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Abstract: Let G be a k(k < 3)-edge connected simple graph with minimal
degree ¢ > 3 and girth g, r = [9-;—1J. If the independent number a(G) of
G satisfies

6(6—-1)% -6 6(g—2r-1)
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a(G) <

then G is up-embeddable.
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1 Introduction

The mazimum genus, yp(G), of a connected graph G is the largest integer
k such that there exists a cellular embedding of G in the orientable surface
with genus k. Recall that any cellular embedding of G has at least one
region. By the Euler polyhedral equation, the maximum genus 74 (G) <
| &£ |, where B(G) = |E(G)|—|V(G)|+1 is the cycle rank or Betti number
of G. A graph G is up-embeddable if ym(G) = | £ | exactly.

For a spanning tree T in graph G, £(G,T) denotes the number of com-
ponents of G \ E(T) with odd number of edges. £(G) = minr &(G,T) is
called the Betti deficiency number of G, where the minimum is taken over
all spanning trees T of G.

Theorem 1.1(Xuong [9], Liu [3]) Let G be a graph, then

(1) TM(G) = 3(B(G) - €(@Q));
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(2) G is up-embeddable if and only if £(G) < 1.

Let A be an edge subset of E(G). ¢(G \ A) denotes the number of
components of G\ A, when b(G\ A) denotes the number of components of G\
A with odd Betti number. In 1981, Nebesky [7] obtained an combinatorial
expression of £(G) in terms of the edge set.

Theorem 1.2(Nebesky (7]) Let G be a graph, then

§G) = max {c(G\4) +b(C\4) - |4] - 1}-

Let F;,, ---, Fj, be ! distinct components of G\A. E(F;,,---,F;) de-
notes the set of edges whose end vertices are in different components F; |
and F; (1 £ m < n < l). For an induced subgraph F of G, E(F,G) =
E(F,G\ E(F)). An independent set is the set of vertices in a graph, no
two of which are adjacent. The cardinality of a maximum independent set
is called the independent number of a graph G and is denoted by a(G). For
more graphical notations without explanation, see [1].

Theorem 1.3( Huang and Liu (4]) Let G be a graph. If G is not
up-embeddable, i.e., £(G) = 2, then there ezists an edge subset A C E(G)
satisfying the following properties:

(1) e(G\A) =b(G\A) 2 2

(2) for any component F of G\A, F is an induced subgraph of G;

(3) for any | > 2 distinct components F;,, ---, F;, of G\A, |E(F;,

] Fil )I <2-
(4) €(G) =2¢(G\A) — |A] - 1.

The study of the maximum genus was inaugurated by Nordhaus, Stew-
art and White[8]. From then on, various classes of graphs have been
proved up-embeddable. A formerly known result[9] states that every 4-
edge connected graph is up-embeddable. But, there exists 3-edge connected
graphs(see [2]) which are not up-embedabble. Based on this, what kind of
restrictions, under which a graph is up-embeddable, are studied extensively.
Huang and Liu[5] proved that the maximum genus of a connected 3-regular
graph G is equal to the maximum nonseparating independent number of
G. In this paper, we study the up-embeddability of simple graphs via the
independent number and obtain the following results.

Theorem 1.4 Let G be a k(k < 3)-edge connected simple graph with
minimal degree § > 3 and girth g, r = [9-—J If the independent number
a(G) of G satisfies

6(6-1)% —6 6(g—2r—1)
A-kK@©G-2)  4-k °

o(@) <

then G is up-embeddable.
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2 Characterizations of induced subgraphs

The distance between two vertices u and v in a graph G, denoted by
dg(u,v), is the length of a shortest (u,v)-path in G. The distance between
the edge ab and vertex v in a graph G is dg(eb, v) = min {d¢(a,v),da(b,v)}.
Clearly, dg(uv, u) = dg(uv,v) = dg(u,u) = 0. The i(i > 0)neighbor set of
a vertex or an edge z in a graph G is Ny(z) = {v | dg(z,v) = i,v € V(G)}.
For an induced subgraph F of a graph G, the vertex v € V(F) is called a
t-touching vertez or simply touching vertex of F', if v is the end vertex of
t(t > 1) edges in E(F,G). In paper [6], we obtain the following Proposition
1 and Proposition 2.

Proposition 1 Let G be a simple graph with minimal degree > 3, girth
g, T = [L;—lj H is a connected induced subgraph of G, S(H) > 1. If
{u,v} C V(H) contains all the touching vertices of H, then,

(1) when g = 2r + 2, there exists an edge ab € E(H) such that
min{dg(ab,u), dg(ab,v)} > r;

(2) when g = 2r + 1, there ezists a vertex a € V(H) such that
min{dy(a,u), dy(a,v)} > 1.

Proposition 2 Let G be a simple graph with minimal degree > 3, girth
g, r= [9;—1_’ H is a connected induced subgraph of G, B(H) > 1. If H
has exactly three 1-touching vertices u,v,w, then,

(1) when g = 2r + 2, there exists an edge ab € E(H) such that
min{dy(ab, v),dy(ab,v)} > r—1, max{dy(ab,u),dp(ab,v)} > r, dy(ab, w)
2>

(2) when g = 2r + 1, there exists a vertex a € V(H) such that
min{dg(a,u),duy(a,v)} > r — 1, max{dg(a,u),dn(a,v)} = r, du(a,w) >
7.

Lemma 2.1 Let G be a simple graph with minimal degree > 3, girth
g=24,r= [9;—1J H is a connected induced subgraph of G, B(H) > 1. If
|E(H,G)| < 3, then there ezists an independent set A of H, which has no
touching vertez of H, such that

§—1)l8 -1
|A|Z(——6—):2——9+21‘+1.

Proof Firstly, when H has exactly three 1-touching vertices {u, v, w},
by Proposition 2, there exists an edge or a vertex = in H such that min{dy(z,
u),dr(z,v)} = r — 1 and min{max{dy(z,v), du(z,v)}, du(z,w)} >
Suppose dy(z,u) = min{dy(z,u), du(z,v)} > r — 1 and min{dy(z,v),
du(z,w)} >r.

Case 1 When g =2r+1 > 5, then z is a vertex in H. As N;(z)(0 <
i £ r — 2) has no touching vertices of H, thus

Ni(z)26-(6-1)"1, 1<i<r—-1.
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Define

A= Ny_1(z) U Np_3(z) U - - - U Na(z) U No(z), T is odd;
1 Nr—1(z) U Np_g(z)U---UN3(z) U Ni(z), riseven.

It's easy to see that A’ is an independent set of H, and

G-1)r—1
-2

Subcase 1.1 dy(z,u) =7 —1, then u € N,_;(z) C A'. If N1(uv) N
{v,w} # 0, there exists another vertex v’ € N,_i(z) such that Ny(u') N
{u,v,w} = 0 and Ny(v’) N N,(z) > 2, because dg(z) > 3 and dy(u’) > 3.
If Ni(u) N {v,w} =0, let v’ = u, then N1(u’) N Ny(z) > 1 because u is just
a 1-touching vertex and dy(u) > 2. Since all vertices in N,_;(z) have no
common neighbors in N,.(z), the set A = A’ \ {u, v’} U (N;(v') N Ny(z)) is
also an independent set of H, which has no touching vertex of H, and

@-1) -1
-2

Subcase 1.2 dy(z,u) > 7, then, u ¢ A’. Clearly, A = A’ is an
independent set of H without touching vertex such that

(6-1)r-1
-2

Case 2 When g = 2742 > 4, then z is an edge in H. Suppose z = ab
and dg(z,v) =du(a,v) 2 1.

Subcase 2.1 dy(z,w) = dg(a,w) > r. This means {v,w} N N.(b) N
N,(z) = 0, for otherwise, a cycle with length 27 + 1 < g is formed. Define,
when r is odd,

{ By = (No(a) N No(z)) U (Na(a) N Na(x)) U-- - U (Ny_1(a) N Ny—1(z)),
Bs = (N1(b) N Ni(z)) U (N3(b) 0 Na(z)) U - - - U (Nn(b) N Ny ()),

|4 2

|A] > 14| =2

|4 = |4 2

when r is even,

{ B; = (Ni(a) N Ni(z)) U (N3(a) N N3(z)) U - - U (Nr_1(a) N Ny_1(2)),
By = (No(b) n No(x)) U (Na(b) N No(z))u---U (Nr(b) N Np()).

For 0 < i < r — 1, all vertices in N;(z) have no common neighbors in
Niga(z), and all vertices in Niy1(a) (or Nig1(b)) are not adjacent; for
otherwise a cycle with length 2(i + 1) + 1 < g is formed. Hence, A =
(B1 U By) \ {u} is an independent set of H without touching vertex. It’s
easy to see that B; N By =0, and

INi(@) N Ni(z)] > (6 — 1), INiB)N Nife)| 2 (6 - 1)}, 0<i<r-1.

240



In addition, if v € N,._1(b) N N.—1(z), then v ¢ By U B,, |Ny.(b) N Ny.(z)| >
(6 — 1)" — 1. Thus, through simple calculation,
(-1t -1 _1

6-2 )

If u € By U By, then u ¢ N,_1(b) N Ny_1(z), |[N-(b) N Ne(z)| = (6 —1)".
Thus,

|A| = |By| + |B2| =

(5 _ 1)r+1 -1 1
§-2
Subcase 2.2 dy(z,w) = dg(b, w) > r. Furthermore, suppose dg (z, u) =
du(a,u). As dy(b) > 3, there exists a vertex a’ € Ny(b) N Ni(z) such
that o’ # @ and dy(ba',y) > r, y € {y,v,w}. Now, for 0 < i,j <
r, i is odd, j is even, define

By = U(Ne(a') N Ni(z)) U U(N,-(b) N N;(z)),

|A| = |B1| 4 [B2| =1 2

By = J(Mi(b) 0 Ne()) U WV (a') 0 Ny(2)).

Clearly, B3, By both are independent set of H and B3N By = @. So, one of
Bs and B, has at most one touching vertex of H, suppose |[BaN{u,v,w}| <
1. As

INi(@') N Ni(z)| 2 (6 - 1), [N:(b) N Ni(z)| 2 (6-1)', 0<Li<r,

hence A = Bs \ {u,v,w} is an independent set without touching vertex of
H, and

—1)rHl =
(6-1) 1,

|Al = |Bs\ {u,v,w}| 2 |Bs| =1 2 —F—;

Secondly, when H has at most two touching vertices, the proof is the
same by using Proposition 1. 1]
3 The proof of Theorem 1.4
Suppose that Theorem 1.4 is not true, i.e., G is not up-embeddable. There
exists an edge set A C E(G) satisfying the characterizations (1)-(4) of
Theorem 1.3. Define C(G \ A) to be the set of components of G \ A, and

B, = {F||BE(F,G)|24,FeC(G\A)};
Bi = {F||E(F.G)|=iFeC(G\A)}, i=1,23.
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Clearly,
c¢(G\ A) = |B1| + |Bz| + |Bs| + | Bs|. 1)

For each edge e € A, the two end vertices of e must belong to two
distinct components of G \ A, because any component F € C(G\A) is an
induced subgraph of G. On the other hand, the edge e € E(F,G) must
belong to A. Thus,

1 3 1
lal=5 Y. |E(F,G)| 22IBal+5|Bs| +|B2l +51Bil.  (2)
FeC(G\A)
From Theorem 1.3, Equation (1) and (2), we have
£(G) 2¢(G\ 4) - 4] -1
3 1
2(1Ba| + |Bs| + |Ba| + |Bu]) — (2|Ba| + 51 Bs| +|Ba| + 3|B1|) — 1

IA N

1 3

5|Bal + 1Bz + 51B1| - 1.

As G is not up-embeddable, £(G) > 2. Hence

1 3

5|Bal + B2l + 5|B1| 2 3.

When G is k(k < 3)-edge connected, |B;| = 0 for ¢ < k. Through simple
calculation, we have
6
> —
|Bs| + |Ba| + |B1| = g
Without loss of generality, let F;(1 < i < 6/(4 — k)) be the components of
G\ A with |[E(F;,G)| < 3.
When g > 4, there exists an independent set A; of each component
Fi(1 €1 < 6/(4 — k)) satisfying the result of Lemma 2.1. Hence, we have

6/(4—k) 6(6—1% -6 6(g—2r-1
a(G) > | L_Jl Al > ((4—k))(6_2) _ (g4_rk )

When g = 3 and k = 3, 6/(4 — k) = 6. First, assume that each vertex
in Fi(1 < i < 6) is a touching vertex of F;. Since |E(F;,G)| = 3, V(F)
contains exactly three 1-touching vertices, denoted by {z:, v, z;}. Further-
more, suppose {Ze¢2s, Y624, 2673} = E(Fg, G). As the vertex z3 connects at
most one vertex in V(F;) U V(F3), hence there are at least 2 vertices in
F, and F, respectively, which aren’t adjacent with z3, denoted them by
{21,491} and {22,y2}. But, as |E(Fy, F2)| < 1, we can assume that z; and
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23 are not adjacent. Now, the vertices set {z1, 23, -+, 2} is clearly an inde-
pendent set of G. Second, if there exists vertex u; in F;(1 < ¢ < 6) which is
not a touching vertex, then by replacing z; with u;, we also can obtain an
independent set of G with 6 vertices. For k = 1,2, by similar discussions,
there exists an independent set of G with 6/(4 — k) vertices. Thus, when
g = 3, we have a(G) > 7%;. But, this also contradicts with the condition.
So, the graph G is up-embeddable. This completes the proof. 1}
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