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Abstract

A connected graph G is called l;-embeddable, if G can be isomet-
rically embedded into the !;-space. The hexagonal Mébius graphs
Hpm2r and Hams1,2k+1 are two classes of hexagonal tilings of a
Mobius strip. The regular quadrilateral Mobius graph Qp,q is a
quadrilateral tiling of a Mébius strip. In this note, we show that
among these three classes of graphs only Hs2, Ha s and Q2,2 are
{;-embeddable.
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1 Introduction

All graphs considered in this note are finite, unoriented and simple. For a
graph G, let V(G) and E(G) denote its vertex set and edge set, respectively.
The distance dg(u, v) between two vertices u and v of G is the length of a
shortest path between u and v. If the graph G is clear from the context,
then we will simply use d(u,v). It satisfies that (7) d(u,v) = d(v,u), (&)
d(u,v) > 0 and d(u,v) = 0 iff v = v and (&) d(u,v) < d(u,w) + d(w, v),
for all u,v,w € V(G). So dg is a metric on V(G) and (V(G), dg) is called
the graphic metric space associated with G [8].

0
Let X denote the set of all real sequences {{}, such that Z [€k] < oo.

Define the distance function d; on X as di(z,y) = Z [€x — ni|, for all z =

{&1,62,-- ¢k - hy={m,m2 .. .1 7k,...} € X. It s known that (X,d,) is
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a metric space and it is called the /;-space. A graph G is called an l;-graph
(sometimes called I, -embeddalbe) if and only if (V(G), dg) is isomorphic to
a subspace of the l;-space. That is, there exists a distance-preserving map-
ping ¢ from V(G) into X such that dg(z,y) = di(¢(z), #(y)) for any two
vertices x, y of G. From the view point of metric space, the l;-embeddability
of graphs was characterized in [5) and [17]: a graph is an [;-graph if and
only if it is an isometric subgraph of the Cartesian product of half-cubes
and cocktail-party graphs.

The Cartesian product GOH of graphs G and H is the graph with vertex
set V(G) x V(H) such that the vertex (a, ) is adjacent to the vertex (b,y)
whenever ab € E(G) and z =y, or a = b and zy € E(H) [14].

An n-dimensional hypercube or n-cube Qy, is defined as follows: the ver-
tex set consists of all n-tuples bybo - - - b, with b; € {0,1}, and two vertices
are adjacent if and only if the corresponding n-tuples differ in precisely one
place. The hypercube @, can be represented as the Cartesian product of
n copies of the complete graph on two vertices.

A scale A embedding (or A\—embedding) ¢ of a graph G into a hypercube
Q.. is a mapping V(G) — V(Qy), such that Adg(z,y) = dg, (¢(z), 6(¥))-
Assouad and Deza [1] showed that a graph G is an {;-graph if and only if it
admits a A\-embedding into a cube Q. for some integers A and k. According
to (8, Lemma 21.1.2}, X is 1 or an even number. Prisécaru, Soltan and
Chepoi [16] have shown that any planar graph in which all interior faces
have size larger than four and the interior vertices have degree larger than
three is {;-embeddable. Later, Chepoi, Deza and Grishukhin (2] gave a
criterion to decide whether a planar graph is an !;-graph. It is well known
that there are six famous surfaces except the plane: sphere, torus, Klein
bottle, projective plane, cylinder, and the M&bius strip. The first four are
closed, while the last two are not. Recently, Deza and Shpectorov [10]
determined all finite trivalent surface graphs with hexagonal faces on the
torus and the Klein bottle which are l;-graphs. In this note we consider
l;-embeddability of hexagonal and quadrilateral lattices on Mdbius strips.
For other results on I,-graphs we refer to 3, 6, 7, 11, 12].

The path P; is a graph with vertex-set {0,1,...,k—1} and edges i(i+1)
with 0 < i < k — 2. By the definition of the cartesian product of graphs,
P,0OP, is the pxq grid and V(P,0F,) = {(1,j)I0 <i < p-1,0<j < g-1}.

The hezagonal Mébius graph of length 2k and breadth 2m is defined as
the graph obtained from P,,, 0Pz by removing the edges {(2¢,2j+1), (2i+
1,25 + 1)} and {(2i+1,2j),(21+2,2j)} with0<i < (m—1),0<j < (k—1)
and adding the edges {(n,0),(2m ~1—-n,2k — 1)} with0 < n < 2k -1,
denoted by Ham 2k (see Figure 1(a)).

The hezagonal Mébius graph of length 2k 4+ 1 and breadth 2m + 1 is
obtained from Pam+10Psk+; by deleting the edges {(2i,25),(2i + 1,25)}
and {(2¢+1,25+1),(20 +2,2j+1)} (0<i<m—-1,0<j < k) and add
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a b ¢ d e f
(0:2%- 1] 1,%k-1) @n-32%-1) | @m- 1L2%-1)

<

o,ne (1,1 ¢ (2m- L1)
(0,0 (,0 | enpo [@2m-10)
f e d ¢ b a
(2) Hom,2x

(0,24 (2m,2k)
[ ]
[ ]
®
[
©,n 1L1) o(2m,1)
(0,0)' (1,0) (2m,0)

e d ¢ b a

(b) Ham41,2k4+1

Figure 1. Hexagonal Méobius graphs.
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the edges {(n,0), (2m — n,2k)} with 0 < n < 2m, denoted by Ham+1 2k+1
(see Figure 1(b)).

The graph Hom 2k ( of H2ma1,2k+1) can be seen as a hexagonal tiling of
a Mébius strip. Every hexagon of the tiling is called a face cycle of Hom 2k
(or Hom+1,2k+1)-

The quadrilateral Mébius graph of length g and breadth p is obtained
from P,00P, by adding the edges {(3,0),(p — 1 —4,g—1)} with 0 < i <
p — 1, denoted by Qp 4 (see Figure 2). The graph @Qpq can be seen as
a quadrilateral tiling of a Mdbius strip. When p = 1, Q4 is exactly a
cycle and it is seen as a degenerative quadrilateral Mdbius graph. Every
quadrilateral of the tiling is called a face cycle of Qp 4.

a b ¢c d e f

0g- D) (g-1) [29-D (p-1g-1)
©,1 (L) (2D (p-11)
0,0 (L,0) [(2,0) (»-10)

f e d ¢ b a

Figure 2. Quadrilateral Mdbius graph Qp 4.

Some of these structures such as Hj ok, H3z2k+1 and Qp, appeared
in {13, 18] to classify the hexagonal tilings or the quadrilateral tilings of
the torus and the Klein bottle. In this note, our results show that in
Hom 2k, Ham41,26+1 and Qp g only Haz, H3 3 and Qa2 are l;-graphs.

272



2 Labels of /;-graphs

We introduce the labels on I;-graphs firstly used in [9, 17) and later in
(10, 12, 15].

An n-dimensional hypercube @, can also be constructed as follows: Let
Q = {1,2,...,n}. The vertices of @, are all subsets of 2. Two vertices
A and B are adjacent if and only if [AAB| = 1, where A denotes the
symmetric difference of sets, i.e., AAB = (A\ B) U (B \ A). Then the
distance between any two vertices A and B in @, is equal to |JAAB).

Let G be a finite l;-graph and ¢ be a scale A embedding of G in @,,. Now
we assign to each edge uv of G a label l[(uv) as follows: I(uv) = ¢(u)A¢(v).
For each edge e = wv of G, |¢(u)Ad(v)| = dg,, (¢(u), ¢(v)) = A-de(u,v) =
A. We see that every edge label consists of precisely A elements from
{1,2,..., n}. The following two useful lemmas about labels can be proved
by utilizing the associativity and commutativity of symmetric difference.

Lemma 2.1. [9, 15] Let vo,vn be two vertices of an li-graph G and ¢ a
scale A embedding of G into a hypercube. The following statements hold:

1. If v = wuguy ... ug—1v is a path from u to v, then ¢(u)Dp(v) =
l(uw))Al(wur)A ...
Al(ug-1v), and

2. If v is geodesic, then the labels l(uuy), l(ujug),. . ., l{ug—1v) are pair-
wise disjoint and ¢(u)Ad(v) = l(uuy) Ul(uiug) U. .. Ul(ug—_1v). In
particular, every edge label on every shortest path from u to v is con-
tained in ¢(u)A¢(v).

A subgraph H of G is called isometric if dy (u,v) = dg(u, v) for any two
vertices u,v of H. Let Ci. = vyvy... vkt be a cycle. Two edges v;v;4; and
v;vj41 of Cx with 1 < 4,5 < k are opposite if dc, (vi, v;) = do, (Vig1,V541)
and equal to the diameter of Cy, where vg4+; = v1. Thus, every edge has a
unique opposite edge if k is even; and has two opposite edges, otherwise.

Lemma 2.2. [9, 15] Suppose that Cjy is an isometric cycle of G and uwv
and zy are a pair of opposite edges of Cx. If k is even, then l(uv) = l(zy),
while if k is odd, then |l(zy) Nl(wv)| = . Furthermore if k is odd and vw
is the second edge opposite to zy then l(zy) C l(uv) U l(vw). The labels of
nonopposite edges are disjoint.

Lemma 2.8. If a simple graph G is an l, -graph, then the labels on adjacent
edges of G are never equal.

Proof. Let e; = wv and e2 = vw be two adjacent edges of G and ¢ a scale
A embedding of G into a hypercube. Since G is simple, 1 < d(u,w) <
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2. Suppose to the contrary that I(uv) = l(vw), then by Lemma 2.1(1),
Md(u, w) = |p(u)Ad(w)| = |l(uv)Al(vw)| = |8] = 0. Therefore d(uw) = 0,
a contradiction. 0

3 [;-embeddability of hexagonal Mobius graphs

A necessary condition for [;-embeddability of graphs was given in [4]. We
introduce it as the following lemma.
Lemma 3.1. [4] For a graph G, if it is an l,-graph, dg must satisfy the
following 5-gonal inequality: for any five vertices z,y,a,b,c of G,
d(z,y) + (d(a,b) +d(a,c) + d(b,c)) < (d(z,a)+ d(,b) +d(z,c))
+(d(y, a) + d(y, ) + d(y, c)).
Recall that a (finite) planar graph G is outerplanar if there is an em-

bedding of G in the Euclidean plane such that all vertices of G lie on the
exterior face. Chepoi, Deza and Grishukhin proved in [2]:

Lemma 3.2. Any outerplanar graph is an l;-graph.

Denote K, the complete graph on n vertices. The set of neighbors of a
vertex z in G is denoted by Ng(z).

Theorem 3.3. Happ 2k withm > 1 andk > 1isly ifend onlyifm =k = 1.

Proof. Since the graph Hp 2 is an outerplanar graph, by Lemma 3.2, it is
an l;-graph and its scale 2 embedding into Q4 is shown in Figure 3. For
any of the other graphs Ham 2k, We either find its five vertices which do
not satisfy the 5-gonal inequality, or show that its edges do not possess
l1-labels by reductio ad absurdum.

® 1234
(0,1) (1,1)
0,0) 1,0)
12 23
Figure 3. Hap. Figure 4. Ho,.

Next we prove the theorem by distinguishing several cases with respect
to the values of m and k.
Casel. m=1.
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1. k = 1. See Figure 3.
It is clear that Hy 2 is isomorphic to K4 — e, which stands for the
graph obtained from K4 by deleting one edge e. It has been pointed
out above that it is an /;-graph.

2. k = 2. See Figure 4.
Let z = (1,2),y = (0,0),e = (1,1),b = (1,3) and ¢ = (0,1).
Then d(a,b) = 2,d(a,c) = 3,d(b,c) = 2,d(z,y) = 2 and d(z,a) =
1,d(z,b) = 1,d(z,c) = 2,d(y,a) = 2,d(y,b) = 1,d(y,c) = 1.
So d(z,y) + (d(a,b) + d(a, c) + d(b,c)) = 9, while (d(z, a) + d(z,b) +
d(z,c)) + (d(y, a) + d(y,b) + d(y, ¢)) = 8. These five vertices violate
the 5-gonal inequality in Lemma 3.1. Hence Hj 4 is not an /;-graph.

1(1,2k- 1)
(1,2k- 2)

(0,2i +2) (1,2i+2)

(0,2 +1) (1,2 +1)
(0,2i—2—4(1,2i)

(0,1) @1

0,0 (1,0)

Figure 5. Haak, @ =1((0,0)(1,0)).

3. k > 3. See Figure 5.
Firstly, we show that the cycle C = (1,0)(0,0)(0,1)(0,2) ... (0,2k-1)
(1,0) is an isometric cycle in Ha 2x. If not, there exist two vertices z,y
such that dc(z,y) > du, ,, (¢, y). Takesuch a pair of vertices ,y that
dH, 5. (T,y) is as small as possible. Then any shortest z,y-path P in
Hj o intersects C only at z and y. Hence dy, ,, (z) = dH,,.(v) = 3.
If z = (1,0) and y = (0,2¢) with 1 < ¢ < k — 1. According to
the choice of P in Hp ok, P = (1,0)(1,1)(1,2)...(1,24)(0,2¢). The
length of P is 2i + 1. The path (1,0)(0,0)(0,1)(0,2)...(0,2i) is a
path joining  to v in C. So d¢(z,y) < 2i + 1. This contradicts that
dc(.’l:, y) > de.ek (z7 y)'
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Ifz = (0,0) and y = (0,27), with 1 < ¢ < k—1. According to the
choice of P in Ha g, P = (0,0)(1,2k — 1)(1,2k — 2)...(1,2:)(0, 22).
The length of P is 2k — 2i + 1. The path (0,0)(1, 0)(0, 2k — 1)(0, 2k —
2)...(0,21) is a path joining = and y in C. So do(z,y) < 2k—2i+1.
This contradicts that dc(z,y) > du, . (,¥).

If both z and y are different from (1,0) or (0,0), without loss
of generality, suppose that z = (0,2:) and y = (0,25) with i < j.
Then (1,2:) and (1,25) must lie on P. According to the choice of P
in Haoe, P = (0,2i)(1,23)(1,2 + 1)(1,2 + 2)...(1,25)(0,25). The
length of P is 25 —2i+2. The path (0,2)(0,2i{+1)(0,2:+2)...(0,25)
is a path joining z to y in C. So d¢(z,y) < 27 — 24. This contradicts
that dc(z,y) > da, 5. (2, y)-

Secondly, we show that each face cycle of Hp 2 is isometric in
Hj . Taking any face cycle C; = (0,2:)(1,2¢)(1,2¢ + 1)(1,2¢ +
2)(0,2¢ + 2)(0,2¢ + 1)(0,2¢) with 0 < ¢ < k — 2, for any two ver-
tices whose distance is 2 in C;, we see that they are at distance 2 in
Hj ;. Then we are sufficient to prove that the distance between
two vertices whose distance is 3 in C; is also 3 in Hagx. With-
out loss of generality, suppose that z = (0,2¢) and y = (1,2: + 2),
dC(x’y) = 3. Since NH,_%(:B) nNH:.zk(y) = 03 de,zk(x$y) > 3.
Hence dg, ,, (z,y) = dc(z,y) = 3. A similar discussion to the face cy-
cle Cx—1 = (0,2k—2)(0, 2k—1)(1,0)(0,0)(1, 2k-1)(1, 2k—2)(0, 2k—2),
we know that C_; is isometric in Hj g¢.

Suppose that Hj gk is l;-embeddable. Let a := [((0,0)(1,0)).
Then by Lemma 2.2, I((0,2¢)(1,27)) = {((0,0)(1,0)) = a with 1 <
i < k-1 and ((0,0)(1,0)) C I((0,k —1)(0, k)) UL((0, k)(0,k + 1)) (in
the cycle C).

If k is odd, by Lemma 2.2, {((0, k-1)(1,k~-1)) = {((0,0)(1,0)) C
1((0,k—1)(0,%k))Ul((0,k)(0,k+ 1)) and by Lemma 2.1, we have that
AH, 2. (1, k= 1),(0,k+1)) < 3, but dg, ,, ((1,k~1),(0,k+1)) =3,
a contradiction.

If k is even, by Lemma 2.2, I((0,k)(1,%)) = 1((0,0)(1,0)) c
1((0,k — 1)(0,k)) U 1((0,k)(0,k + 1)) and I((0,k)(1,k)) N I((0,k -
1)(0,k)) # . The path (0,k + 1)(0,k)(1,k)(1,k — 1) is a path con-
necting (0, k + 1) with (1,k — 1). Then by Lemma 2.1, dg, ,, ((0,k +
1),(1,k—-1)) < 3, but dy, ,,((0,k+1), (1, k—1)) = 3, a contradiction.

Case 2. m = 2.

1. k = 1. see Figure 6.

Let z = (1,0), y = (3,0), a = (0,1), b = (2,1), and ¢ = (3,1). Then
we obtain that: d(a,b) = 3, d(a,c) = 2, d(b,c) = 3, and d(z,y) = 3;
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Figure 6. H,,

d(z,a) = 2, d(z,b) = 1, d(z,c) = 2, d(y,a) =1, d(y,b) = 2 and

d(y,c) = 1.
So
d(z,y) + (d(a,b) + d(a, c) + d(b,¢))
=3+(3+2+3)
=11,
and

(d(z,a) + d(z,b) + d(z, ) + (d(y, a) + d(y,b) + d(y,¢))
=(2+1+2)+(1+2+1)
=09.

Then these five vertices violate the 5-gonal inequality in Lemma 3.1.
So Hy is not an !;-graph.

. k = 2. see Figure 7(a). Suppose that Hy 4 is an [;-graph. Let 8 :=
1((0,0)(0,1)). It’s known that each face cycle is isometric in Hy 4.
Then by Lemma 2.2, {((3,3)(0,0)) = I((2,2)(2,3)) = {((1,1)(1,2)) =
1({(0,0)(0,1)) = 8. But the edges (3, 3)(0,0) and (0,0)(0, 1) are adja-
cent, a contradiction to Lemma 2.3.

. k 2 3. see Figure 7(b).

The path P = (0,0)(1,0)(1,1)(2,1)(2,0)(3,0) is a shortest path be-
tween (0,0) and (3,0). Suppose that Hy o is an {;-graph and let o =
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l(o.s) I(l.3) | 3) ) .BI(.s,'a'):

(0.2) (12)
B
P (L)
B

(1.0)

P (2.2) ¢2)
*———o

(2.1) 46D

|(2,o) ,(3-0)

(a) H4,4y B= l((oro)(lao))'

0.2-1) kl,?k- 1) |(2.2k- 1) l(”’" 1)

(1.2)
(2]

@ z)a '(3,2)

(CR) B ()

(.0)

4 a
20 |30

(b) Ha,2k, o = 1((0,0)(1,0)).

Figure 7.
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1((0,0)(1,0)). Then by Lemma 2.2, we have that [((0, 2¢)(1,2i)) =
1((0,0)(1,0)) = a (1 < i < k—1) and {((0,2k — 2)(1,2k — 2)) =
1((2,0)(3,0)). Hence {((0,0)(1,0)) = ((2,0)(3,0)) = c, a contradic-
tion to Lemma 2.1(2).

Case 3. m > 3.

(0,2k - 1)1 @m-12%- 1)
)

¢

Figure 8. Ham,2k, m > 3, m is odd.

1. m is odd. See Figure 8.
The path P = (m — 2,1)(m — 1,1)(m — 1,0)(m, 0)(m,1)(m +1,1) is
a shortest path between (m — 2,1) and (m + 1,1). If Hap, o is an
l;-graph, then by Lemma 2.2, I[((m - 2,1)(m —1,1)) = l((m - 2,2i +
1)(m—1,2i+1)) (1<i<k-1)andl((m-2,2k—1)(m—1,2k—1)) =
I((m,1)(m+1,1)). Hence l((m—2,1)(m~—1,1)) = l((m,1)(m+1,1)),
a contradiction to Lemma 2.1(2).

2. m is even. See Figure 9.

The path P = (m — 2,0)(m — 1,0)(m — 1,1)(m, 1)(m,0)(m + 1,0)
is a shortest path between (m — 2,0) and (m + 1,0). If Hopm ok is
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an l;-graph, then by Lemma 2.2, I((m — 2,0)(m - 1,0)) = I((m —
2,2i)(m—1,2i)) with 1 <4 < k—1 and in the face cycle (m -2, 2k —
2)(m — 2,2k — 1)(m + 1,0)(m,0)(m — 1,2k — 1)(m — 1,2k — 2)(m —
2,2k —2), l((m - 2,2k — 2)(m — 1,2k — 2)) = l((m,0)(m + 1,0)). So
I((m—2,0)(m-1,0)) = !((m,0)(m+1,0)), a contradiction to Lemma

2.1(2).
0,2k - l)0 0(2m- L2k-1)
® ¢
® ¢
(m-11)  |(m,1)
©.1)9 —t" $2m-1,1)
(0,0) (m-20) ™10 [m0) JmHo (2m-1,0)
Figure 9. Hm 2k, m > 3, m is even.
So far all cases have been studied and the proof is complete. a

Theorem 3.4. Hopi12k+1 8 an ly-graph if and only if m =k = 1.

Proof. For the graph Hj 3, we use the recognition algorithm of /;-graphs to

determine that it is an /;-graph. For any of the other graphs Hom+1,25+1,

we use reductio ad absurdum to show that its edges do not possess !;-labels.
To prove our results, like in Theorem 3.3, we classify the graphs Ham 41,2641

into several cases according to the values of m and k.
Case 1. m=1.

1. k = 1. See Figure 10(a). In fact, it is isomorphic to the graph shown
in Figure 10(b). By the recognition algorithm of /;-graphs described
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Figure 10. Hjgs.

in [9], we obtain that H3 3 can be scale 2 embedded into Q7 and the
labels of vertices are also labeled out in Figure 10(b).

2. k > 1. See Figure 11.

(0.2k)‘ (2,2k)
[
)
p
<
1,1
(ovl) ( ) "(2'1)
(0.0)' a,0) | 20

Figure 11. Hazk4a.

The path P = (0,1)(1,1)(1,0)(2,0) is a shortest path between (0, 1)
and (2,0). If H3 2x41 is an [;-graph, then by Lemma 2.2, 1((0,1)(1, 1))
=1((0,2¢ + 1)(1,2i + 1)) with 1 < ¢ < k — 1. At the same time, in
the face cycle (0, 2k—1) (0, 2k) (2,0) (1,0) (1, 2k) (1,2k~1) (0, 2k—1),
i(0,2k-1)(1, 2k—1)) = I((1,0)(2,0)). Sol((0,1)(1,1)) = I((1,0)(2,0)),
a contradiction.
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Case 2. m > 2.

1. m is odd. See Figure 12.

o, 2k)‘ (2m,2k)
[ ]
[ ]
[ ]
[
©,1) Tem)
(, 0)‘ q (2m,0)

Figure 12, Hom+1,2k+1, m 2 2, m is odd.

The path P = (m — 1,1)(m,1){(m,0)(m + 1,0) is a shortest path
between (m — 1,1) and (m + 1,0). Suppose that Ham41,2k+1 is an
l;-graph. Then by Lemma 2.2, I((m - 1,1)(m,1)) = {((m - 1,2i +
1)(m,2i + 1)) with 1 < ¢ < k — 1 and in the face cycle (m — 1,2k —
1)(m—1,2k)(m+1,0)(m,0)(m, 2k)(m, 2k —1)(m—1,2k—1), {((m —
1,2k—1)(m,2k—1)) = I((m,0)(m+1,0)). Hence I((m—1,1)(m,1)) =
I((m,0)(m + 1,0)), a contradiction to Lemma 2.1(2).

2. m is even. See Figure 13.
The path P = (m — 1,0)(m,0)(m,1){(m + 1,1) is a shortest path
between (m—1,0) and (m+1,1). Suppose Ham1,2k+1 is an {,-graph.
Then I((m — 1,0)(m,0)) = I((m — 1,2¢)(m, 2¢)) with 1 < i < k and
I((m~1,2k)(m, 2k)) = I((m,1)(m+1,1)). Hence I((m—1,0)(m,0)) =
[((m,1)(m + 1,1)), a contradiction to Lemma 2.1(2).

Up to now we have completed our proof and we can see that in Hom 11 2k41
only Hj 3 is l;-embeddable. 0
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(0,26)]

(2m, 2k)

(3)

4
0,0

m- L0

(m,1)

'm,0)

m+LI)

p(2m,1)

p
(2m,0)

Figure 13. Ham+1,2k+1, m > 2, m is even.

4 [,-embeddability of quadrilateral Mobius graphs

In this section, we make a study of I;-embeddability of the quadrilateral
Mébius graphs. The methods of our proof are similar to the methods in

Theorems 3.3 and 3.4.

Theorem 4.1. Q,, is anli-graph if and only ifp=gq=2 orp=1.

Proof. If p = 1, Qpq is a cycle and it is evidently !/;-embeddable. The
graphs @Qp ¢ (p > 2) fall into two general types p = 2 and p > 3. For the
first type we fix p and let ¢ range. For the second type we further classify
Qp,q into two classes with respect to the parity of p.

Case 1. p=2.

1. ¢ = 2. See Figure 14(a).

Then Q2,2 is isomorphic to Kj. It’s known that K, is an l,-graph [7]
and a scale 2 embedding of Q22 into Q4 is given in Figure 14(a).

2. g 2 3. See Figure 14(b).
Firstly, we have the following claim: the face cycles (0,%)(1,%)(1,7 +
1)(0,i + 1)(0,4) with 0 < i < ¢—2 and C,; = (0,0)(1,0)(0,q —
1)(1,q — 1)(0,0) are isometric in Q24. In fact, it is necessary to
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(0,1 (1,1)

(0,0) (1,0
12

0,0) 1,0
(a) Q2,2 (b) Q2,q.

Figure 14.

consider the vertices whose distance is 2 in C; and C,—;. These
vertices are not adjacent in Qz4. The claim is clear.

Similarly as shown in Theorem 3.3, the cycle C = (1,0) (0,0)(0,1)
(0,2)... (0,g—1) (1,0) is isometric in Q2,4. The length of C' is equal
to g+ 1.

Suppose that Q24 is an l;-graph, then 1((0,0)(1,0))= ({0, )(1,%))
foralll1<i<qg-1.

If g is odd, then I((0, 252)(0, 2£2)) = I((0,0)(1,0)). Since I((0, 45*)
(1,%52)) = U(0,0)(1,0)), 50 K((0, TFH)(1, %51)) = L((0, 251)(0, %F))-
But the two edges (0, 4:1)(0, £1) and (0, %31)(1, 4-1) are adjacent.
This contradicts to Lemma 2.3.

If g is even, then by Lemma 2.2, 1((0,0)(1,0)) € I((0, £-1)(0, £))u
1((0,2)(0, % + 1)) and ((0,0)(1,0)) N 1((0,£)(0, 3 + 1)) # 0. Since
10, )1, §) = 1((0,0)(1,0), 1(0, $)(1, ) NI((0, 1)(0, § + 1) #9.
By Lemma 2.1, this shows that d((0, § +1),(1,%)) <2, but (0, +1)
is not adjacent to (1, %), a contradiction.

Case 2. p > 3.

1. p is odd. See Figure 15.
The path (252,0)(25*,0)(2f,0) is a shortest path between (252,0)
and (Z,0). Suppose that Qg is an l;-graph. Then by Lemma
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Figure 15. Qp,q, p is odd.

2.2, l((f’—'ﬁ 0)(23%,0)) = (552, z)( z)) with1 < i< ¢g-1 and
(Zt g - (2 0~ 1) = U(7* 0)(25,0)). Therefore, 1((252, 0)
(P— 0)) _z((z’2—1 0)(&f,0)) But the two edges (252,0)(252,0) and
(L— 0)(L 0) are adjacent a contradiction to Lemma 2.3.

2. pis even. See Figure 186.

Let z = (§ - 2,0), 2 = (§ — 1,0), w = (£,0) and y = (§ + 1,0).

Suppose that Q4 is scale /\ embeddable mto a hypercube. Let o=

l(:vz) Then by Lemma 2.2 {((§ -2, z)(L i) =lzz)=a(1<i<
—1) and I((8 - 2,9— 1)(25%,9—1)) = l(wy). So l(zz) = l(wy) = o

Then |¢>(:1:)A¢(y)| = |l(xz)Al(zw)Al(wy)| = |l(2w)| = A. Therefore,

z and y are adjacent. That is a contradiction and thus Qp, 4 is not an

l1-graph.

Summarizing the above two cases, we obtain that only Q2 5 is /;-embeddable
in Qpgq. O
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Figure 16. Qp,q, p is even, a = (zz2).
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