NEW PROOFS FOR WHIPPLE'S TRANSFORMATION AND WATSON'S q-WHIPPLE TRANSFORMATION

¹CHUANAN WEI AND ²DIANXUAN GONG

¹ Department of Information Technology Hainan Medical College, Haikou 571101, China ² College of Sciences Hebei United University, Tangshan 063009, China

Abstract. By means of inversion techniques, new proofs for Whipple's transformation and Watson's q-Whipple transformation are offered.

Several years ago, Chu [4, 5, 6, 7, 8, 9, 10, 11] studied systemically summation formulas for hypergeometric series and q-series in the light of inversion techniques. Following the work just mentioned, we shall give new proofs for Whipple's transformation and Watson's q-Whipple transformation in the same method.

1. GOULD-HSU INVERSIONS AND WHIPPLE'S TRANSFORMATION

For a complex number x, define the shifted factorial by

$$(x)_0 \equiv 1$$
 and $(x)_n = x(x+1)\cdots(x+n-1)$ for $n = 1, 2, \cdots$.

The fraction form of it reads as

$$\begin{bmatrix} a, & b, & \cdots, & c \\ \alpha, & \beta, & \cdots, & \gamma \end{bmatrix}_n = \frac{(a)_n(b)_n \cdots (c)_n}{(\alpha)_n(\beta)_n \cdots (\gamma)_n}.$$

Following Bailey [2], define the hypergeometric series by

$${}_{1+r}F_s\begin{bmatrix}a_0, & a_1, & \cdots, & a_r\\ & b_1, & \cdots, & b_s\end{bmatrix}z\end{bmatrix} = \sum_{k=0}^{\infty} \frac{(a_0)_k(a_1)_k \cdots (a_r)_k}{k!(b_1)_k \cdots (b_s)_k}z^k.$$

Then Whipple's transformation (cf. Bailey [2, p. 25]) can be stated as follows.

Email addresses: weichuanan@yahoo.com.cn(C. Wei), dxgong@heut.edu.cn (D. Gong). The Corresponding author: Chuanan Wei.

²⁰⁰⁰ Mathematics Subject Classification. Primary 05A19 and Secondary 33C20, 33D15. Key words and phrases. Whipple's transformation; Saalschütz's summation formula; Watson's q-Whipple transformation; q-Saalschütz summation formula.

Theorem 1. For five complex numbers {a,b,c,d,e}, there holds:

For two nice proofs of this transformation, the reader may refer to Andrews, Askey and Roy [1, p. 633] and Bailey [2, p. 25] respectively. Now we give a new proof of Theorem 1.

Proof. Manipulating Saalschütz's summation formula (cf. Bailey [2, p. 9])

$$_{3}F_{2}\begin{bmatrix}1+a-d-e, & a+n, & -n\\ 1+a-d, & 1+a-e\end{bmatrix}1 = \begin{bmatrix}d, & e\\ 1+a-d, & 1+a-e\end{bmatrix}_{n}$$
 (1)

as the following equation

$$\begin{split} &\sum_{j=0}^{n} \begin{bmatrix} b, & c, & 1+a-d-e, & a+n, & -n \\ 1, 1+a-b, 1+a-c, 1+a-d, 1+a-e \end{bmatrix}_{j} \begin{bmatrix} 1-b-n, & c+j \\ c-a-n, 1+a-b+j \end{bmatrix}_{n-j} \\ &= \begin{bmatrix} b, & c, & d, & e \\ 1+a-b, & 1+a-c, & 1+a-d, & 1+a-e \end{bmatrix}_{n}, \end{split}$$

we have, according to (1), the identity

$$\sum_{j=0}^{n} \begin{bmatrix} b, & c, & 1+a-d-e, & a+n, & -n \\ 1, & 1+a-b, & 1+a-c, & 1+a-d, & 1+a-e \end{bmatrix}_{j}$$

$$\times {}_{3}F_{2} \begin{bmatrix} 1+a-b-c, & a+n+j, & -n+j \\ & 1+a-b+j, & 1+a-c+j \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} b, & c, & d, & e \\ 1+a-b, & 1+a-c, & 1+a-d, & 1+a-e \end{bmatrix}_{n}$$

which is exactly the following double sum

$$\begin{split} &\sum_{j=0}^{n} \begin{bmatrix} b, & c, & 1+a-d-e, & a+n, & -n \\ 1 & , 1+a-b, & 1+a-c, & 1+a-d, & 1+a-e \end{bmatrix}_{j} \\ &\times \sum_{k=0}^{n-j} \begin{bmatrix} 1+a-b-c, & a+n+j, & -n+j \\ 1, & 1+a-b+j, & 1+a-c+j \end{bmatrix}_{k} \\ &= \begin{bmatrix} b, & c, & d, & e \\ 1+a-b, & 1+a-c, & 1+a-d, & 1+a-e \end{bmatrix}_{k}. \end{split}$$

Preforming the replacement $k \to k - j$ for the last equation and then exchanging the order of the double sum, we obtain the following expression

$$\sum_{k=0}^{n} (-1)^{k} \binom{n}{k} (a+k)_{n} \begin{bmatrix} a, & 1+a-b-c \\ 1+a-b, & 1+a-c \end{bmatrix}_{k}$$

$$\times {}_{4}F_{3} \begin{bmatrix} 1+a-d-e, & b, & c, & -k \\ 1+a-d, & 1+a-e, & b+c-a-k \end{bmatrix} 1 \end{bmatrix}$$

$$= \begin{bmatrix} a, & b, & c, & d, & e \\ 1+a-b, & 1+a-c, & 1+a-d, & 1+a-e \end{bmatrix}_{n}.$$
 (2)

For a complex variable x and two complex sequences $\{a_k, b_k\}_{k\geq 0}$, define a polynomial sequence by

$$\phi(x;0) \equiv 1, \ \phi(x;n) = \prod_{i=0}^{n-1} (a_i + xb_i), \ n = 1, 2, \cdots$$

Then a pair of inverse series relations due to Gould-Hsu [13] (see Chu [5] also) can be stated as

$$f(n) = \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} \phi(k; n) g(k),$$
 (3a)

$$g(n) = \sum_{k=0}^{n} (-1)^{k} {n \choose k} \frac{a_{k} + kb_{k}}{\phi(n; k+1)} f(k).$$
 (3b)

Equation (2) matches with (3a) perfectly and (3b) creats the following dual relation

which is even the transformation that appears in Theorem 1.

2. Carlitz inversions and Watson's q-Whipple's transformation

With two complex numbers q and x, define the q-shifted factorial by

$$(x;q)_0 \equiv 1$$
 and $(x;q)_n = \prod_{k=0}^{n-1} (1-xq^k)$ for $n=1,2,\cdots$.

Its fraction form reads as

$$\begin{bmatrix} a, & b, & \cdots, & c \\ \alpha, & \beta, & \cdots, & \gamma \end{bmatrix} q \bigg|_{n} = \frac{(a;q)_{n}(b;q)_{n} \cdots (c;q)_{n}}{(\alpha;q)_{n}(\beta;q)_{n} \cdots (\gamma;q)_{n}}.$$

Following Gasper and Rahman [12], define q-series by

$${}_{1+r}\phi_s\begin{bmatrix}a_0, & a_1, & \cdots, & a_r\\ & b_1, & \cdots, & b_s\end{bmatrix}z\end{bmatrix} = \sum_{k=0}^{\infty}\begin{bmatrix}a_0, & a_1, & \cdots, & a_r\\ q, & b_1, & \cdots, & b_s\end{bmatrix}q_k^{\binom{k}{2}} {}_k^{s-r}z^k.$$

Then Watson's q-Whipple transformation (cf. Gasper and Rahman [12, p. 43]) can be stated as follows.

Theorem 2. For six complex numbers $\{q, a, b, c, d, e\}$, there holds:

$$8^{\phi_7} \begin{bmatrix} a, & q\sqrt{a}, & -q\sqrt{a}, & b, & c, & d, & e, & q^{-n} \\ \sqrt{a}, & -\sqrt{a}, & qa/b, & qa/c, & qa/d, & qa/e, & aq^{n+1} \end{bmatrix} q; \frac{a^2q^{2+n}}{bcde} \end{bmatrix} \\
= \begin{bmatrix} qa, & qa/bc \\ qa/b, & qa/c \end{bmatrix} q \Big]_{n} 4^{\phi_3} \begin{bmatrix} b, & c, & qa/de, & q^{-n} \\ qa/d, & qa/e, & q^{-n}bc/a \end{bmatrix} q; q \Big].$$

For two beautiful proofs of this transformation, the reader may refer to Andrews, Askey and Roy [1, p. 587] and Gasper and Rahman [12, p. 43] respectively. Here we provide a new proof of Theorem 2.

Proof. Reformulating q-Saalschütz's summation formula (cf. Gasper and Rahman [12, p. 17])

$${}_{3}\phi_{2}\begin{bmatrix}qa/de, & aq^{n}, & q^{-n}\\ & qa/d, & qa/e\end{bmatrix}q;q\end{bmatrix} = \begin{bmatrix}d, & e\\ qa/d, & qa/e\end{bmatrix}q_{n}^{2}\left(\frac{qa}{de}\right)^{n} \tag{4}$$

as the following equation

$$\begin{split} &\sum_{j=0}^{n} \begin{bmatrix} b, & c, & qa/de, & aq^{n}, & q^{-n} \\ q, & qa/b, & qa/c, & qa/d, & qa/e \end{bmatrix} q \end{bmatrix}_{j} \left(\frac{q^{2}a}{bc} \right)^{j} \begin{bmatrix} q^{1-n}/b, & q^{j}c \\ q^{-n}c/a, & q^{1+j}a/b \end{bmatrix} q \end{bmatrix}_{n-j} \\ &= \begin{bmatrix} b, & c, & d, & e \\ qa/b, & qa/c, & qa/d, & qa/e \end{bmatrix} q \end{bmatrix}_{n} \left(\frac{q^{2}a^{2}}{bcde} \right)^{n}, \end{split}$$

we have, from (4), the identity

$$\sum_{j=0}^{n} \begin{bmatrix} b, & c, & qa/de, & aq^{n}, & q^{-n} \\ q, & qa/b, & qa/c, & qa/d, & qa/e \end{bmatrix} q \Big]_{j} (\frac{q^{2}a}{bc})^{j}$$

$$\times {}_{3}\phi_{2} \begin{bmatrix} qa/bc, & aq^{n+j}, & q^{-n+j} \\ & q^{1+j}a/b, & q^{1+j}a/c \end{bmatrix} q; q \Big]$$

$$= \begin{bmatrix} b, & c, & d, & e \\ qa/b, & qa/c, & qa/d, & qa/e \end{bmatrix} q \Big]_{n} (\frac{q^{2}a^{2}}{bcde})^{n}$$

which is exactly the following double sum

$$\sum_{j=0}^{n} \begin{bmatrix} b, & c, & qa/de, & aq^{n}, & q^{-n} \\ q, & qa/b, & qa/c, & qa/d, & qa/e \end{bmatrix} q \Big]_{j} (\frac{q^{2}a}{bc})^{j}$$

$$\times \sum_{k=0}^{n-j} \begin{bmatrix} qa/bc, & aq^{n+j}, & q^{-n+j} \\ q, & q^{1+j}a/b, & q^{1+j}a/c \end{bmatrix} q \Big]_{k} q^{k}$$

$$= \begin{bmatrix} b, & c, & d, & e \\ qa/b, & qa/c, & qa/d, & qa/e \end{bmatrix} q \Big]_{n} (\frac{q^{2}a^{2}}{bcde})^{n}.$$

Replacing k by k - j for the last equation and then interchanging the order of the double sum, we get the following expression

$$\sum_{k=0}^{n} (-1)^{k} {n \brack k} q^{\binom{n-k}{2}} (aq^{k}; q)_{n} \begin{bmatrix} a, & qa/bc \\ qa/b, & qa/c \end{bmatrix} q \end{bmatrix}_{k}$$

$$\times {}_{4}\phi_{3} \begin{bmatrix} qa/de, & b, & c, & q^{-k} \\ & & qa/d, & qa/e, & q^{-k}bc/a \end{bmatrix} q; q \end{bmatrix}$$

$$= \begin{bmatrix} a, & b, & c, & d, & e \\ & & & qa/b, & qa/c, & qa/d, & qa/e \end{bmatrix} q \begin{bmatrix} \frac{q^{2}a^{2}}{bcde} \end{pmatrix}^{n} q^{\binom{n}{2}}$$
(5)

where q-binomial coefficient has been defined by

$$\begin{bmatrix} n \\ k \end{bmatrix} = \frac{(q;q)_n}{(q;q)_k(q;q)_{n-k}}.$$

For a complex variable x and two complex sequences $\{c_k, d_k\}_{k\geq 0}$, define a polynomial sequence by

$$\psi(x;0) \equiv 1, \ \psi(x;n) = \prod_{i=0}^{n-1} (c_i + q^x d_i), \ n = 1, 2, \cdots.$$

Then a pair of inverse series relations due to Carlitz [3] (see Chu [7] also) can be stated as

$$F(n) = \sum_{k=0}^{n} (-1)^{k} {n \brack k} q^{\binom{n-k}{2}} \psi(k; n) G(k),$$
 (6a)

$$G(n) = \sum_{k=0}^{n} (-1)^{k} {n \brack k} \frac{c_{k} + q^{k} d_{k}}{\psi(n; k+1)} F(k).$$
 (6b)

Equation (5) fits into (6a) ideally and (6b) produces the following dual relation

$$\sum_{k=0}^{n} (-1)^{k} {n \brack k} \frac{1 - aq^{2k}}{(aq^{n}; q)_{k+1}} {a, b, c, d, e \brack qa/b, qa/c, qa/d, qa/e} | q \brack_{k} (\frac{q^{2}a^{2}}{bcde})^{k} q^{\binom{k}{2}}$$

$$= {a, qa/bc \brack qa/b, qa/c} | q \brack_{n} 4\phi_{3} {qa/de, b, c, q^{-n} \brack qa/d, qa/e, q^{-n}bc/a} | q; q \brack$$

which is even the transformation displayed in Theorem 2.

REFERENCES

 G.E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press, Cambridge, 2000.

- [2] W.N. Bailey, Generalized Hypergeometric Series, Cambridge University Press, Cambridge, 1935.
- [3] L. Carlitz, Some invese relations, Duke Math. J. 40 (1973), 893-901.
- [4] W. Chu, Inversion techniques and combinatorial identities, Boll. Un. Mat. Ital. B-7 (1993), 737-760.
- [5] W. Chu, Inversion techniques and combinatorial identities: Strange evaluations of hypergeometric series, Pure Math. Appl. 4 (1993, PUMA), 409-428.
- [6] W. Chu, Inversion techniques and combinatorial identities: A unified treatment for the γF₆-series identities, Collect. Math. 45 (1994), 13-43.
- [7] W. Chu, Inversion techniques and combinatorial identities: Basic hypergeomitric identities, Publications Mathematicae, 44 (1994, Debrecen), 301-320.
- [8] W. Chu, Inversion techniques and combinatorial identities: Strange evaluations of basic hypergeometric series, Compositio Math. 91 (1994), 121-144.
- [9] W. Chu, Inversion techniques and combinatorial identities: Jackson's q-analogue of the Dougall-Dixon theorem and the dual formulae, Compositio Math. 95 (1995), 43-68.
- [10] W. Chu, Duplicate inverse series relations and hypergeometric evaluations with z = 1/4, Boll. Un. Mat. Ital. B-7 (2002), 585-604.
- [11] W. Chu, Inversion techniques and combinatorial identities: Balanced hypergeometric series, Rocky Mountain J. Math. 32 (2002), 561-587.
- [12] G. Gasper, M. Rahman, Basic Hypergeometric Series (2nd edition), Cambridge University Press, Cambridge, 2004.
- [13] H.W. Gould, L.C. Hsu, Some new inverse series relations, Duke Math. J. 40 (1973), 885-891.