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Abstract

The t-pebbling number f;(G) of a of graph G, is the least positive
integer m such that however these m pebbles are placed on the vertices of
G, we can move t pebbles to any vertex by a sequence of moves, each move
taking two pebbles off one vertex and placing one on an adjacent vertex.
In this paper, we study the generalized Graham’'s pebbling conjecture
fi(G x H) £ f(G)fe(H) for product of graphs when G is a complete
r-partite graph and H has a 2t-pebbling property.
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1 Introduction

Pebbling in graphs was first considered by Chung [1]. She defines a pebbling
distribution or a pebbling configuration on a connected graph as a placement of
pebbles on the vertices of the graph . A pebbling move consists of the removal
of two pebbles from a vertex, and the placement of one of those pebbles on an
adjacent vertex. Chung [1] defined the pebbling number of a connected graph,
which we denote f(G), as follows: f(G) is the minimum number of pebbles such
that from any distribution of f(G) pebbles on the vertices of G, any designated
vertex can receive one pebble after a finite number of pebbling moves. She also
defined the #-pebbling number of G as the smallest number f;(G) such that from
any placement of f;(G) pebbles, it is possible to move ¢ pebbles to any specified
target vertex by a sequence of pebbling moves.
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Chung also defined the two pebbling-property of a graph and Wang [10]
extended Chung’s definition to the odd two-pebbling property. In [4] we find
the 2t- pebbling property of a graph and generalization of Graham’s Conjecture.

In this paper we prove that f;(G x H) < f(G)fi(H) when H has the 2t-
pebbling property and G is any complete r-partite graph.
In [4] we find the following.

Definition 1.1. [4] Given a pebbling configuration of G, let p be the number
of pebbles on G, and q be the number of vertices with at least one pebble. We
say that G satisfies the 2t-pebbling property if it is possible to move 2t pebbles
to any specified target vertex of G starting from every configuration in which
P> 2f(G) — q + 1 or, equivalently, p + q > 2f(G) for all ¢.

Conjecture 1.2 (Generalization of Graham’s Conjecture). (4] For any con-
nected graphs G and H, the t-pebbling number of G x H satisfies f;(G x H) <
f(G)fe(H) for all t.

Theorem 1.3. [4] Let P,, be a path on m vertices. When G satisfies the
2t-pebbling property, fi(Pm X G) £ f(Pm)fe(G) for all t.

2 Star Graphs

In this section, we first show that star graphs K} ,, satisfy the 2¢-pebbling prop-
erty. We then prove Generalization of Graham’s Conjecture when G is a star
graph and H satisfies the 2¢-pebbling property.

We use the following theorems.

Theorem 2.1 ([8]). Let G be a graph with diameter= 2. Then G satisfies the
2-pebbling property.

Theorem 2.2 ([6]). Let K1, be an n-star where n > 1. Then fi(K1n) =
4t+n -2
Our next theorem shows that all star graphs have the 2t-pebbling property.

Theorem 2.3. The star graph K, , where n > 1 satisfies the 2t-pebbling prop-
erty.

Proof. Let V(Ky,) = V1 UV, where Vi = {w} and V2 = {v1,v3,...,vs}.
ft(K1,n) = 4t+n—2 (Theorem 2.2). We start with a configuration of 2f¢(K1,»)—
g+1=8t+2n— g — 3 pebbles with g occupied vertices. We use induction on ¢
to prove the result. For ¢ = 1, the theorem is true by Theorem 2.1. We assume
t > 1 and the target vertex has zero pebbles on it initially.
Case(i). Let the target vertex be w.

As g can be at most n, we start with at least 8¢ 4+ n — 3 pebbles.
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Subcase(A). n<8t-6.

In this case we start with at least 2n + 3 pebbles. We claim that either there
will be at least one vertex with five or more pebbles or there will be at least two
vertices with three or more pebbles each. Suppose not. Then we can have a
vertex with at most four pebbles but each of the other vertices with at most two
pebbles. Therefore, the configuration has at most (g—1)2+4 < 2n+2 < 2n+3
pebbles, raising a contradiction. Thus two pebbles can be moved to w using
four pebbles without making any of the g occupied vertices empty. This leaves

us with 82+ 2n—~¢—7> 2f;_1(K1,») — g+ 1 pebbles that have not been moved
with g occupied vertices. These pebbles would suffice to put 2(t — 1) additional
pebbles on w by induction.
Subcase(B). n > 8t—-6.
If there is a vertex with at least five pebbles or there are two vertices with at
least three pebbles each then we use induction on ¢ to put 2¢ pebbles on w as in
Subcase(A). Suppose not.Without loss of generality,we assume there is a vertex
with four pebbles. Therefore, each of the other vertices will contain at most two
pebbles. We claim that there will be at least 2¢ — 1 vertices each with exactly
two pebbles. Suppose there are at most 2t — 2 vertices each with exactly two
pebbles. Therefore the configuration has at most (2t —2)2+4+(g—(2t—1)) =
2 +q+1 < 8 +42n— g-— 3 (since ¢ < n) pebbles, which is a contradiction.
Therefore we have at least 2¢ — 1 vertices each with exactly two pebbles and a
vertex with four pebbles and hence 2t pebbles can be moved to w.
Case(ii). Let the target vertex be v; for some i =1,2,...,n.

Without loss of generality, we assume w has zero pebbles on it. As g can be
at most n — 1 we start with at least 8t + n — 2 pebbles.
Subcase(C). n<8t—7.
In this case we start with at least 2n+5 pebbles. We claim that either there will
be at least one vertex with nine or more pebbles or there will be at least two
vertices with five or more pebbles each or there will be at least four vertices with
three or more pebbles each. Suppose not. Without loss of generality, we assume
there is a vertex with eight pebbles. Therefore each of the other vertices will
contain at most two pebbles. Then the number of pebbles in the configuration
is at most (g—1)2+8 = 2¢+6 < 2n+4, since ¢ < n—1, raising a contradiction.
Therefore, four pebbles can be moved to w and hence two pebbles can be moved
to v; using eight pebbles without making any of the g occupied vertices empty.
This leaves us with 8t + 2n — ¢ — 11 = 2f;_1(K1,n) — q + 1 pebbles that have
not been moved with g occupied vertices. These pebbles would suffice to put
2(t — 1) additional pebbles on v; by induction.
Subcase(D). n>8t-7.
If there is a vertex with at least nine pebbles or there are two vertices with at
least five pebbles each or there are four vertices each with at least three pebbles
then we apply induction to put 2¢ pebbles on w. Otherwise, without loss of
generality, we assume there is a vertex with eight pebbles. Therefore, the other
vertices will contain at most two pebbles. We claim that there will be at least
4t — 1 vertices with exactly two pebbles. Suppose, there are at most 4t — 2
vertices with exactly two pebbles. Therefore, the configuration has at most

203



(4t-2)2+8+(g—(2t—1))=4t+5+9<8+2n—q—3 (sinceg<n-—1)
pebbles, which is a contradiction. Therefore, we have at least 4t — 1 vertices
with exactly two pebbles and a vertex with eight pebbles and hence 4t pebbles
can be moved to w and then 2t pebbles can be moved to v;. This completes the
proof. B

Next theorem proves the generalization of Graham’s Conjecture when G is
a star graph and H satisfies the 2t-pebbling property. We take Lemma 2.4
from [3]. It describes how many pebbles we can transfer from one copy of H to
an adjacent copy H in G x H. It is also called Transfer Lemma.

Lemma 2.4 (Transfer Lemma). Let (z;,z;) be an edge in G. Suppose that in
G x H, we have p; pebbles occupying q; vertices of {z;} x H. If ¢; —1 < k< p;
and if k and p; have the same parity then k pebbles can be retained on {z;} x H

while moving B 2_ k pebbles on to {z;} x H. If k and p; have opposite parity

we must leave k + 1 pebbles on {z;} x H, so we can only move B (2k =

pebbles on to {z;} x H.

In particular, we can always move at least Pi

—;qi pebbles onto {z;} x H.

Theorem 2.5. Let K, be an n-star (n > 1). If G satisfles the 2t-pebbling

property then
ft(Kia X G) £ f(K1,0)ft(G) for all t.

Proof. Let V(K ,) =UUW where U = {u} and W = {w;,wa,...,ws}. The
pebbling number of K}, is f(K1,n) = n+2 [2]. We use induction on = to prove

fg(K]_m X G) S (n + Z)fc(G)

For n = 2, K2 = P, a path on three vertices u, w; and wz. Therefore by
Theorem 1.3
fi(K12 x G) £ 4f(G)

We assume n > 2. Let p be the numbers of pebbles on {u} x G with g occupied
vertices and p; be the number of pebbles on {w;} X G with g; occupied vertices.
Let y € G.

Case(i). Suppose the target vertex is (u,y).

In this case, we fix some w; € W. If p._—;__q_, > fi(G), then 2t pebbles can
be placed on (w;,y) and hence ¢ pebbles can be moved to (u,y). Otherwise, we
transfer 2% ; & pebbles from {w;} X G to {u} x G by Lemma 2.4. The subgraph
(K1,n — {wi}) x G is isomorphic to K1 no1 X G.

Therefore, if (Z pk) pi+ p+ 2 k. U (n+1)f:(G), then t pebbles can
be placed on (u,y) by induction.
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Thus if we are unable to put ¢ pebbles on the desired target (u,y) then both
the inequalities

‘;q'<f(G) and

(Zm) —-pi+p+ BT 2"' < (n+1)f(G) hold.

k=1

Adding them together gives
P+pr+p2+...+Pn < (n+2)f(G).

Thus any distribution of pebbles from which we may not put ¢ pebbles on (u,y)
must begin with fewer than (n + 2)f:(G) pebbles.
Case(ii). Let (w;,y) be the target vertex for some j =1,2,...,n
Without loss of generality we assume that (wp,,y) is the target vertex. We
take the 7 + 1 copies of G i.e., {u} x G, {w1} x G, {w2} x G, ..., {wn} x G,
respectively G, G, ..., G,. We claim that "G: G; contains at least (n +
1=
1)f:(G) + 1 pebbles. Suppose not.
n-1
Then, .Ul G; contains at most (n + 1) f;(G) pebbles. We may assume every
=

vertex of "911 G; contains an odd number of pebbles (This is the worst case
(n+1)f:(G) —m(n-1)

scenario). Then by Lemma 2.4 we could move at least 5
pebbles to the vertices of Gy where m denotes the number of vertices of G. After

this process the number of pebbles on (K 5, — U {w.}) x G will be

> (n+ l)fg(G;— m(n—1)
(n-1)
2

+ £(G).

=2£,(G) + (f:(G) = m).
2 2£fi(G) as fi(G)2m.

Since the subgraph (K, — '.‘L_.J:{w‘-}) x G isomorphic to P; x G, we are done by

Theorem 1.3.

Therefore, we may assume that p + pn < fi(G). We assume that p + p, =
a0 ft(G) where 0 < ag < 1 and that {w;} x G contains (k; + a;)f:(G) pebbles
where k; is a non-negative integerand 0 < oj <1 forj=1,2,...,n-1.

-1
Now, we claim that nz g; > (n— 2+ a0) ft(G).
j=1

n—1
For suppose not. Then ) g; < (n—2+a0)f;(G). Then we could move at least
i=1

(n+2)£:(G) = a0 fi(G) = (n = 2+ ) £:(G)

5 = (2~ 20)£«(C)
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pebbles to the vertices of G, and hence after this process, the number of pebbles
on the subgraph (K, - :EJ:{wi}) x G will be at least 2f,(G) and hence we are
done.

Now, let EaJ—s<n-1 HenceZk (n+2)-s.

Note that a; ft(G) + ¢ < 2f¢(G) for 1 < i< < n — 1. We claim that there exists
J1,J2,. .1 Js such that j; > 1 and aj, fi(G) + ¢;, > f:(G), 1 =1,2,...,s. For
suppose not, then

n-1
3" (@i fi(G) +45) < 2s - DFAC) + ((n = 1) — (s — D) £(C)
j=1
= (n 2)f:(G) + s£(G)
n-1 n-1
But z (i fe(G) +q;) = Z a; fi(G) + Zq,
j=1 j=1

> Za,-ft(a) +(n - 2+ a0) f(G)
i=1

n-1
= Z a;fi(G) + (n - 2)£:(G)
j=0

= 8f1(G) + (n - 2)f:(G)

and this is a contradiction.

Therefore, we may assume (after relabeling if necessary) that a;fi(G) + ¢; >
ft(G) for 1 < j < s. Assume that for some 1 < j < s we had k; = 0, then
G; contains o;f;(G) < fi(G) pebbles. Hence (K1n — {w;}) x G has at least
(n + 1)f:(G) pebbles at its vertices. As the subgraph (Ki . — {w;}) x G is
isomorphic to K1,,-1 X G, we are done by induction.

Therefore, we may assume that k; > 1for 1 < j < s. Now, in G;(1 < j < s)
we have a; f;(G)+¢q; > f:(G) and k; > 1. Hence by the 2t-pebbling property we
can move at least (k; + 1)t pebbles to (w;,y) in G; fori < j <s. In G;(j > s)
we can move at least k;t pebbles to (w;,y). By the above pebbling moves we
see that, at least

n-1
Z(k +1t+ ) kt=st+(n+2-s)t=(n+2)t> fi(Kin)
j=1 J=s+l

pebbles can be moved to the copy K » X {y} of K1, and we are done ((wn,y) €
Klin x {y})' n

Theorem 2.6. Let K;, be an n-star (n > 1), Then fi(Kin x Ki,m) <
f(Kl.n)ft(Kl.m)-
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Proof. The proof follows from Theorem 2.5 and Theorem 2.3. [ ]

3 Complete r-Partite Graphs.

Definition 3.1. For s; > 83 > --- 2 8,, 81 > l and if r = 2, 85 > 1, let
K,, s3,..,s, be the complete r-partite graph with sy, ss, ..., s, vertices in vertex

-
classes Cy,Cy,. .., C, respectively. Let n = 2 8;.

i=1
We prove Theorem 3.4 in order to apply the principle of induction to prove
the Generalization of Graham'’s Conjecture when G is a complete r-partite graph
and H is a graph with the 2t-pebbling property. First we prove Proposition 3.2
and Theorem 3.3 which will be used in the proof of Theorem 3.4.

Proposition 3.2. Suppose G satisfies the 2t-pebbling property and consider
the graph P3 x G. To t-pebble a target vertex on .the middle copy of G, it
suffices to start with 3f,(G) pebbles on P; X G.

Proof. Label the vertices of P; by z;,z2 and z3 in order. Let p; denote the
number of pebbles on {z;} x G with ¢; occupied vertices. Since G has the 2t-
pebbling property we can put 2t pebbles on (z1,y) unless @ < fi(G). By
Lemma 2.4 and Theorem 1.3 we can t-pebble (z2,y) directly by transferring

pebbles from {z;} x G unless P_l;_tn_ + p2 + p3 < 2f;(G). But if both these

inequalities hold, then adding them together gives p; + p2 + p3s < 3f:(G). Thus
any distribution of pebbles from which we may not put ¢ pebbles on some vertex
on the middle copy of G, must begin with fewer than 3f;(G) pebbles. |

Theorem 3.3. Let K32 be a bipartite graph and G be a graph with the 2t-
pebbling property.

Then fi(Ks2 x G) < f(K22)f(G)
ie., [fi(Ks2xG)<4f(G) sincef(Kz2)=4[2.

Proof. Let V(K332) = Vi UV, where Vi = {uj,us} and Vo = {us,uq}. Let
y € G. Without loss of generality we assume the target vertex on K2 X G is
(u1,7). We denote the four copies of G in Ko x G, ie., {ui} X G,i=1,2,3,4
respectively by G;. Let p; denote the number of pebbles on G; with g; occupied
vertices. Suppose we start with a configuration of 4f,(G) pebbles. We consider
the following cases.

Case 1. Suppose P2 ; 2 < fi(G).

In this case we use Lemma 2.4 to transfer pebbles from G; to the rest of the
graph. The subgraph formed by the three copies G, G3 and G4 of G is isomor-
phic to P; x G. By Proposition 3.2, if we put 3f;(G) pebbles on this subgraph
we can t-pebble the target as it lies on the middle copy of the above subgraph.

207



Therefore we can put ¢ pebbles on (u;,y) unless

B2 4 pi+pa+pu < 35(0). (1)

Adding 22_‘;'£ < fi(G) to (1) we get p1 + p2 + p3 + ps < 4£:(G) and so the
original configuration had fewer than 4f;(G) pebbles.

Case 2. If p% > fi(G).

We put 2t pebbles on (uz,y) using 2f;(G) — g2 + 2 pebbles and we transfer
P2 — (2ft(C;) ~e+2) pebbles to G4 by Lemma 2.4. If we can put ¢ pebbles
on (u4,%), then the target can be t-pebbled as ¢ more pebbles can be added to
(uq,y) from (ug,y). If this is not possible then

p2 — (2£:(G) — g2 +2)

3 +ps < fi(G).
ie., # +ps < 2fi(G) + 1.
. +
ie., ’L'*’-iﬂ +p4 < 2£4(G). @)

Alternatively, if we can put 2f;(G) pebbles on the subgraph formed by G, and
G3; then the target can be t-pebbled as the above subgraph is isomorphic to
Py x G and f;(P; x G) < 2f:(G) by Theorem 1.3. If this is not possible then
&—;2 +p1 +p3 < 2fi(G). (3)
Suppose (2) and (3) hold. Then adding (2) and (3) we get p; +p2 + p3 +ps <
4f,(G) and hence the original configuration had fewer than 4f:(G) pebbles.

Therefore, if we cannot put ¢ pebbles on (u;,y) then the original configuration
has fewer than 4f:(G) pebbles. [ |

Theorem 3.4. Let K,, 2 be a bipartite graph with s; > 2 and G be a graph
with the 2t-pebbling property. Then

Jt(Ksy 2 X G) < (81 + 2)£2(G)- [f(Ka2)=a1+2] 2]

Proof. We use induction on s; to prove the result. The result is true for
s; = 2 by Theorem 3.3. We assume s; > 2. Let V(K,,2) = V} U V2 where
Vi = {v1,vs,...,vs,} and Vo = {uj,uz}. Let p;; be the number of pebbles on
{v;}x G with g5 occupied vertices and pz; be the number of pebbles on {u;} xG
with gy; occupied vertices. Let y € G. Suppose we start with a configuration of
(s1 + 2) f:(G) pebbles on K,, 2 x G.
Case(i). Suppose the target vertex is (u;,y) for some i =1,2.

Without loss of generality, we take the target vertex is (u1,y). We choose
v; € W, for some j = 1,2,...,9;. Since G satisfies the 2¢-pebbling property, if
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gi}-‘”—j > f:(G), then 2t pebbles can be placed on (v;,y) and hence t-pebbles

can be moved to (u;,y). Otherwise, we transfer p—l’%q—ll pebbles to the vertices
of {u1} x G.

If { 3 pix | +p21 +p22 + ?—lj—;ij- 2 (81 + 1) f(G) then by induction the

k#j .
result follows since (K, , — {v;}) x G is isomorphic to K,,_1 2 x G. Therefore,

if we cannot ¢-pebble (u'l,y) then both the inequalities
R ;qu < fi(G) and

(ka) +pa1 +po + 2L 2Y 2 P22 < (s1+1)£(G) hold.
k#j

Adding these together gives
81
(Zplk) +p21 + P22 < (81 + 2)£e(G).
k=1

Thus the original configuration has fewer than (s; + 2)f:(G) pebbles.
Case(ii). Suppose the target vertex is (v;,y) for some v; € V.

If there exists some v, € Wi, k # ¢ such that p1s, < f;(G), then the subgraph
(Ks,,2 — {vx}) x G which is isomorphic to K,,_12 x G will contain at least
(s1 + 1) f:(G) pebbles and hence the result follows by induction. Therefore we
assume that pyx > fi(G) for every k # i.

Subcase (A). If there exists some j and k such that }_’_1%@_1_;_ > f:(G) and

Pu + qik > fi(G) then since G satisfies the 2t-pebbling property, 2t pebbles

can be placed on each (v;,y) and (vk,y) and hence 2t pebbles can be placed
either on (u1,y) or on (u2,y) and thus ¢ pebbles can be moved to (v;,y).

Subcase (B). Suppose Pytay > fi(G) for a unique j. Therefore P1k -2H11k <

fe(G) for every k # j. We make two observations. First, if we could put ¢

pebbles on (u;,y) and retain 2f,(G) + 2 — q1; pebbles on {v;} x G in order
to put 2¢ pebbles on (v;,y) then we get a path {(v;,y), (u1,¥), (vi,y)} with 2¢
pebbles on (v;,y), t pebbles on (u1,y) and hence ¢ pebbles could be moved to
(vi,y). Alternatively if we could put 2f;(G) pebbles on the subgraph formed by
the copies {u2} x G and {v;} x G of G then we could put ¢ pebbles on (v;,y)
by Theorem 1.3 as this is isomorphic to P, x G.

From Lemma 2.4 we can keep 2f;(G) + 2 — ¢1; pebbles on {v;} x G and still

2f(G)+2-
transfer 22— (25( )+ a15) pebbles to {u;} X G and transfer Pix — ik

pebbles from {ve} x G’ for each & # 4,7 to {63} x G. We can achieve the first

goal by putting f;(G) pebbles on {u;} x G.
We achieve the second by putting 2f:(G) pebbles on the subgraph formed
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by the copies {u2} x G and {v;} x G by transferring Pl — ik

k # i to {uz} x G. If we cannot reach either objective, then both of the following
inequalities hold:

= (2fe(G) +2 - qy; -
1 = (2£(G) +2 - qy;) +po + Z Pl=@ik . £(c) and
2 < 2
k#j.i
p1i + p22 +z Blk;i < 2fe(G).
ki
Adding these inequalities together, we have

P21 +pa2+ (Zplk) - Y qi < 4£(G)
k=1 ki i
ie, (s1+2)fA(G)- Z qix < 4£1(G)
kg
ie, D qu>(s1-2)f(G) (4)

k#j,i

Butfor  k#3,i &#< £(G)

ie, qu <2fi(G)-pux
Therefore 2 g1k < 2(s1 — 2)fe(G) - Z Pk
k#j.t k#j,i
< 2(s1 — 2)f(G) — (81 — 2)f:(G)
(since p1x > fi(G) for every k # i)
= (81 - 2)fe(G)
which contradicts (4)

pebbles for each

Subcase (C). Suppose plk—;‘mi < fi(G)forallk=1,2,...,s;.

If we can put 3f(G) pebbles on the subgraph formed by the three copies
{u1} x G, {u2} x G and {v;} x G then the target can be pebbled by Proposition
3.2 as it lies on the middle copy of the above subgraph which is isomorphic to
P; x G. Therefore, if we cannot pebble the target then the inequality

Pri+pa +pm+ Y BT <3£(G) holds.
J#i

Also 21—"—-2"—(]—”5 < fi(G)forall k=1,2,...,8. Adding these we get

P +Pa1+p2z+ )Py < (s1+2)f:(G)
J#i
Thus we cannot ¢-pebble the target if the original configuration has fewer than
{31 + 2) f:(G) pebbles. |
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We now prove K, s,,....s, X G satisfies the Generalized Graham’s Conjecture
when G is any graph with the 2¢-pebbling property.

Theorem 3.5. Let K,, ,,,....s, be a complete r-partite graph with s1,s3,..., s,
vertices in vertex classes C1,C3,...,C, respectively and G be a graph with the
2t-pebbling property. Then

fi(Ksy,53,....5. X G) < nfy(G) where
n= f(Ks;,ag,...,s,.) =8 -+ S +... + s» [2].

Proof. We prove the theorem by induction on n. Suppose we start a configu-
ration of nf;(G) pebbles on K, s,.....s. X G. By Theorem 3.4, the result is true
when r = 2 and s; = 2. Therefore we assume r > 2 and 33 > 2 if r = 2.

Let {vi1,vi,...,v;,, } be the vertices of C; for i = 1,2,...,r. Let pi denote
the number of pebbles on {v;x} x G with g occupied vertlces Let y € G and
(vij,y) be the target vertex.

Suppose there exists some vjm € Kj, q5,...,s, Such that v, # vi; and pym <
f:(G) then the subgraph (K, ,s;,....s» — {tim}) X G which is isomorphic to
Ky, s5...05-1,...s. X G will have at least (n — 1)f;(G) pebbles and hence the
result follows by induction. Therefore we assume py, > fi(G) for every u # ¢
and v # j.

Now, we choose some element, say vim from any one of the vertex classes,
say Cj, other than C;. If &'ﬁ—;ﬂ"- > fi(G) then 2t pebbles can be placed on
(vim, y) and hence ¢t pebbles can be moved to (v;;,y).

Suppose plL‘gqﬂ < fi(G). Then by Lemma 2.4 we move Pim — Gim peb-

2
bles to the copy {vi;} x G of G.

it (3 (Srm) -pm) + 225782 > (- 1),

w=l k=l
then the result follows by induction. Therefore, we cannot t-pebble the target
if both the inequalities

Bm 2 8m < f4G) and

(Z (Z” “’") 1"‘"‘) m—m;—% <(n-1)f:(G) hold.

Adding these together gives

r

33 pur < nfi(G)

w=1 k=1

Thus the original configuration has fewer than n ft(G) pebbles. This completes
the proof. |
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We proved Theorem 3.6 in [5] which will be used in proving Theorem 3.7.
Theorem 3.6. Any complete r-partite graph satisfies the 2t-pebbling property.
We conclude this paper with the following theorem.

Theorem 3.7. Let K, s,,....s, be a complete r-partite graph. Then
ft(K:;,sg,...,a,. X Km;,mz,...,mn) S f(Kn,sz....,sr)ft(K"u,m:,...,m,.)-

Proof. Follows from Theorem 3.5 and Theorem 3.6. [ ]

4 Conclusion.

We have proved generalized Graham’s pebbling conjecture for the product of
complete r-partite graphs. Producing algorithms on graph pebbling will be
another interesting area of research.
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