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ABSTRACT

For two vertices u and v in a strong oriented graph D, the strong
distance sd(u,v) between u and v is the minimum size (the number
of arcs) of a strong sub-digraph of D containing u and v. For a vertex
v of D, the strong eccentricity se(v) is the strong distance between
v and a vertex farthest from v. The strong radius srad(D) is the
minimum strong eccentricity among the vertices of D. The strong
diameter sdiam(D) is the maximum strong eccentricity among the
vertices of D. In this paper, we investigate the strong distances in
strong oriented complete k-partite graphs. For any integers 6, r, d
with0 <6 <[5]-1,3<r < |%+1,4<d<k we have
shown that there are strong oriented complete k-partite graphs K ',
K", K" such that sdiam(K') — srad(K') = 8, srad(K") = r, and
sdiam(K m) =d.
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1 Introduction

The familiar distance d(u,v) between two vertices » and v in a con-
nected graph G is the length of a shortest (u,v)-path in G. Equivalently,
the distance is the minimum size of a connected subgraph of G containing
u and v. Using this equivalent formulation of distance, this concept was
extended by Chartrand et al. [2] to strongly connected digraphs, in par-
ticular to strong oriented graphs. In this paper, we consider only strong
oriented graphs, and refer to [1] for graph theory notation and terminology
not described here.

Let u, v be vertices of a strong oriented graph D. The strong distance
sdp(u,v)(or simply sd(u,v)) between u and v is defined as the minimum
size of a strong sub-digraph of D containing » and v. A (u,v)-geodesic
is a strong sub-digraph of D of size sd(u,v) containing » and v. In some
sense, this definition can be considered as an alternative definition of Steiner
distance between two vertices in digraphs, as the Steiner distance of a
vertex set S in a graph G is the minimum size of a connected subgraph
which contains all the vertices of S. It was shown by Chartrand et al. [2]
that the strong distance is a metric on the vertex set of D. If u # v, then
sd(u,v) > 3. And sd(u,v) = 3 if and only if « and v belong to a directed
3-cycle in D. In the strong oriented graph of Figure 1, sd(w,v) = 3,
sd(u,w) = 5, and sd(u,z) = 6.

y

Figure 1: Strong distance in a strong oriented graph.
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The strong eccentricity sep(v)(or simply se(v)) of a vertex v in a strong
oriented graph D is

se(v) = max{sd(v,z) | = € V(D)}.
The strong radius srad(D) of D is
srad(D) = min{se(v) | v € V(D)};
while the strong diameter sdiam(D) of D is
sdiam(D) = max{se(v) | v € V(D)}.

Chartrand et al. [2] showed that the strong radius and strong diameter
of a strong oriented graph satisfy the following inequality.

Theorem 1.1 (Chartrand et al. [2]) For every strong oriented graph D,
srad(D) < sdiam(D) < 2srad(D).

Chartrand et al. (3] also showed that, for any integers J, r, d with
0<6<k,3<r<k+1,3<d<2k+1, there are strong tournaments T},
T, and T3 of order 2k+1 such that sdiam(T})—srad(T1) = 6, srad(T3) =,
and sdiam(T3) =d.

Theorem 1.2 (Chartrand et al. [3]) For every integer k > 2, there exists
a strong tournament T of order 2k + 1 in which sdiam(T) — srad(T') = §
for every § with0< 6 < k.

Theorem 1.3 (Chartrand et al. [3]) For every integer k > 2, there exists
a strong tournament T of order 2k + 1 with srad(T) = r for every integer
ruwith3<r<k+1.

Theorem 1.4 (Chartrand et al. [3]) For every integer k > 2, there exists
a strong tournament T of order 2k + 1 in which sdiem(T) = d for every
integer d with3 <d < 2k+1.

Let K(my,ma,...,mi) be a complete k-partite graph with vertex par-
tition of cardinalities m;, ma, ..., mg. In this paper, we consider strong
distances in strong oriented complete k-partite graphs K(mj,ma,...,mg)
with1 <my <mg <+« <myg, mg > 2and k > 3. It is shown that,
for any integers 6, r, d with 0 < § < [k/2] -1, 3 < r £ |k/2] +1,
4 < d < k, there are complete k-partite digraphs K', K", K" such that
sdiam(K') — srad(K') = 8, srad(K") =r, and sdiam(K"') = d.
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2 Main Results

It is shown by Chartrand et al. [3] that there exists a strong tourna-
ment T of order n with srad(T) = sdiam(T) = 3 except n = 4. The only
strong tournament of order 4 contains two vertices of strong eccentricity 3
and two vertices of strong eccentricity 4.

Theorem 2.1 (Chartrand et al. [3]) For any integer n > 3 except n =4,
there erists a strong tournament T of order n with sdiam(T) =

In the following, we will show that when k > 3,1 =m3 < --- < mg
and my, > 2, there exists a strong orientation K of K(m;,my,...,my) such
that sred(K) =

Lemma 2.2 For every integer k > 3, let 1 =m; < mp < -+ < my and
my > 2. Then there erists a strong orientation K of K(my,my,...,mx)
such that

when my + mg + -+ + mg_y > mi, srad(K) =3 and sdiam(K) =
when my + mo+ -+ mg_y <my, srad(K) =3 and sdiam(K) =

Proof. Let (W1, V%,..., Vi) be a k-partition of K(my,ma,... ,mk), where
Vi={o{ |5 =1,....m}for1<i<k

If my + mg + -+ + mg—1 > My, let K be the strong orientation of
K(my,ma,...,m) such that

AK) = {Po?)|1<s<t<k-1,1<i<m,1<j<me}
U {@,0) 1< < mi}
U {0®vP)|2<s<k~1,1<i<m,,
j=my+---+me_y +i—1(mod my)}
U {0 ]2<s<k-1,1<i<m,,
jEmMy 4 +ms_y +1i—1(mod my)}.

Consider the vertex v ) e V1. For any vertex v( ) e V, with 2 < s <
k—1and 1 <i<m,, the directed 3-cycle v{Vv{)v (k) v{ is a (v, (’))
geodesic, where j = my +---+m,_1+i—1(mod mk). So sd(vgn, v(a)) =

For any vertex vg.k) € Vi with 1 < j < my, there exists a vertex 'v,( € %
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for some s, 2 < s < k — 1, such that the directed 3-cycle vfl)v,g’)vj(-k)vil)
isa (v(l),vj(k)) geodesic, where j = mj + .-+ + my—y +4 — 1(mod my). So
sd('vgl),v(k)) = 3. Hence, se('u?)) =3.
For any two vertices vf’),v(’) EV,(ifmg >2) with2<s<k-1
and 1 <i < j < mg, v§’) and v(°) are contained in the directed 4-cycle
("’) (k)v(’)v(k)v(a) where l=my + -+ my_1 +i— 1(mod my) and r =
my+--+my_1 + 7 — 1(mod my) . Hence, sd(v(’), vJ(.’) ) < 4.

For any two vertices v(k),v(k) € Vi withl < i < j < my, there
exist two vertices 'v,( ) ¢ V, and v(") €W, 2 <s,t <k—1 such that v,gk)
and v(") are contained in the directed 4-cycle v(") (") (k) ey (k), where
j=my+ - +me_1+l—1(mod my) and i = my+- - +mg_1+r 1(mod my).
Hence, sd(vﬁk),vj(.k)) <4.

For any two vertices v(’) € Vs, v(t) eViwith2<s<t<k-1,
1<i<myand1<j<my, (") and 'u(t) are contained in the directed
4-cycle v(l)u(s)v(t)v(k)v(l) where r=my+---+ ht_l + 7 — 1(mod my) .
Hence, sd(v(’),vj(-‘)) <4.

For any two vertices v(") ev,, v(-k) €Viwith2<s<k-1,1<i<m,

and 1< j<my, ifj=my+- 4+ ms_1 +¢— 1{mod my), then 'v(’) and

y’) are contained in the directed 3-cycle v(l) ("’) (") (1) cifj#Emy+.- o+

Ms—1 + ¢ — 1(mod my), then v(") and v(-k) are contamed in the directed

4-cycle 'v(") (k),, (t) (k) (’) , where l =my +-+-+mg_1 +i—1(mod my) and
j=my+---+ mt_1 + r — 1(mod my). Hence, sd(v("),v(-k)) <4.

Therefore, srad(K) = 3 and sdiam(K) < 4. On the other hand,
any two vertices in the same partite set cannot be contained in any di-
rected 3-cycle, which implies that sdiam(K) > 4. Hence, srad(K ) =3 and
sdiam(K) = 4.

If my +mo+ .-+ +my_y < my, contract each partite set V; to a new
vertex v;. Denote T by the strong tournament induced by {v;, vz, ..., vk}
If k = 4, let T} be the unique strong tournament with se(v,) = 3. If k # 4,
by Theorem 2.1, let Tk be the strong tournament with sdiam(Ty) = 3. Let
K be a strong orientation of K(m;, ma,...,m;) such that (v,, v:) € A(Tk)
if and only if ('u,(’),'u(t)) € A(K) for 1 s<t<k 1<i< m,and
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1<j<me.

Ifk =4, vgl) and v‘(’) are contained in a directed 3-cycle for2 <
s§<4,1<i<my; v and vg-‘) are contained in a directed 4-cycle for
2<s<t<41<i<mandl <j<m Ifk#4, any two
vertices v,(’) € V, and vgt) € V, are contained in a directed 3-cycle for
1<s<t<kl<i<mgandl < j < m,. For any two vertices
vf"),vg’) eV, with2<s<k 1<i<j<m,, v,(’) and vj(-’) cannot be
contained in any directed 3-cycle or 4-cycle, since N "‘(v,(’)) =N+ (vga)).
So sd(vgs),vj(."’)) > 5. On the other hand, v; and v, are contained in a
directed 3-cycle, we may assume v,v,v;v1. Then the sub-digraph induced
by {0, 08), (0, 0{"), (0, 0{?), (of", v), (vf), v{?)} is a strong sub-
digraph containing v{*) and vf’). So sd(v?),vj(-“)) = 5. Hence, srad(K) =3
and sdiam(K) = 5.0

Let Km,» = (U,V) be a complete bipartite graph, where U = {uq,u2,
veorttm}y V = {v1,v2,...,un} and 2 < m < n. Let K;, . be a strong
orientation of Ky, 5, such that

AKn,) = {(ww)|l1<i<m}
U {(vj,um) | m<3j<n}
U {(u,v)]i#i1<i<m1<j<n}
U {(umv)]1<5<m}

Lai et al.[4] showed that if m = n, then srad(K}, ,) = sdiam(Ky, ) =
4; if m < n, then srad(K}, ) = se(u;) = se(v;) = 4, where 1 <i <m and
1 £ j <m, and sdiam(K}, ) = se(v;) = 6, where m < j < n.

Figure 2 shows the strong orientation K3 4 of K3 4 such that srad(K34) =
4 and sdiam(K3 4) = 6.

For any strong orientation K of K(mj,ms,...,mk), where m; 2> 2 for
1 < i < k, any two vertices of the same partite set cannot be contained in
any directed 3-cycle. So srad(K) > 4. Now we will show that the lower

bound is sharp.

Lemma 2.3 For every integer k > 3, let 2 <mj <mg < .-+ < my. Then
there erists a strong orientation K of K(my,ma,...,mk) such that
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Figure 2: The strong orientation K3, of K3 4.

when my +ma + - - + mp—1 > My, srad(K) = sdiam(K) = 4;
when m; + mg + -+ - + mp_y < My, srad(K) = 4 and sdiam(K) =

Proof. _Let M1, Va,..., Vi) be a k-partition of K(m;,ma, ..., mk), where
Vi={o{? |i=1,2,...,m} for 1<i< k.

For a digraph D with disjoint vertex subsets S and T, we denote by
D[S, T] the bipartite sub-digraph of D induced by all the arcs with one end
in S and the other end in T

If my+mo+ -+ mg—y = mg, let K’ be a strong orientation of
K(my,ma,...,my) such that K'[V,,V;] is isomorphic to K}, ., for 1 <
s<t<k-l;leeU="VandV = UV = {1 = vgk“’,vz =

gk Y ey Umyy "'vf("‘ck 1)""1nk-1+1 —vgk 2 1oy Umgtma e bmpny —'Uml}r

and K'[U, V] is isomorphic to Ky, mi 4 +mp_,-

Thus, we have sdxr(v(’),v§°)) < de:[V.,Vk_I](v?),vJ(-’)) <4forl<
s<k-1,1<i<j<my de:(v(k_l),'v(k-l)) < sdgv, V](v(k_l),vj(-k_l)) <
4forl <i<j < mp_y; sdxr(v‘ ,’U( )) < de:[‘/.,w](v ,Ugt)) < 4 for
1<s<t<k-1,1<i<mandl<j<meg sdo(o, o) <
sdrquv) (), o) <4 for1 <s <k 1<i<myandl <j< my.
Hence, srad(K’) < 4 and sdiam(K’) < 4. But we also have sdiam(K') >
srad(K') > 4. So, srad(K') = sdiam(K') = 4.

Ifmy +mo+ -+ mp_y < my, let K” be a strong orientation of
K(my,my,...,mg) such that K"[V;,V;] is isomorphic to K, ,, for 1 <
s<t<k-1;letU = Uf;llV,-, V = W, and K"[U,V] is isomorphic to
K*

my+etmyg—1,mi”
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Similar to the case of K, we have sdg (v{*), vgt)) < sdgmp,v) (v,(’) , vJ(.'))
<4for1 <s<k-1,1<t<k1<i<mandl < j < my
sdgen ('ugk),v_gk)) < sdgnyv) (v,(k),vy')) <4forl <i<my+ma+-:-+mg_
and 1 < j < my. For any two vertices vgk),v](-k) eViwithm+mo+---+
me_1 <1< j<my, vgk) and v}k) cannot be contained in any directed
3-cycle or 4-cycle, since N+(v{) = N "’(vy’)). So sdgcr (v{®), 'v§k)) >5.0On
the other hand, the sub-digraph induced by {(vgk), oDy, (vﬁk),vr(r’f,,__ll) )
(v D oy, (v,(,ﬂ , v,gk)), (v,(,}z , vJ(.k))} is a strong sub-digraph containing v§k)
and vy‘). So sdxn(v,(k), v§k)) = 5. Hence, srad(K") < 4 and sdiam(K") =
5. But we also have sdiam(K") > srad(K") > 4. So, srad(K") = 4 and
sdiam(K") =5. O ‘

Theorem 2.4 For every integer k > 3, there exists a strong oriented com-

plete k-partite graph K in which sdiam(K) — srad(K) = 6 for every § with
0<d6<[k/2] -1.

Proof. By Lemma 2.3, it is clear for k = 3, 4.

For k > 5, let (V},Va,..., Vi) be a k-partition of K(my,my,... s M),
where V; = {vﬁ') |7 =12...,m}and my > 2for1 <i<k Let
S =ViUVaU UV, Sg=VypyU---UVi, where2 <m < k-3.

Consider a strong orientation K of K(my, ms,...,my) with the following
arc set:
AK) = {PvP)[1<s<t<m,1<i<my,1<j<m}

U {(v,“’,v,‘-‘“’) Im+1<t<k1<i<mey,l<j<me}
U {(v§t),v§’)) |m+1<s<t<ks#t-1,
1<i<m,1<j<m}
U {0 1<i<m,1<5<mi}
U {(vi,v;) | vi € S1,v; € S3}
{(”zgl)av;k)) |1 <i<my,1<j < mi} (see Figure 3).

For any two vertices u, v belonging to the same partite set, by the
orientation of K, we know that u and v cannot be contained in any directed
3-cycle or 4-cycle. Thus, sd(u,v) > 5.
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Figure 3: The strong orientation K of K(m,,ms,...,m).

For any two vertices v,( 1), vj(l) € V1, the sub-digraph induced by the arc
set {(v(l),vgz)) (v(z), v(k)) (v("),v(l)) (v (1), (2)) (v(k),vp))} is a strong sub-
digraph containing v(l) and 'v(l) So sd(vfl), v(l)) =

For any two vertices vft),vy) € V; with 2 <t < m, the sub-digraph
induced by the arc set {(v{?,v{¥), ¥{¥,v{"), @, v}, (v{?,v{?), (v“’
() (t))

(t))} is a strong sub-digraph containing v( ) and v(‘) So sd(v; /v

For any two vertices v§m+l),v§m+1) € Vin+1, the sub-digraph induced
by the arc set { (v(m-i~1) (m+2)) (v(m+2) (m+3)) (v(m+3) (m+1)) (v(m+1)

1m+2))’ (v§m+3) (m+1))} is a strong sub-digraph containing v(m+1) and

t

vj(m“). So sd(v{™*D, 7(.""“)) =5.

For any two vertices v(t),vj(") € V; with m+2 < t <k, the sub-digraph
induced by the arc set {(v{, v{**1), ('vy), oY, (D, o), (0, vy)),
(v§'+1), {‘ 1)} is a strong sub-digraph containing vf‘) and vy). So 3d(v§‘),
vy)) = 5.

For any two vertices v(k), v(k) € Vi, the sub-digraph induced by the arc
set (o™, o), (2, o85), (2, ), (o0, o), (o2, o)
is a strong sub-digraph containing vgk) and v’(-k). So sd(v‘.(k), vj(.k)) =35.

Thus for any u,v belonging to the same partite set, sd(u,v) = 5.

For any two vertices © € V; and v € U, V;, v and v are contained in
a directed 3-cycle uvvgk)u. So sd(u,v) < 3.
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For any two vertices v(") €V, and v(‘) eV,with2<s<t<m,
v and vJ(‘) are contained in a directed 4-cycle v{*v (‘) oMy so
sd(v{,v{?) < 4.

For any two vertices v("’) €V, and v(t) eViwithm+1<s<t<k,
the directed (£ — s + 1)-cycle v{?v{**1. v;.t)vg’) isa (v(’),vj(-t))-geodesic.
So sd(v(’),vj(-t)) =t—s+1

For any two vertices 'v(l) € Vi and v§k) eV, v,gl) and vﬁk) are contained

in a directed 3-cycle vV (2)1)(")0,(1). So sd(v{", 'U,(k)) <3

For any two vertices v( )e Vi and 'u(‘) € V; withm+1<t<k-1,the
directed (k —t + 2) cycle v(l) (‘) (""1) {k)v,‘l) is a (v(l) (¢ ))-geodeslc
So sd(‘u(l), ;.')) =k—-t+2

For any two vertices 'u(’) € V, and v(t) eV,with2<s<m m+
1 < t < k, the directed (k — t + 3)-cycle 'v(’) (t) {0 Lyl i g
(v,("),fv(‘) )-geodesic. So sd(v(’),vgt)) =k—t+ 3. Therefore,

se(v,(l)) = max{5,k —m+1}, forvl) € Wi;

se(v{”) = max{5,k —m+2} =k-m+2, for eV, -V

se(v\?) =max{5,k—t+2,k—t+3,t —m,k—t+1}

= max{5,k —t +3,t —m}, forv(t)eV,CSg

With respect to t, k—t+3 decreases and ¢ —m increases, so the vertices
in Sy with the smallest strong eccentricity are vJ(-t) €V, 1 <j<mwith
k —t+ 3 = t —m. However, this implies that t = (k+m + 3)/2, which may
not be an integer. So v§|_(k+m+3)/2j) € Vl_(k+m+3) /2 1 £33 < mMyk4m3)/2)
or v§’(k+m+3)/ Y € Vik+m+3)721» 1 £ 5 £ M[(kem43)/2] aT€ the vertices in
S with the smallest strong eccentricity. Moreover, we have

(Lkrm3/20)y _ go o [+m+3/2D) _ mmae(s, fk m+ 3]}
> :

se(v;
Certainly, since m+1<t<k,for2<s<m,
se({?) =k —m+2 > max{k —t +3,t — m}.
Therefore, sdiam(K) = k — m + 2, srad(K) = max{5, [(k — m + 3)/2]}.
If m = k — 3, sdiam(K) — srad(K) =5-5=0.
If m=k—4, sdiam(K) — srad(K) =6 -5 =1.
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If m =k -5, sdiam(K) — srad(K) =7-5=2.

If 2 < m < k—6, sdiam(K) —srad(K) = k—m+2—[(k—m+3)/2] =
|(k — m + 1)/2), which implies 3 < sdiam(K) — srad(K) < [k/2] — 1.0

The strong oriented complete k-partite graphs constructed in the proof
of the preceeding theorem and Lemmas 2.2 and 2.3 provide us with the
following results.

Theorem 2.5 For every integer k > 4, there erists a strong oriented
complete k-partite graph K with srad(K) = r for every integer r with
3<r<|k/2)+1end fork=3,r=3.0

Theorem 2.8 For every integer k > 4, there exists a strong oriented
complete k-partite graph K with sdiam(K) = d for every integer d with
4<d<kandfork=3,d=4.0
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