Some New Sufficient Conditions for Graphs
to be (a, b, k)-Critical Graphs *!

Sizhong Zhou * and Zurun Xu
School of Mathematics and Physics
Jiangsu University of Science and Technology
Mengxi Road 2, Zhenjiang, Jiangsu 212003
Peoples Republic of China
Minggang Zong
Faculty of Sciences, Jiangsu University
Xuefu Road 301, Zhenjiang, Jiangsu 212013
Peoples Republic of China

Abstract

Let G be a graph, and let a, b and k be nonnegative integers with
1< a<b An [a,b)-factor of graph G is defined as a spanning sub-
graph F of G such that a < dr(x) < b for each 2 € V(G). Then a
graph G is called an (a, b, k)-critical graph if after any k vertices of G
are deleted the remaining subgraph has an [a, b]-factor. In this paper,
three sufficient conditions for graphs to be (a, b, k)-critical graphs are
given. Furthermore, it is shown that the results in this paper are best
possible in some sense.
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1 Introduction

All graphs considered in this paper will be finite and undirected simple
graphs. Let G be a graph. We denote by V(G) and E(G) the set of
vertices and the set of edges, respectively. For any = € V(G), we denote
by de(z) the degree of z in G and by Ng(x) the set of vertices adjacent
to z in G. For X C V(G), we define Ng(X) = UzexNg(z), and G[X]
is the subgraph of G induced by X. We denote by G — X the subgraph
obtained from G by deleting vertices in X together with the edges incident
to vertices in X. Let S and T be disjoint subsets of V(G). We denote
by eg(S,T) the number of edges joining S and T. Denote by a(G) the
stability number of a graph G, by §(G) the minimum degree of vertices in
G, by A(G) the maximum degree of vertices in G. We define the distance
d(z,y) between two vertices z and y as the minimum of the lengths of the
(=, y)-paths of G.

Let 1 < a < b be integers. An [a, b]-factor of graph G is defined as a
spanning subgraph F of G such that a < dp(x) < b for for each z € V(G)
(Where of course dr denotes the degree in F'). And if @ = b = r, then an
[a, b)-factor of G is called an r-factor of G. A graph G is called an (a, b, k)-
critical graph if after deleting any k vertices of G the remaining subgraph
of G has an [a, b]-factor. If G is an (a, b, k)-critical graph, then we also say
that G is (a,b, k)-critical. If @ = b = r, then an (a, b, k)-critical graph is
simply called an (r, k)-critical graph. In particular, a (1, k)-critical graph
is simply called a k-critical graph. The other terminologies and notations
not given in this paper can be found in [1].

Zhou [2,3] investigated (g, f)-factors of graphs. Favaron [4] studied the
properties of k-critical graphs. Liu and Yu [5] gave the characterization
of (r, k)-critical graphs. Liu and Wang [6] gave a necessary and sufficient
condition for a graph to be an (a, b, k)-critical graph. Recently, Zhou [7]
obtained a sufficient condition for a graph to be an (a, b, k)-critical graph. In
this paper, we give three new sufficient conditions for graphs to be (a, b, k)-
critical graphs.

Niessen [8] proved the following sufficient condition for a k-factor de-
pending on 6(G) and a(G).

Theorem 1 [ Let k > 2 be an integer and let G be a graph with n vertices.
If k is odd, then suppose that n is even and G is connected. Let G satisfy

n>4k+1-4vk +2,

k-1
J(G) Z m(n+2) and
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1

0(G) > %3

Then G has a k-factor.

((k = 2)n +2a(G) - 2).

Matsuda [9] proved the following results for the existence of [a, b]-factors.

Theorem 2 ) Let 1 < a < b be integers and G a graph of order n >

2(“"1)(“";1(),’(_?:')") (atb-1) _ “"':l((‘;i"i‘)’_l) . Suppose that 6(G) > a and

|Ne(2) U Ne(y)| 2

an
a+b

for any two nonadjacent vertices z and y of V(G) such that Ne(z) n
Ng(y) # @. Then G has an [a, b]-factor.

Theorem 3 9 Let 1 < a < b be integers and G a graph of order n >

(°'1)(“+lz§‘fl'§’)(°+b"1) - La_-i-:i((abﬁ‘)’—l). Suppose that 6(G) > a and
an

max{dg(x)f dG(y)} 2 a+b

for any vertices z and y of G with d(z,y) = 2. Then G has an [a, b]-factor.

In this paper, we prove the following results, which are an extension of
Theorems 1 and 2 and 3, respectively. We extend Theorems 1 and 2 and 3
to (a, b, k)-critical graphs, respectively.

Theorem 4 Let a, b and k be nonnegative integers with 2 < a < b, and let
G be a graph of order n. Let G satisfy

s (a+b—1)b(a+b—3)+k’

(e—1)n+a+bdb+bk—1
a+b-—1 and

S (a-2)n+2a(G)+ bk -1

a+b—2 )

6(G) 2

8(G)

Then G is an (a, b, k)-critical graph.

Theorem 5 Leta,b and k be nonnegative integers such that 1 < a < b and

G be a graph with order n > 2(“_1)(“";1()5(2'1*')")(‘”“"1) - (“+:i((‘;i"i’)"l) +k. If

0(G)>a+k, and

an + bk
>
INo(@) U No(u)| > 2252

for any two nonadjacent vertices = and y of V(G) such that Neg(z) n
Ng(y) # @. Then G is an (a,b, k)-critical graph.
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Theorem 6 Let a,b and k be nonnegative integers such that 1 < a < b
and G be a graph with order n > (“-1)(“"'2,(,:"1';')(“6—1) - i_éb_rl“"': “ﬁb—l +k.
If6(G) 2a+k, and

an + bk
a+b

max{dg(z),dc(y)} =

for any vertices x and y of V(G) with d(z,y) = 2. Then G is an (a,b, k)-
critical graph.

2 The Proofs of Main Theorems

In order to prove our main theorems, we depend heavily on the following
lemma.

Lemma 2.1 ©! Let a, b and k be nonnegative integers with a < b, and let
G be a graph of ordern > a+k+ 1. Then G is an (e, b, k)-critical graph
if and only if for any S CV(G) and |S| 2> &k

66(5,T) = bS] + do_s(T) — alT| > bk,
whereT={z:2€ V(G)\S, dg-s(z) <a-1}.
Proof of Theorem 4 Suppose a graph G satisfies the condition of the

theorem, but it is not an (a, b, k)-critical graph. Then, by Lemma2.1, there
exists a subset S of V(G) with |S| > k such that

6c(8,T) = b|S| +de-s(T) — a|T| < bk —1, 1)

where T = {z: z € V(G)\ S, dg—s(z) < a —1}. We choose subsets S and
T such that |T| is minimum and S and T satisfy (1).

If T = @, then by (1), bk — 1 > 6a(S,T) = b|S| = bk, a contradiction.
Hence, T # @. We choose a vertex z; € T with

h =min{dg_s(z) : z € T} = dg-s(z1).

Obviously,
§(G) < dg(z1) < dg-s(z1) + S| =h+1S|. (2)

According to the definition of T', we have

0<h<a-1.
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We shall consider two cases according to the value of h and derive contra-
dictions.

Casel h=0.

Let X ={z €T :dg-s(z) = 0}, Y = {zxeT: dg_s(z) =1}, Y1 =
{reY :Ng_s(z) C T} and Y2 =Y -Y;. Then the graph induced by ¥; in
G — S has maximum degree at most 1. Let Z be a maximum independent
set of this graph. Clearly, |Z| > -;-|Y1|. In view of our definitions, XUZUY>
is an independent set of G. Thus, we obtain

1 1 1
*(G) 2 |X| +2] + [Ya| 2 X[ + 5 Yil + 5[¥al = |X] + 5[¥].  (3)
By (1) and (2) and (3), we get
o) 2 IX|+ Y|

bS] + de-s(T) — a|T| — bk + 1+ |X| + %IYI

v

3
= b|S|+dg-s(T\(XUY))—a|T|-bk+1+|X|+ §|Y|

bS]+ 2T — (X UY)] —alT| - bk + 1+ |X| + S|

v

{

1
b|S| 4+ 2|T| —a|T| - bk +1 - (|X| + -é-lYl)
> b(G) —(a—-2)[T| - bk +1-a(G),

which implies
(a —2)|T| 2 b6(G) — 2a(G) — bk + 1. (4)

If a = 2, then (4) is equivalent to §(G) < MEL;M, which contradicts

-2 20(G)+-bk—1 20(G)+bk—1
5(G) > (a )n:+b(—2)+ = 2a(C );i' .

If @ > 3, then by (2) and (4), we have

0 < n—|S|-|T|
< n-a(c:)_“(c)‘2:(_f=72)—bk+1
(@—2)n — (a+b-2)§(G) +20(G) + bk — 1
a2

Thus, we obtain

a—2)n+20(G)+ bk -1

(
5(G) = a+b—-2 ’
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. —2)n42a(G)+bk—1
that contradicts §(G) > {2=2n = +‘;(_2)+ .

Case2 1<h<a-1.

By |S| 4+ |T| £ n and (1), we have

6c(S,T) =b|S| + de-s(T) — a|T)|
b|S| - (a — R)IT|

b|S| - (a — R)(n —|S])

(a +b— h)|S] - (a— h)n.

bk —1

v iwviv

This inequality implies

(a—h)n+bk—1

<
151 < a+b-nh

Combining this with (2) gives

(a—h)n+bk-1
a+b—-h

5(G)<|S|+h< +h (5)

If h = 1, then by (5), 6(G) < fe=lndbe-l 1 g _ (e-bniatbibh2

+5-1 +
contradiction. Hence, we may assume ghat 2<h<a-1,andlet
(a—hn+bk—1

a+b—-h +h.

f(h) =

According to n > {eX2=D{e40=3) 4k we obtain f'(h) < 0. Then, f(h)
attains its maximum value at h = 2. By (5) and §(G) > {e=lntedbsbb-1
we have
(a-1)n+a+b+bk—1
a+b-1

implying n < M’é"—"’ﬂ + k, which is a contradiction.

From the argument above, we deduce the contradictions, so the hypoth-
esis can not hold. Hence, G is an (a, b, k)-critical graph.
Completing the proof of Theorem 4.

Proof of Theorem 5 Suppose that G is not an (a, b, k)-critical graph.
Then, by Lemma 2.1, there exist disjoint subsets S and T of V(G) satisfying

(a=2n+dk—1
a+b—2

UGS f(W<F(2) = +2,

66(S,T) = blS| + do—s(T) — alT| < bk — 1. (6)

We choose such subsets S and T so that |T'| is as small as possible.
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Claim 1. |T|>b+1.
Proof. If |T| < b, then by (6) and |S| + dg-s(z) = de(z) > §(G) >

a + k, we get that

—1 > b|S| + dg-s(T) — a|T| - bk = (S| + dg—_s(z) —a — k) 20,

a contradiction.

z€T

Claim 2. |S|>k+1.
Proof. If |S| =k, then by (6), we obtain

bk—-1 2>

2

2

that is a contradiction.

6c(S,T) = b|S| +dg-s(T) — o|T|
bk + Z(da_s(x) —a)

z€T

bk + Y _(de(z) - |S| - a)
zeT

bk+ Y _(86(G) -k — a) > bk,
zeT

Claim 3. || < 2ntbk,

a+b

Proof. According to (6) and |S| + |T| < n, we have

bk—1 >

nwv

implying |S| < -“—ﬁ:{gﬁ.

0¢(S,T) = b|S| + dg-s(T) — a|T|
b|S| — a|T| = b|S| — a(n ~ |S])
(a + b)|S| — an,

Claim 4. a|T| > b|S| — bk +1.
Proof. In view of (6), we get
bk — 1 > 66(S,T) = blS| + dg-s(T) - alT| > blS| — a|T,
which implies a|T} > b]S| — bk + 1.
Claim 5. |S| < “—Hf—" -2(a-1).

Proof. If |S| > %? —2(a — 1), that is to say, an — (a + b)|S| <
2(a — 1)(a + b) — bk. By (6) and |S| + |T| < n, we have

de-s(T)

a|T| —b|S|+ bk -1
a(n—|S|) —b|S| + bk -1
an— (a+b)|S|+bk—1
2(a —1)(a+b) - 1.

INIEIN A
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According to n > 2(“’1)(“'21()5@‘1*')")(““_1) — (a4b)(abtb=1) |  ond Claim 4,

ab(b—-1)
we obtain
de_s(T) < 2(a—1)(a+b) -1 < 2(a—1)(a+b)-1
a|T| - a|T| - bS|-bk+1

2a—1)(a+b)—1
b(an + bk)/(a + b) — 2b(a — 1) — bk + 1

1 1
P

Combining this with Claim 1, we get

IA

do-s(T) < (1= ITI <IT| - 1. ™)

Let Tp = {z € T : dg-s(z) = 0}. Note that |Tp| > 2 holds by (7).
According to Claim 3, for any two vertices z,y € Tp, we obtain
an + bk

a+b ’
Since Tp is an independent set of G and G satisfies the hypothesis of The-
orem 5, then the neighborhoods of the vertices in Ty are disjoint. Hence,
we get that

|Na(z) U Ne(y)| < 1S] <

S| 2 | UzeT, Na(z)| 2 6(G)|To| 2 (a + k)|Tol. (8)
In view of (7), we have
1
(1= )T 2 dg-s(T) 2 |T| - [Tol,

which implies [Tp| > L"El Combining this with (8), we have

a+k
b

|51 2 (a + &)|To| 2 7. (9)

By Claims 1 and 4 and (9), we obtain
b|S| = (a+k)|T| = b|S|—bk+1+k|T| = b|S|—bk+1+k(b+1) = b|S|+k+1,
which is a contradiction. Completing the proof of Claim 5.

Claim 6. eg(S,T) < a|S|.

Proof. By Claim 1 and the definition of T', then there exist at least
two independent vertices z,y € T. Moreover, by the definition of T and
Claim 5, we have
an + bk

a+b

|Ne(z) U Ne(y)| < || + de-s(z) + de-s(y) < (10)
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for any two vertices z,y € T.
According to (10) and the assumption of Theorem 5, G[Ng(u) N T is
complete for any u € S. By Claim 2 and the definition of T, we have
eq(u, T) < AGT))+1<a.

This inequality above implies eq(S, T) < al9|.
According to (6), and Claims 1 and 6, and §(G) > a + k, we have

6c(5,T) = b|S| + dg-s(T) ~ a|T)
bS] + d(T) — a|T| — ec(S, T)
blS| + 6(G)|T| - a|T| — alS|

bS| + k|T| — a|S| > k|T| > bk.

bk -1

v

vV iIv 1

This is a contradiction.
This completes the proof.

The proof of Theorem 6 is quite similar to that of Theorem 5. The proof
of Theorem 6 is omitted. i

Remark Let us show that the condition [Ng(z) U Ng(y)| > 2;—'{?
in Theorem 5 can not be replaced by |[Ng(z) U Ne(y)| > “—;‘I—% — 1. Let
G = (A,B) be a complete bipartite graph such that |A| = at + k and
[B| = bt + 1, where ¢t is any positive integer. Then it follows that n =
|A|+|B|=(a+b)t+k+1and

an + bk an + bk
PIE > Na(@) UNe(w)] > 212

for any subset {z,y} of B. However, let U C A with |U| = k, it is easy to
see that G — U has no [a, b]-factor since b|A — U| < a|B|. According to the
definition of the (a, b, k)-critical graph, G is not an (a, b, k)-critical graph.
In this sense, the condition |Ng(z) U Ne(y)| > Eﬂigﬁ is the best possible.

We may adopt the similar way to argue the condition max{dg(z), dc(y)}
> enibk in Theorem 6, and the condition max{dg(z),dc(y)} > ent® in
Theorem 6 is the best possible.
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On the spectral radius of unicyclic graphs with fixed
maximum degree
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Abstract: Let A(G) be the maximum degree of a graph G, and
U(n, A) be the set of all unicyclic graphs on n vertices with fixed
maximum degree A. Among all the graphs in U(n, A) (A > 2£3),
we characterize the graph with the maximal spectral radius. We
also prove that the spectral radius of a unicyclic graph G on
n(n 2 30) vertices strictly increases with its maximum degree
when A(G) > [] +1.
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1 Introduction

Let G = (V(G), E(G)) be a simple graph on n vertices. When vertices
u and v are endpoints of an edge e, we write ¢ = uv. Denote the set
of all the neighbors of a vertex v in G by Ng(v) and the degree of v in
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