %13 :

Thus the statement is true for m = 1. Assume that the given statement is
true for every m, that is,

_ a(2Lk, m — Lk, m=1) + (2L, m41 — Lk, m)

Cr,m = 2k +3
Now, we must show that
G = a(2Lk, m+l — Lk, m) + b(2Lk, m+2 — Lk, m+1)
k, m+1 2k + 3 '
From (2), we can write
Gk, m+l = ka, m+ Gk, m—1
= k a (2L, m — Lk, m—1) + b(2Lk, m+1 — Lk, m) +
2k +3
a (2L, m—1 — Lk, m—2) + b(2Lk, m — L, m—1)
2k+3 )
_ 2(kLg, m + L, m—-1) — (kLk, m—1 + Lk, m—2)
Gh, mt1 = “( %k +3 +
b 2(kLk, m+1 + Lk, m) - (kLk. m+ Lk, m—l)
2k+3 )
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Considering the recurrence equality Lg, m+1 = kLk, m + Lk, m—1 for k-
Lucas numbers, we have

¢ _ a(2Lk, m+1 = Le, m) +b(2Lk, m+2 — Ly, m+1)
k, m+1 = 2k+3 l

as required. m
Corollary 3 We have relations between {Fin}, ey ond {Liyn} ey

Fi o= 2L, n41 = Lk, n
' 2k+3
Proof. If we takea =0, b=11in (3) and a = 2, b =1 in (4) , then we
have Gi, n = Fi, n and Gg, n = L, n respectively. In this case, it can be
seen clearly the proof of this theorem. m
The following two theorems give us the upper and lower bounds for
the spectral norms of circulant matrix with k-Lucas and generalized k-
Fibonacci numbers.

and Lk, n= Fk’ n +2Fk, n—=1.

Theorem 4 Let the (nzn) matrizc A be as A = (a;;) such that a;; =
Lk, (mod (j—i , n))- Then we have

LinLem1+4k—2
[ kbt 222 g,

end

VLknLkn-1+4k=2/LinLgn-1+k—2

k )
where |||, is the spectral norm and L, denote k-Lucas numbers.
Proof. The matriz A is of the form

lAll; <

Lo Ly L2 ... Lgna
Likn-1  Lko Lk .. Lkn—2
A= | Lkn-2 Lkn-1 Lko .. Lign-3
L, Lks  Lgsz ... Lo
From definition of Frobenius norm, we have
n—1 n—1
L — Ly s
a2 = nY 12, =03 L., (Mk_k_l)
8==0 s=0
n—1 n-1
_ Li,sLk,s+1 Lg,sLrs—1
R P

n
= 7 (LknLin—1 — LgoLk,-1) .
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From (1), Lo =2 and Li,_y =1 — 2k, the following result is obtained

1 1
T Ml = 4/} (GnLines + 4 -2) < 4l

On the other hand, let matrices B and C be as

—(p. N ] bii =Lk (mod(j—i,n) 27
B_(bt])—{ bij=1 ,1:<j

and L o
— (o) — J Cii = Lk, (med(j=i ,n)) » ¢<)
C_(c")_{ cij=1 ,i2j

such that
A=DBoC(C.

Then we can write

n n—1
1
m(B) = m?.x Z |bsj 2 _ Z lec,s = \/ P (LkjnLkpn—1 + 4k — 2).

j=l 8=0

and
n n—1 1

(0) = mex || Y- lel = \[1+ 3 L, = |/ § EbnLinms + = 2)
i=1 s=1

Prom the last equalities, we have

1
4]l £ r1(B).c1(C) = ‘E\/(Lk,nLk,n—l + 4k — 2) (Lk,nLg,n-1 + k = 2).

Thus the proof of theorem is completed. ®

Corollary 5 Let us take the matriz A = (ai;) such that aij = L(mod(j—i, n))-
If we take k = 1 in Theorem 4, then it is obtained the following inequality

AY LnLn—l +2 < "A"2 S \[LnLn—l + 2\/Ln-1Ln - 1)

where ||.||, is the spectral norm and L, denote Lucas numbers.

Corollary 6 Let us take the matriz A = (ai;) such that ai; = L(med(j—i, n))-
If we take k = 2 in Theorem 4, then it is obtained the following inequality

-1+6 1
/BBl < | Ally € 5VPno1Pa@aPar 1 6),

where ||.||, is the speciral norm and p, denote Pell-Lucas numbers.
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Theorem 7 Let the (nzn) matriz A be as A = (ai;) such that a;; =
Gk, (mod (j—i , n))- Then we have

GiknGkn—1 + a2k — ab
k

< |4l

and

1
14lly < 71/GhnGhonmi + a2k — aby/GrnGrms ¥k — ab,

where ||.|l, is the spectral norm and G, denote Generalized k-Fibonacci

numbers.
Proof. We consider the matriz A as follows

Gr,0 Gka Gr2 .. Gip—a

Gkn-1 Gko Gki ... Grn—2

A=]| Grkn—2 Gikn-1 Gro .. Gin-3
Gk, Gr2 Gkz ... G

»

From definition of Frobenius norm, we can write

AR = 0.5, =3 Gy, (Chert = Gra
F . k,s . .8 :

s=0 s=0

n—1 n—1
G,sGk,s+1 Gr,sGk,s-1
SR SE =

8=0 8=0

= % (Gk;nGrin-1 — Gk, 0Gk,—1) .

From (1), Gx,0 = a and G,—1 = b— ak, the following result is obvious

1 1
7 Al = ‘/; (GknGrin-1+ 0%k —ab) < ||A,.
On the other hand, let matrices B and C be as

B = (by) = { bij = Gk, (mod(j—i , n)) »12J

bij =1 y 1< g
and G
= (¢c::) = Cij = Gk, (mod(j~i , n)) , 1<
C = (o) { - (oo s
such that

A=BoC(C.
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Then

n n-—1
1
r(B) = max | S 1bl = | 3 G = | 2 (GrnGines + a2 = ab).
0

J=1 8=l
and
n n-1
1
e1(C) = max \l 3 leisl® = \l 1+) G, = \/g (Gk,nGk,n—1 + k — ab).
i=1 s=1

In this case, we have

GrnGrn_1 + a2k — ab) (G nGr.n—1 + kK —ab
1Al < r1(B).cr(C) = Y CrnCin-1 C ) (GrnCiomt + k=)

Thus the proof of theorem is completed. W

Corollary 8 Let the (nzn) matriz A be as A = (ai;) such that a;; =
Gk, (mod (j—i , n))- Then we can write

)
(aFy n-1 + bFicn)(aFkn2 + bFkn-1) + a2k — ab ‘A
k < |14ll,
and
"A" < (aFk,n—l + ka,n)(aFk,n_z + ka.ﬂ-l) + a2k — ab
2 = - .
N (OSSO R EL
k )
i)
(QUn + btins1) (GUn—1 + bun) + (a2k — ab)(2k + 3)2 <Al
k(2k + 3)% < i4liz
and
"A" < (oun, + b’l-tn+1) (aunts + Imn) + (azk — ab)(2k + 3)2
' k(2k + 3)2
(atn + btint1) (GUnt3 + bun) + (a?k — ab)(2k + 3)2
k(2K + 3)2 :

where || .||, 4s the spectral norm, up = 2Lkn—Lkn—1) Fieyn and Ly n denote
k-Fibonacci and k-Lucas numbers respectively.
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Proof. From Theorem 7, (3) and (4), the proof of corollary is obvious. m

Corollary 9 Let the matriz A be as A = (ai;) such that a;; = G(mod(j~i, n))-
If we take k =1 in Theorem 7, then it is obtained the following inequality

VGnGn_1+a? —ab < ||A]l,

and

"A”2 < \/GnGn—l +a?— ab\/GnGn_l +1—ab,

where generalized Fibonacci number G, is solution of recurrence relation
Gn+1 = Gn + Gn-1, with initial values Gy =a, G; =b, (a,b € R).

Corollary 10 Let the matriz A be as A = (a;;) such thata;; = Plmod(j—i, n))-
If we take k = 2 in Theorem 7, then it is obtained the following inequality

PoP,_1+2a% —ab
LSRR P

and

1
All, < 5\/P,,Pn_1 +2a% — aby/P,P,_, + 2 — ab,

where generalized Pell number P, is solution of recurrence relation P,y; =
2P, + Py, with initial values Pp=a, P, =5, (a,b €R).
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