THE NUMBER OF SOLUTIONS OF PELL EQUATIONS
z? —ky? =N AND z? +zy - ky> = N OVER F,
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ABSTRACT. Let p be a prime number such that p = 1,3(mod 4), let Fp be
a finite field, let N € F; = Fp — {0} be a fixed. Let P:(N) cz2—ky? =N
and P¥(N) : 22 + zy — ky? = N be two Pell equations over Fp, where
k= %Tl or k = ?:—3, respectively. Let P:(N)(Fp) and ﬁ,"(N)(Fp)
denote the set of integer solutions of the Pell equations P;‘ (N) and 13,’5 (N),
respectively. In the first section we give some preliminaries from general
Pell equation z2 — ky? = +N. In the second section, we determine the
number of integer solutions of P;(N). We proved that P:(N)(Fp) =
p+1if p = 1(mod4) or p = 7(mod 12) and P;(N)(Fp) =p-1lifp=
11(mod 12). In the third section we consider the Pell equation }3;‘ (N). We
proved that B¥(N)(Fp) = 2p if p = 1(mod4) and N € Qp ; PX(N)(F,) =
0if p=1(mod4) and N ¢ Qp ; PE(N)(Fp) = p+ 1 if p = 3(mod 4).
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1. INTRODUCTION.

Let k # 1 be any positive non-square integer and N be any fixed integer.
The equation

(1.1) o —ky? =N

is known as Pell equation, and is named after John Pell (1611-1685), a math-
ematician who searched for integer solutions to equations of this type in the
seventeenth century. Ironically, Pell was not the first to work on this problem,
nor did he contribute to our knowledge for solving it. Euler (1707-1783), who
brought us the y-function, accidentally named the equation after Pell, and the
name stuck.

The Pell equation 22 — ky? = %1 is known the classical Pell equation.
The equation z? ~ ky? = 1, was first studied by Brahmagupta (598-670) and
Bhaskara (1114-1185). Its complete theory was worked out by Lagrange (1736-
1813), not Pell. It is often said that Euler (1707-1783) mistakenly attributed

ARS COMBINATORIA 102(2011), pp. 225-236



Brouncker’s (1620-1684) work on this equation to Pell. However the equation
appears in a book by Rahn (1622-1676) which was certainly written with Pell’s
help: some say entirely written by Pell. Perhaps Euler knew what he was doing
in naming the equation.

The Pell equation z2 — ky2 = 1 has infinitely many integer solutions
(Zn,¥n) for n > 1. The first non-trivial positive integer solution (x3,y;) (in
this case ; or z; +y; vk is minimum) of this equation is called the fundamental
solution, because all other solutions can be (easily) derived from it. In fact,
if (z1,71) is the fundamental solution of z2 — ky? = 1, then the n-th positive
solution of it, say (Zn,¥s), is defined by the equality z, + y.vk = (z; +
y1Vk)™ for integer n > 2. (Furthermore, all nontrivial solutions can be obtained
considering the four cases (+z,,+y,) for n > 1.) There are several methods
for finding the fundamental solution of Pell equation z2 — ky? = 1 for a positive
non-squsre integer k, e.g., the cyclic method [1, p.30], known in India in the 12-
th century, or the slightly less efficient but more regular English method (17-th
century) which produce all solutions of z2 — ky? = 1 [4, p.32]. But the most
efficient method for finding the fundamental solution is based on the simple
finite continued fraction expansion of vk [3, p.154]. Many authors such as
Kaplan and Williams [2], Lenstra [4], Matthews (5], Mollin (also Poorten and
Williams) [6,7,8), Smarandache [9], Stevenhagen [10], Stroeker [11], Tekcan
[12,13,14], Walsh [15] and the others consider some specific Pell equations and
their integer solutions.

2. THE PELL EQUATION P¥(N):z? — ky?> = N OVER F,.

Let p = 1,3(mod4) be a prime number, let F, be a finite field, and let
N € F; =F, — {0} be a fixed. Let

(2.1) P¥(N):2?—ky*=N

be a Pell equation over Fp, where k = %‘ ork = %‘3, respectively. In this
paper we will determine the number of integer solutions of the Pell equation
PE(N) over Fyp.

Theorem 2.1. Let BE(N)(Fy) = {(z,y) € Fp x Fp : 2 — ky? = N}. Then

_J p+1 ifp=1(mod4) or p=T(mod12)
Fy(N)(Fp) = { p—1 ifp=11(modl2).

Proof. Let p = 1(mod4), say p = 1+ 4k for k € ;. Let Qp denote the set of
quadratic residues in F,,. Note that k € Qp, that is, k quadratic residue mod p.
Now consider the Pell equation PF(N) : 22— ky? = N. Then we have two cases:
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Case 1: Let N € Q,, say N =¢? for t € F}. If y =0, then
z? = t*(mod p) & = = xt(modp),
that is, there are two integer solutions (¢,0) and (p — ¢,0) of P¥(N). If z =0,
then
t2
—ky? = t*(modp) & ¥ = :I:F(modp).
Note that ¢2/k is a square modp, since k is a quadratic residue modp. Let
m? = 3’,; for m # 0. Then
y? =m? &y = tm(modp),

that is, there are two integer solutions (0,m) and (0,p — m) of P"(N ) Set
F;* = Fp — {0,t,p — t}. Then there are L'E points z in F,* such that “—ki a
square. Let z = u be a point in F}* such that LE‘— a square. Set ¥zt “ =92,

Then
y? = v*(mod p) & y = +v(mod p).
Therefore there are two integer solutions (u,v) and (u,p —v) of P"(N ), that is,
for each z in F7* such that ”—ﬁ a square, then there are two integer solutions
of BE(N). Hence there are 2 (252) = p — 5 integer solutions of P¥(N). We
see as above that there are four integer solutions (t,0),(p — t,0), (0,m) and
(0,p — m) of P:(N }. Consequently there are total p — 5+ 4 = p — 1 integer
solutions, that is, P¥(N)(F,) =p— 1.
Case 2: Let N ¢ Q,. If y =0, then
z? = N(mod p)
has no solution. If x = 0, then
—ky? = N(modp)

has no solution since N/k is not a quadratic residue mod p. Set F* = F,—{0}.

Then there are L points = in F;* such that £ —k_ a square. Let z=ubea

point in F;* such that -'-‘—# a square. Set ¥ ‘N = v2. Then

y? = v*(mod p) & y = tv(mod p).

Therefore there are two integer solutions (u,v) and (u,p — v), that is, for each
z in Fy* such that “’;N a square, then there are two integer solutions. Hence
there are 2 (25%) = p — 1 integer solutions of P¥(N).

Now let p = 3(mod4). Then we have to consider the problem either
p = 1(mod6) or p = 5(mod 6). Let p = 1(mod 6). Then by Chinese Remainder
theorem p = 7(mod 12). Then we have two cases:
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Case 1: Let N € Qp,say N=1¢? for t € F;. If y =0, then

z? = t*(mod p) ¢ z = +t(mod p),
that is, there are two integer solutions (t,0) and (p — ¢,0) of P"(N ). Ifz =
then 2

—ky? = t*(modp) & ¢? = :tt—(mod P)

has no solution since t2/k is not a square modp. Set F3* = Fp — {0}. Then
there are L.‘,— points z in F;* such that ’—g‘— a square, Let z = u be a point
in F3* such that 3—;4 a square. Set LE—‘— = v2. Then

¥* = v¥*(modp) & y = tv(modp),

that is, there are two integer solutions (u,v) and (u,p —v). Hence for each z in
F3* such that “—ki a square, then there are two integer solutions. Hence there
are 2 ( La) = p—3 integer solutions. We see as above that there are two integer
solutions (¢,0) and (p —¢,0). Consequently there are total p~3+2=p—1
integer solutions of P¥(N).

Case 2: Let N ¢ Q,. If y =0, then
= N(modp)
hes no solution. If £ = 0, then

—ky?> = N(modp) & y* = :l:%’(modp)

has two solutions since N/k is a square mod p. Let m? = . Then
¥? = m%(modp) & y = tm(modp),
that is, there are two integer solutions (0,m) and (0,p — m) of PE(N). Set
F;* =Fp — {0}. Then there are % poiznts z in F* such th?t ﬁki\{ a square.
Let z = u be & point in F;* such that *Z¥ a square. Set *“7& = 42, Then
¥? = v}(modp) & y = +v(modp).

Therefore there are two mteger solutions (u,v) and (u,p — v), that is, for
each z in Fy* such that 3‘—% a square, then there are two integer solutions.
Hence there are 2 ( &2-_3) = p — 3 integer solutions. We see as above that there
are two integer solutions (0,m) and (0,p — m). Consequently there are total
p—3+2=p—1 integer solutions of B¥(N).

Let p = 5(mod 6). Then by Chinese Remainder theorem p = 11(mod 12).
Then we have two cases:

Case 1: Let N € Qp,say N=t?for t € F;. If y =0, then
z? = t*(mod p) & z = *t(modp),
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that is, there are two integer solutions (t,0) and (p —¢,0) of PF(N). If 2 =0,
then 2
—ky? = t*(mod p) & 3° %(mod D)

has two solutions since ¢2/k a square mod p. Let m? = 5,-:— Then
y? = m%(modp) & y = tm(modp),

that is, there are two integer solutions (0,m) and (0,p — m) of PF(N). Set
F;* =Fp — {0,¢,p — t}. Then there are 223 points z in F;* such that iki a
square. Let 2 = u be a point in F;* such that "—ki a square. Set -L'r" =?
Then
y? = v?(modp) & y = tv(mod p).
Therefore there are two integer solutions (u,v) and (u,p — v), that is, for each
z in F* such that ’2;" a square, then there are two integer solutions. Hence
there are 2 (L;—a) = p — 3 integer solutions. We see as above that there are four
integer solutions (¢,0), (p — t,0), (0,m) and (0,p — m). Consequently there are
total p — 3+ 4 = p + 1 integer solutions of PF(N).
Case 2: Let N ¢ Q,. If y =0, then
z? = N(modp)

has no solution and if z = 0, then

—ky? = N(modp) & * = :l:ﬂ(modp)

has no solution since N/k is not a square mod p. Set F;* = Fp — {0}. Then
there are 3——- points z in F;* such that £ T a square. Let z = u be a point
in Fp* such that $2=N g square. Set 'N = v2. Then

y? = v¥(modp) & y = fv(mod p).

Therefore there are two mteger solutions (u,v) and (u,p — v), that is, for
each = in F3* such that ’—k-"ﬂ a square, then there are two integer solutions.
Consequently there are 2 (251) = p + 1 integer solutions of P¥(N). O

Example 2.1. 1. Let p=17. Then

P4(2)(Fyr) = (0,2),(0,15),(1,0),(3,6), (3,11), (4,5), (4,12),(6,8), (6,9),
SANA (11,8),(11,9), (13,5), (13,12), (14, 6), (14,11),(16,0)

and

_J (1,5),(1,12),(2,8),(2,9), (4,4), (4,13), (6, 2), (6,15),(11,2),
P{‘7(3)(F17)—{ (11,15),(13,4),(13,13),(15,8), (15,9), (16, 5), (16, 12) }

Note that 2 € Q17 and 3 ¢ Q7.
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2. Let p=31. Then

((1,0),(3,14),(3,17),(6,6), (6,25), (8, 3), (8, 28), (9, 10),

(9,21), (12, 4), (12,27), (14,9), (14, 22), (15, 1), (15, 30),

{ (16,1), (16,30), (17,9), (17, 22), (19, 4), (19, 27), (22, 10),

(22, 21), (23,3), (23, 28), (25, 6), (25, 25), (28, 14),
(28,17), (30,0)

P, (1)(Fa1)

and
[ (0,2),(0,29),(2,3),(2,28),(6,7),(6,24),(9,12), (9, 19),
(10,86), (10, 25), (11, 15), (11, 16), (14, 1), (14, 30), (15,13),
(15,18), (16,13), (16, 18),(17,1), (17, 30), (20, 15),
(20,16), (21, 6), (21, 25), (22, 12), (22, 19), (25, 7),
(25,24),(29,3),(29, 28)

P;1(3)(Fa1)

A\

\

Note that 1 € Q3; and 3 ¢ Q3;.
3. Let p=47. Then

[ (0,8),(0,39),(1,0), (4,11),(4,36), (6,4), (6,43), (9,12),
(9, 35), (10, 3), (10, 44), (11,13), (11, 34), (16, 6), (16,41),
(18,14), (18, 33), (19, 15), (19, 32), (20, 19), (20, 28),
(22,22),(22,25), (23,1), (23,46), (24, 1), (24,46), (25,22),
(25, 25), (27, 19), (27,28), (28, 15), (28, 32), (29, 14), (29, 33),
(31,6), (31,41), (36,13), (36, 34), (37, 3), (37,44), (38,12),

(38,35), (41,4), (41,43), (43, 11), (43, 36), (46, 0) )

A

Pi(1)(Far)

e

—

\

and
3\

[ (1,16),(1,31),(2,8),(2,39), (4,1), (4,46), (5,6), (5,41),
(6,15), (6,32), (7,2),(7,45), (9, 20), (9, 27), (11, 7), (11, 40),
(12,9), (12,38), (13,19), (13,28), (20, 10), (20, 37), (21,22),
(21,45), (26, 22), (26,25), (27, 10), (27, 37), (34,19), (34, 28),
(35,9), (35,38), (36,7), (36,40), (38, 20), (38, 27), (40, 2),
(40,45), (41, 15), (41, 32), (42, 6), (42,41), (43,1), (43,46),
(45, 8), (45, 39), (46, 16), (46, 31)

v

P37 (5)(Far)

A

\

Note that 1 € Q47 and 5 ¢ Q4.

3. THE PELL EQUATION P¥(N):2? + zy — ky> = N OVER Fy.

Let p = 1,3(mod 4) be a prime number. In this section, we determine the
number of integer solutions of the Pell equation

PEN):z’+zy—ky* =N

over Fp, where k = L;—l ork= L;—‘?l, respectively.

230



Theorem 3.1. Let PF(N)(F,) = {(z,y) € F, x F, : 22 + 2y — ky? = N}.
Then
B 2r ifp=1(mod4) and N € Q,
P:(N)(F,,) = 0 ifp=1(mod4) and N ¢ Q,
p+1 ifp=3(modd).

Proof. Let p = 1(mod 4). Then we have two cases:
Case 1: Let N € Qp, say N =1t? fort € F;. If y =0, then
z? = t*(modp) & z = xt(modp),
that is there are two integer solutions (t,0) and (p — ¢, 0) of ﬁf(N ) fz=0,
then
t2

—ky? =t*(modp) & y? = :I:Tc-(modp)
has two solutions since ¢2/k is a square modp. Let m? = -‘,; Then

y? = m*(modp) < y = +m(mod p),
that is, there are two integers solutions (0, m) and (0,p—m) of E’,‘(N ). Further
it is easily seen that if z = ¢, then the congruence

t2 + ty — ky? = t*(mod p)

has a solution y = y;, and if £ = p — ¢, then the congruence

(p-t)* + (p— t)y — ky* = t*(mod p)

has a solution y = y;. So we have six integer solutions (0,m),(0,p — m),
(¢,0), (t,31), (p — ¢,0) and (p — t,32). Set F;* = F, — {0,¢,p — t}. Then there
are p — 3 points z in F3* such that the congruence 22 + zy — ky? = ¢*(mod p)
has two solutions. Let 2 = u be a point in F;* such that the congruence
u? + uy — ky? = t?*(modp) has two solutions y = y3 and y = ys. Then
there are two integer solutions (u,ys) and (u,y4), that is, for each point = in
F;* such that the congruence u? + uy — ky? = t*(modp) has two solutions,
then there are two integer solutions of ﬁ:(N). Hence there are 2(p - 3) =
2p — 6 integer solutions. We see as above that there are six integer solutions
(0,m), (0,p —m), (¢,0), (t,11), (p — t,0) and (p — ¢,42). Consequently there are
total 2(p — 3) + 6 = 2p integer solutions of ﬁ: (N).
Case 2: Let N ¢ Qp. If y=0, then
z? = N(mod p)
has no solution, and if z = 0, then

—ky? = N(modp)
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has no solution since N/k is not a square mod p. Set F;* = F, — {0}. Then
there is no point z in F7* such that the congruence

z2 + zy — ky* = N(mod p)

has a solution y. Therefore there are no integer solutions of f’:(N )

Let p = 3(mod 4). Then we consider the problem either p = 7(mod 24) or
p = 23(mod 24). First we start with p = 7(mod 24). Then we have two cases:

Case 1: Let N € Qp, say N=1t* fort € F;. If y = 0, then
z? = t*(mod p) ¢ = = *t(modp),
that is, there are two integer solutions (¢,0) and (p — ¢,0) of ﬁ,’,‘(N ) and if
z =0, then
—ky? = t*(modp) & ¥* = :l:%(modp)

has no solution since ¢2/k is not a square mod p. Further it can be shown that
if z = ¢, then the congruence

2 + ty — ky® = t*(mod p)
has a solution y = y1, and if z = p — ¢, then the congruence
(p—t)? + (p — t)y — ky” = t*(modp)

has a solution y = y2. Therefore there are four integer solutions (¢, 0), (t,41), (p—
t,0) and (p — t,y2) of P"(N) Set F3* = le {0,t,p — t}. Then there are &3
points = in F3* such that the congruence 22 + :L'y ky? = t*(mod p) has two
solutions. Let z = u be a point in F;* such that u? +uy — ky? = t*(mod p) has
two solutions y3,ys- Then there are two mteger solutions (u,ys) and (u,ys)
of P¥(N), that is, for each z in F3* such that 2* + zy — ky? = t?(mod p) hes
two solutions then there are two mteger solutions. Hence there are 2 (252) =
p — 3 integer solutions. We see as above that there are four integer solutions
(t,0), (¢,1), (p—t,0) and (p—t,2). Consequently there are total p—3+4 = p+1
integer solutions of P¥(N).

Case 2: Let N ¢ Q,. If y = 0, then
z? = N(mod p)
has no solution, and if = 0, then
—ky? = N(modp) & ¢ = :l:%(modp)
has two solutions since N/k is a square mod p. Let m* = % Then

y? = m%(mod p) & y = +m(modp),
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that is, there are two integer solutions (0, m) and (0,p —m) of ﬁ:(N ). Further
there exists a point z = z; in [} such that the congruence
2 + 21y — ky® = N(mod p)

has one solution y = y;, that is (z1,%1) is an integer solution of ﬁ: (N). Also
(p—z1,p—v1) is an integer solution. Set Fp* = F, — {0,%;,p—z1}. Then there
are &;—3 points z in F3* such that the congruence 22 4zy —ky? = N(mod p) has
two solutions. Let # = u be a point in F;* such that u? +uy — ky? = N(mod p)
has two solutions y = yg,y3. Then there are two integer solutions (u,y2) and
(u,y3). Hence for each x, there are two integer solutions. Therefore there are
2(252) = p - 3 integer solutions. Note that there are four integer solutions
(0,m), (0,p — m),(z1,%1) and (p — z1,p — y1). Consequently there are total
p—3+4=p+1 integer solutions of P,’,‘(N).

Finally let p = 23(mod 24). Then we have two cases:

Case 1: Let N € Q,,say N=t?for t € F;. If y =0, then

2% = t*(mod p) & = = £t(modp),
that is, there are two integer solutions (¢,0) and (p — t,0) of ﬁ;‘ (N). Further
it is easily seen that if z = ¢, then the congruence
2 + ty — ky® = t*(mod p)
has one solution y = 3, and if z = p — ¢, then the congruence
(p— ) + (p - t)y - ky* = t*(mod p)

has one solution y = y;. If = 0, then
2
—ky? = t*(modp) & 2 = q:fk-(modp)

has two solutions since 2/k a square mod p. Let m2 = % Then

y? = m?(mod p) ¢ y = +m(mod p),

that is, there are two integer solutions (0,m) and (0,p —m) of PF(N). Further
there exists a point z = z; in F; such that the congruence

z} +zy - ky? = N(modp)

has one solution y = ys, that is, (z1,3) is an integer solution. Also (p—z1,p—
y3) is an integer solution. Set Fp* = Fp —{0,t,p—¢,z1,p—z1}. Then there are
227 points z in F;* such that the congruence 22 +zy — ky? = t?(mod p) has two
solutions. Let = u be a point such that u? + uy — ky? = t*(mod p) has two
solutions y4 and ys. Then there are two integer solutions (u,y4) and (u,ys),
that is, for each z there are two integer solutions. Hence there are 2 (257) =
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p — 7 integer solutions. We see as above that there are eight integer solutions

(t: 0)1 (P - t9 0): (t) yl)s (P - t: y2): (0, m)) (0,? - m): (zl)y3) and (P— fhp - y3)
Consequently there are total p — 7 + 8 = p 4 1 integer solutions of P:(N ).

Case 2: Let N ¢ Q. If y =0, then
z? = N(modp)
has no solution, and if z = 0, then
—ky?> = N(modp) & ¢* = d:%(modp)

has no solution since N/k is not a square mod p. Set Fp* = F,—{0}. Then there
are %1 points z in F;* such that the congruence z? +zy—ky? = N(modp) has
two solutions. Let x = u be a point such that u?+uy—ky? = N(mod p) has two
solutions 7;,y2. Then there are two integer solutions (z,y1) and (z, y2), that is,
for each z there are two integer solutions. Therefore there are 2 (2f1) =p+1
integer solutions of PX(N). a

Example 3.1. 1. Let p =13. Then

5 (0,2),(0,11),(1,0),(1,9),(2,7),(2,11),(3,5),(3,9), (4,3),
Pfa(l)(Fw) = 4,7), (5: 1),(5,5), (6,3),(6,12),(7,1), (7,10),(8,8),(8,12),
(9,6),(9,10),(10,4), (10, 8),(11,2),(11,6),(12,0), (12,4)

and P3(2)(F13) = {}. Note that 1 € Qi3 and 2 ¢ Qia.
2. Let p=231. Then

(1,0),(1,9),(3,11),(3,16), (4,13), (4,23), (10,6), (10, 22),
(11,1), (11,5), (12, 16), (12, 30), (14, 13), (14, 20), (15, 5),

13;'1(1)(11"31) = (15,6), (16, 25), (16, 26),(17,11),(17,18), (19, 1), (19, 15),
(20, 26), (20,30), (21,9), (21, 25), (27, 8), (27, 18), (18, 15),
(28,20), (30,0), (30, 22)
and
(0,2),(0,29),(1,3),(1,6), (2, 20), (2,29), (4,8), (4,28),
(7,7),(7,25),(8,1),(8,9), (9, 20), (9, 30), (12, 23),(14,9),
1‘3;’1 (3)(Fa) = (14,24),(17,7),(17,22),(19,8), (22,1), (22, 11), (23, 22),

(23,30), (24,6), (24, 24), (27, 3), (27, 23), (29, 2),
(29,11), (30, 25), (30, 28)

Note that 1 € Q31 and 3 ¢ Qg1.
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3. Let p=47. Then
[ (0,3),(0,39),(1,0),(1,30), (2,18),(2,42), (3,1),
(3,42), (4,27), (4,36), (5, 28), (6,15), (6, 24),
(8,13), (8,39), (14, 16), (14, 28), (16, 27), (16, 30),
BU()(Fa) = 4 (17,16), (17, 24), (20, 7), (20, 29), (21, 32), (21, 34),
ar\Ear) =0 (96,13), (26, 15), (27, 8), (27, 40), (30, 23), (30, 31),
(31,17), (31, 20), (33, 19), (33, 31), (39,8), (39,34),
(41,23), (41,32), (42, 19), (43, 1), (43, 20), (44, 5),
| (44, 46), (45,5), (45, 29), (46,0), (46,17) )

A

and
[ (1,8),(1,22),(3,14),(3,29), (5,4), (5,5), (9, 39),
(9,43), (10, 23), (10, 42), (12, 10), (12, 21), (13, 2),
(13, 12), (14, 21), (14, 23), (15, 29), (15, 45), (17,7),
. ) (ms9),(22,12), (22,37), (23,7, (23, 25), (24,22),
Fif (10)Far) =\ (24.40), (25,10), (25, 35), (30, 14), (30,40), (32, 2),
(32,18), (33, 24), (33, 26), (34, 35), (34, 45), (35, 26),
(35,37), (37, 5), (37, 24), (38, 4), (38, 8), (42, 42),
| (42,43),(44,18), (44,33), (46,25), (46,39) |

Note that 1 € Q47 and 10 ¢ Qqr.

v
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