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Abstract

The detour index of a connected graph is defined as the sum of
detour distances between all its unordered vertex pairs. We deter-
mine the maximum detour index of n-vertex unicyclic graphs with
maximum degree A, and characterize the unique extremal graph,
where2<A<n-1.

1 Introduction

Let G be a simple connected graph with vertex set V(G). The detour
distance between vertices © and v in the graph G is the length of a longest
path between them, denoted by lg(u,v), see [2, 8]. Note that lg(u,u) =0
for any u € V(G). The detour index of the graph G is defined as (1, 4, 5]

w@) = Y lo(uv)

{u,v}EV(G)

The detour matrix of G is an n x n matrix whose (3, j)-element is lg(v;, v;)
with V(G) = {v1,va,...,vn}, see [1, 3, 4, 7]. Evidently, the detour index is
equal to the half-sum of the (off-diagonal) elements of the detour matrix.

The detour index found applications in quantitative structure-property
relationship and quantitative structure-activity relationship studies, see
the work of Lukovits [5], Trinajstié et al. [12], Riicker and Riicker [11],
and Nikolié¢ et al. [9]; For example, it was found that the detour index
in combination with the Wiener index is very efficient in structure-boiling
point modeling of acyclic and cyclic saturated hydrocarbons. Lukovits and
Razinger [6], Trinajstié¢ et al. [13], and Riicker and Riicker [11] proposed

*Corresponding author. E-mail: zhoubo@scnu.edu.cn

ARS COMBINATORIA 102(2011), pp. 193-200



methods for computing the detour distances and hence for computing the
detour index.

Among others, Zhou and Cai [14] gave bounds for the detour index,
and determined the n-vertex unicyclic graphs with the first several smallest
and largest detour indices for n > 5. We determined in [10] the n-vertex
unicyclic graphs whose vertices on the unique cycle all have degree at least
three with the first several smallest and largest detour indices for n > 7.

In this paper, we determine the maximum detour index of n-vertex
unicyclic graphs with maximum degree A, and characterize the unique
extremal graph, where 2 <A <n-1.

2 Preliminaries

For a connected graph G with u € V(G), let wu(G) = Y- ,cv(q) la(, ).

The ordinary distance between vertices u and v in a graph G is the
length (number of edges) of a shortest path between them, denoted by
dg(u,v). Evidently, if there is a unique path connecting u and v, then
lo(u,v) = dg(u,v).

Let |G| = |V(G)| for a graph G.

For a subset M of V(G) (E(G), respectively), G— M denotes the graph
obtained from G by deleting the vertices in M and their incident edges (the
edges in M, respectively). For a subset of the edge set of the complement
of G, G + M denotes the graph obtained from G by adding the edges in
M. In the case M is a single vertex {v} (edge e, respectively), then G- M
is denoted by G —v (G — e, respectively), and G + {e} is denoted by G +e.

Let P, be the path and the star on n > 1 vertices, and Cj, the cycle on
n > 3 vertices.

Let n and 7 be integers with 3 < » < n. For integers a and b with
a>b>0and a+b=n—r,let Qu r(a,b) be the unicyclic graph obtained
by attaching respectively a path P, and a path P; at one terminal vertex
to two adjacent vertices of the cycle C,. Let Qnr = {Qnr(a,b0) :a +b =
n—r,a>b>0}

For positive integer n, let e, =1 if n is odd and ¢, = 0 if n is even.

Lemma 1. [14] (i) Forn > 3, w(C,) = in(3n? — 4n + ¢&,,).

(#5) Let Qnr(a,b) € Qn . Then w(Qn,r(a,b)) is independent of the values
of a and b, i.e., all graphs in Q. have the same detour index.

(#45) Cy is the unique graph with the largest detour indexr among the n-
vertex unicyclic graphs.

Lemma 2. Let u be a cut vertex of a connected graph G such that G — u
consists of vertez-disjoint subgraphs G| and G3. Let G; be the subgraph of
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G induced by V(G}) U {u}, wherei=1,2. Then
w(G) = w(G1) +w(G2) + (IG2| — D) wu(G1) + (IG1] — 1) wu(G2).

Proof. It is easily seen that

W@ = 3 lo(z)
{zW}CV(G)

= w(G))+w(Ga) + > le(z,y)
zeV(G}),yeV(G})

= w(G1) +w(Ga) + Y (elzu) +le(yw)
z€V(G1),yeV(G))

= w(G1) +w(G2) + (IG2| — Dwu(G1) +(IG1] — 1) wu(Ga),

as desired. 0

Lemma 3. Let H, and Hy be vertez-disjoint connected graphs with at least
two vertices, and u € V(H,) and v € V(H3). Let G be the graph obtained
from Hy and Hy by joining u and v by a path of length r > 1, and G, the
graph obtained from H, and Hp by identifying v and v, which is denoted
by w, and attaching a path P, to w. Then w(G1) > w(Gs)-

Proof. For G, v is a cut vertex, and let G1; = Gy — (V(H2) \ {v}) and
G2 = H,. For Gy, w is a cut vertex, and let Gy = Ga — (V(H2) \ {w})
and G22 = Hz. Obviously, w,,(Hl) = ww(Hl), Gu = G21, Glz = ng and
wu(Gm) = ww(ng). Thus w.,(Gu) = %1‘(7‘ + 1) 4+ T(lH1| - 1) +wu(H1) >
3r(r +1) + ww(H1) = wy(G21). Then by Lemma 2, the result follows. [

Let C.(T1,T3,...,T,) be the unicyclic graph for which the vertices of its
unique cycle C, are labeled consecutively by vy, va, ... ,v,, and T1, T3, ..., T,
are vertex—disjoint trees such that T; and C; share exactly one common ver-
tex v; for i = 1,2,...,r. Then any n-vertex unicyclic graph G with a cycle
on r vertices is of the form C,(T1, T3, ..., ;) with 3°7_; |Ti| = n.

Lemma 4. For integers i and j with 2 < i < j < 7, let Gooy =
Cr(T1,Ts,...,T,), where T, is the path Py, ) with a terminal vertez v, for
2< s<r, all trees Ty withl# 1,7 and 1 <1 < r are fized, and T\ is non-
trivial. For a;, a; > 1, let z # v; and y # v; be respectively terminal ver-
tices of T; and T, and z the neighbor of y inTj. Ifwz(Ga,,e;) = wy(Gay,a;),
then w(Ga;41,0;—1) > W(Ga,,a;), where Ga,yy0; 1 = Gaya; — 2y +2Y.

Proof. Since T is nontrivial, we have lGai,..,. (z,y) <n—1. Then

w(Ga.-+l,aj—1) - w(Ga.',cj)
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wy(Gai+1,aj-1) - wy(Gai.a,')
= wz(Ga.--l-l.aj—l) +n-2- wy(Gahaj)
= wz(Gﬂ{,d") +1- lG',i,..J. (:c,y) +n-2- w‘y(Gahaj)
= wa(Garay) —Wy(GCasay) +1—1=lg,, o, (z,3) > 0.

The result follows easily. 0

Lemma 5. For integers i and r with 2 < i < | +1 and 7 > 3, let
Gi(a,r) = C.(T1,T3,...,T;), where T; is the path Ppyy with a terminal
vertex v;, Tj = Py for 2 < j < r with j # i, and Ty is fized. For fized
b=a+r > 4, we have w(Gi(a,r)) < w(Ga(a,r)) with equality if and only
zf G;(a, ’I‘) = Gz(a,’l‘).

Proof. Note that v; is a cut vertex of G;(a,r). Let G1 = Gi(a,r)—(V(Ti)\
{v:}) and G; = T;. By Lemma 2, we have

w(Gi(a,7)) = w(G1)+w(G2)+ awy(G1) + (IG1| — L)wy,(G2)
= w(G1) + w(Pat1) +awy,(G1) + (IG1| = Dwy, (Pa+1)

= w(G) +w(Parr) + 3ala+1)(Gi| = 1)
+afwy, (Cr) + (IT1] = Dic, (v1, %) + wy, (T1)]

1
< w(Gh) +w(Par1) +50(a+1)(IG1] 1)
+afwy, (Cr) + (IT1] = 1)(r — 1) + wy, (T1)]
with equality if and only if i = 2, i.e., Gi(a,7) = Ga(a,r). ]

Lemma 6. For any unicyclic graph H withu € V(H), let H(a1,az,...,at)
be the graph obtained from H by attaching t > 2 paths Py,, Pa,,..., Pa, to
u, where 1 < a3 < ag < --- < o For fizedb = a3 + a2+ -+ + ay,
w(H(a1,a2,...,a:)) Sw(H(1,...,1,b =t + 1)) with equality if and only if
H(al,ag,...,ag) =H(1,...,1,b—t+1).

Proof. Suppose that G = H(aj,a2,...,0:) is a graph with maximum
detour index satisfying the given condition. Suppose that there is some ¢
such that a; > 2 with 1 < i < t—1. Let z, y # u be respectively the
terminal vertices of the path P,, and P,,,,, and 2z the neighbor of z in
G. Let Gy = G —zz + zy = H(ay,a2,...,8; — 1,ai41 +1,...,0a;) and
Gy = G —zz + zu. Then
w(G1) —w(G) W(G1) — w(G2)) + (w(G2) — w(G))

a:41(|G| — @41 — 2) — (@i — 1)(IG] —ai — 1)
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= (aiy1—a; +1)(|G| — aiy1 —a; — 1) > 0,

which implies that w(G1) > w(G), a contradiction. Thus a; =1 for i =
1,2,....t—1,anday =b—t+1,ie,G=H(1,1,...,1,b—t+1). O

A path P in a graph G is called a pendant path at u if u is a terminal
vertex of P with degree at least three in G, the other terminal vertex is
pendant, and all internal vertices on P (if exist) have degree two in G.

3 The detour index of unicyclic graphs with
given maximum degree

Let U(n, A) be the set of n-vertex unicyclic graphs with maximum degree
A, where 2 < A < n—1. Let U, A be the graph obtained by attaching
A — 2 pendant vertices to one vertex on the cycle C,_a4+2. In particular,
Un,2 = Ch.

Theorem 1. Let G € U(n,A) with2 <A <n—1. Then
1(3n® — 3n%A — 3nA? + 3A3

+2n2 + 20nA — 14A% - 27n + 13A +6) ifn— A is odd
1(3n3 — 3n?A — 3nA? + 3A8

+2n2 + 20nA - 14A%2 - 28n + 12A +8) ifn— A is even

w(G) <

with equality if and only if G = Up a.

Proof. If A =2, then G = C,, the result follows from Lemma 1 (i).

Suppose that A > 3. Let G be a graph with the maximum detour in
U(n,A). Let C, be the unique cycle of G. Obviously, G # C,.

Case 1. Some vertex, say v1, on C, is of degree A.

By Lemma 3, the vertices outside C; are of degree one or two, and the
vertices on C, different from v, are of degree two or three. By Lemmas 4
and 5, there is at most one vertex on C;. different from v; with degree three,
and this vertex (if exists) must be one neighbor of v;, say vo. Thus G is
a graph obtainable from C, by attaching A — 2 paths to v; and attaching
at most one path to vo. Let F,4) be a longest pendant path at v; with
a>1. Let Ty = Py with b > 0. Let z3,22,...,2a_2 be the neighbors of
v; outside C,, where za_2 lies on the pendant path P, at v;. Let z be
the pendant vertex of the pendant path P,;; at vp if b > 1 and 2 = v if
b=0.

By Lemma 6, there is at most one pendant path at v; in G with length at
least two. Suppose that there is such a pendant path. Then a > 2. Let y be
the neighbor of za_; different from v;. Let G' = G—za_oy+2zy € U(n, A).

197



There is a pendant path P,.; at vz in G’. Note that v; is a cut vertex in
G and G'. Let G; = G — {71,%2,...,Za-3}, G2 = G — (V(G1) \ {w1}),
G} = G’ — {z1,72,...,7a-3} and G5 = G' — (V(G}) \ {w1}). Obviously,
Gs = GY. By Lemma 1 (ii), we have w(G)) = w(G1). It is easily seen that
Wy, (G}) — wy, (G1) = (@ = 1)(r + b —2) > 0. By Lemma 2, w(G') > w(G),
a contradiction. Thus there is no pendant path at v; with length at least
two, i.e., v; has A — 2 pendant neighbors in G.

Suppose that b > 1. Let G” = G — vivz + v1z € U(n,A). Note
that v; is a cut vertex in G and G”. Let Gy = G — {z1,Z2,...,%a-2},
Gzl =G — (V(Glr) \ {'01}), GII' =G" - {.‘El,xz,. . ,.’BA_z} and Gg =
G" — (V(GY) \ {v1}). Obviously, Gz = G3. By Lemma 1 (iii), we have
w(G") > w(Gy). By Lemma 1 (i), we have w,, (C;) = §(3r* —4r +¢,) and
a similar expression for wy, (Cr+s), Where Cryp is the cycle of G”. Then it
is easily seen that wy, (GY) — wy, (Gv/) = ;[0 + (2r — 2)b+ &5 — &) 2
11+2r—2-1) = }(r—1) > 0. By Lemma 2, w(G") > w(G), 2
contradiction. Thus b = 0.

By the above arguments, it follows that 7 = n — A + 2, and then
G = U,,a. By direct calculation,

1(3n® — 3n2A — 3nA? + 3A°

+2n? + 20nA — 14A%2 —27Tn +13A + 6) if n — A is odd,
1(3n® — 3n%A — 3nA? 4+ 3A3

+2n2 + 20nA — 14A% - 28n + 12A +8) if n— A is even.

w(Un,a) =

Case 2. All vertices on the cycle C, have degree smaller than A in G.

There is some vertex u of degree A outside C, and 4 < A < n-—3.
Suppose without loss of generality that v; is the vertex on C;. that is nearest
to u. By Lemma 3, the vertices outside C, different from u are of degree
one or two, and the vertices on C, are of degree two or three. By Lemmas
4 and 5, there is at most one vertex on C, different from v; with degree
three, and this vertex (if exists) must be one neighbor of v;, say vz. Let
P,41 be a longest pendant path at w with a > 1. Let T = Py with b > 0.

By Lemma 6, there is at most one pendant path at u in G with length
at least two. Suppose that there is such a pendant path. Then a > 2. Let
z be the neighbor of the pendant vertex of the pendant path P,y at u.
Let s =dg(u,z). Then s=a—12> 1. Let y1,¥2,...,Ya-2 be the pendant
neighbors of u, and ya—1 the neighbor of u on the pendant path P41 at
u. For G* = G — {uy1, uys, . .., uya—2} + {zy1, 292, ..., zya-2} € U(n, B),
we have

w(G*) — w(G)

(ea-1)(A-2)(n—-A—-8)—-s(A-2)
= s(A-2)(n—A-s5-1)>0,
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a contradiction. Thus there is no pendant path at u with length at least
two, i.e., u has A — 1 pendant neighbors in G.

Suppose that b > 1. Let z be the pendant vertex of Pot+;. Let G** =
G — v1v2 + v1z € U(n, A). Note that v; is a cut vertex in G and G**. Let
G1- and G2- be the subgraphs of G induced by V(T1) and V(C,) UV(T3),
respectively. Let Gi* and G3* be the subgraphs of G** induced by V'(T})
and V(Ci.4s), respectively. Obviously, G;. = G}*. By Lemma 1 (iii), we
have w(G3*) > w(Ga-). It is easily seen by Lemma 1 (i) that wy, (G3*) —
wy, (G2+) = 3B+ (2r — 2)b+€r 45 — &) = ::-(1+2r—2—1) =i(r-1)>0.
By Lemma 2, w(G**) > w(G), a contradiction. Thus b = 0.

Suppose that dg(u,v;) = 2. Let w be the neighbor of u on the path
connecting v and v;. Let t = dg(w,v1). Thent > 1. Let G*** =G —
v1v2 + wvp € U(n,A). Note that w is a cut vertex in G and G***. Let
G- = G - {U, Y1, Y2,... 1yA—1}, Gz = G — (V(Gl") \ {’LU}), GI’" =
G** —{u,y1,92,...,¥ya-1} and G3** = G*** — (V(G1**)\ {w}). Obviously,
G2+ = G3**. By Lemma 1 (iii), we have w(G}**) > w(G1--). It is easily
seen by Lemma 1 (i) that wy(G1™*) —wy(Gie-) = L{t2+ (2r —2)t + £ pe —
€] > $(1+2r —2-1) = (r — 1) > 0. By Lemma 2, w(G***) > w(G), a
contradiction. Thus dg(u,v) = 1.

By the above arguments, it follows that r = n— A, and then G = U, as
where Uy, A is the graph obtained by attaching a star on A vertices at its
center to one vertex on the cycle C,_a. By direct calculation,

3(3n® — 3n2A - 3nA? 4 3A3

—4n? +16nA —4A% —Tn - TA +8) ifn— A is odd,
$(3n3 — 3n%A — 3nA? + 3A3

—4n? + 16nA — 4A%? —8n —8A +8) if n— A is even.

w(Usa) =

Combining Cases 1 and 2, we have G =U, o for 3< A <n-1lor Usa
for <A<n—-3.If4 <A <n-23, then it is easily seen that

w(Un,a) - w(Uy,a)
1[-10A2% + (4n +20)A + 6n% —20n — 2] ifn— A is odd
1[-10A% + (4n + 20)A + 6n2 — 20n] if n — A is even
> 0,

and thus w(Un,a) > w(U, 5). Therefore G = Up a. The result follows. O

By Theorem 1, Uy, a is the unique graph with the maximum detour
index among graphs in U(n,A), where 2 < A <n —1.
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