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Abstract

Let ¢(H) denote the number of components of a graph H. Win

proved in 1989 that if a connected graph G satisfies
¢(G\ S) < (k — 2)|S| + 2, for every subset S of V(G),
then G has a spanning tree with maximum degree at most k.

For a spanning tree T of a connected graph, the k-excess of a
vertex v is defined to be max{0,degs(v) — k}. The total k-excess
te(T, k) is the summation of the k-excesses of all vertices, namely,

te(T, k) = ZvEV(T) max{0, degp(v) — k}.
This paper gives a sufficient condition for a graph to have a spanning
tree with bounded total k-excess. Our main result is as follows.

Suppose k > 2, b > 0, and G is a connected graph satisfying the
following condition:

For every subset S of V(G), ¢(G\ S) < (k—2)|S|+2+b.

Then, G has a spanning tree with total k-excess at most b.

1 Introduction

Let G be a graph, and let S be a subset of V(G). The number of components
in G\ S is denoted by ¢(G \ S). For a real number ¢, if |S| > ¢t-c¢(G \ S)
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holds for every S C V(G) with ¢(G\ S) > 2, then G is called t-tough. The
maximum number ¢ for which G is t-tough is the toughness of G. If G is a
complete graph, its toughness is defined to be oo.

The notion of toughness was introduced by Chvétal [6], related to the
hamiltoncity of a graph. It is easy to see that every hamiltonian graph is
1-tough. Chvétal [6] conjectured that there exists a constant o such that
every to-tough graph is hamiltonian. Bauer, Broersma and Veldman [2]
showed that if such a number ty exists, then ¢y > %.

A k-tree is a spanning tree whose maximum degree is less than or equal
to k. Win[5) gave a sufficient condition for a graph G to contain a k-tree,
in terms of |S| and ¢(G \ S).

Theorem 1 (Win, 1989 [5]) Let k be an integer with k > 2. If G is a
connected graph satisfying the following condition:

For every subset S of V(G), ¢(G\ S) < (k—2)|S|+2.
Then, G has a k-tree.

For k > 3, this theorem implies that every %5-tough graph has a k-tree.

In this paper, we consider what kind of spanning trees we can get
if we replace the constant term in the inequality of the condition in The-
orem 1. We give one answer to this problem, based on another proof of
Theorem 1 by Ellingham and Zha [3]. We introduce the following notion.

Definition 1 For a spanning tree T of a connected graph, we define the
k-ezcess of a vertez v as max{0,degy(v) —k}. We define the total k-excess
te(T, k) as follows.

te(T,k) = > max{0,degr(v) - k}
veV(T)

The main result in this paper is the following.

Theorem 2 Suppose k > 2, b > 0, and G is a connected graph satisfying
the following condition.

For every subset S of V(G), ¢c(G\ S) < (k-2)|S|+b+2.

Then, G has a spanning tree with total k-excess at most b.
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2 Proof of Theorem 2

At first, we introduce a notion called bridge.

Definition 2 For S C V(G), an S-bridge of G is
e an edge both of whose ends are contained in S, or

o a subgraph consisting of a component C of G \ S together with the
edges joining S and C.

If we assume the condition weaker than the one in Theorem 1, then we
cannot avoid getting vertices with degree greater than k in a spanning tree.

A k-forest of G is a spanning subgraph of G which is a forest with
maximum degree at most k. Take a k-forest F' of G with the smallest
number of components. Let r be the number of components in F'.

Let F be the set of k-forests in G such that the vertex sets of the
components coincide with the ones of F. For S C V(G), let F(S) be the
set of k-forests F' € F such that the vertex sets of the S-bridges of F'
coincide with those of the S-bridges of F. Let Ao be the set of vertices
which have degree k in all k-forests in F. Let A; be the set of vertices
which have degree k in all k-forests in F(Ap). In every tree in F(Ap), the
degree of vertices in Ay is k, therefore Ap C A;.

Claim 1 Each edge of G which connects different components of F'\ Ao
has an end vertez in A;.

Proof of Claim 1.

Let uv € E(G) be an edge which connects different components of F'\ 4.
Then, for every F' € F(Ag), u and v are contained in different components
of F'\ Ao. Suppose u ¢ A; and v ¢ A;. Then, there exist F;, F; € F(Ap)
satisfying degp, (u) < k and degp, (v) < k. By replacing the Aq-bridge in
F that contains v with the Ap-bridge in F, that contains v, we get another
k-forest F3 € F(Ap) such that the degrees of u and v are less than k.

If there does not exist a (u, v)-path in F3, F3 +uv is a k-forest of G with
less number of components than F. This contradicts the minimality of F.

If there exists a (u,v)-path F3(u,v) in F3, the path contains a vertex w
of Ag. By adding wwv, and removing one of the edges in F3(u,v) incident
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with w, we obtain a k-forest in F such that the degree of w is less than k.
This contradicts the fact that w € Ag. Therefore, we establish u € A4, or
v € A;. Thus the proof of Claim 1 is completed.

To continue this inductively, we define A;;; as the set of vertices which
have degree k in all forests in F(A;). Then we can show the following claim
by the same argument as Claim 1.

Claim 2 Each edge connecting different components of F'\ A; has an end
vertez in A.H-l -

In F(A;), degree of any vertex in A; is constant, therefore 4; C Aj;4,.
Therefore, we get the following progression, where Dy (F') is the set of all
vertices whose degree is k in F.

Ao CAICA C- - CAjC--- CDu(F)

Because Di(F) is a finite set, we get Am = Am41 at some integer m.
Then, by Claim 2, A,, has the property that any edge connecting different
components of F \ A, has an end vertex in Ap,. In other words, there is
no edge of G connecting different components of F'\ A,,. This implies that
for S = A, we have ¢(G \ S) = ¢(F\ S).

Let r = ¢(F), and let s be the number of components in F' which does
not contain a vertex of S. If r = 1, then F is a desired k-tree. Assume
r > 2. Then, since G is connected, we have S # ¢. Thus, we have s+1 <.

We shall construct a spanning tree of G by adding edges to F. At first,
we add edges connecting a component C containing no vertices of S with
another component C’. Note that C' must contain a vertex of S.

For otherwise, we first replace one or both of C and C’ by a component
on the same vertex set in which the end of the edge has degree less than
k. Then by adding the edge, we would obtain a k-forest with the number
of components fewer than F. Thus C' NS # ¢. Similarly in this case,
we replace C if necessary, and add the edge connecting C and C’. At this
point, the total k-excess increases by at most 1 for adding one edge. We
repeat this produce until there is no component containing no vertices of
S. Then the total k-excess increases by at most s. Next, we add edges
between the components until only one component remains. The total
k-excess increases by at most 2 for adding one edge. So, this operation
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increases the total k-excess by at most 2(r — s — 1). Therefore, the total
k-excess of the resulting spanning tree T is at most 2(r — 1) —s.

On the other hand, we can evaluate ¢(F \ S) as follows. At first, the
number of components in F is r. For each component of F' containing a
vertex of S, when we remove the first vertex in S, the number of com-
ponents increases k — 1, since the degree of this vertex is k. Then we
remove vertices of S according to the distance from the first vertex. If
the removing vertex is adjacent to the vertex already removed, then the
number of components increases by k — 2. Otherwise, the removal in-
creases the number of components by k — 1. Taking sum of them, we have
c(F\S)>2r+(k—-2)|S|+r—-s=(k—-2)|S|+2r—s.

Therefore, by the condition of this theorem ¢(G\ S) < (k-2)|S|+b+2,
we obtain (k—2)|S]+2r—s < ¢(F\S) = c(G\S) < (k-2)|S|+b+2. Sowe
have 2r — s < b+ 2. Thus the total k-excess of T is at most 2(r —1)—s < b.
0O

3 Remarks

When the constant term b in the condition of Theorem 2 is negative, what
kind of spanning trees does the graph contain? In [4], Ellingham, Nam
and Voss proved the following result, which is a generalization of Win’s
theorem.

Theorem 3 ([4]) Let G be a connected graph, and let h be a positive
integer-valued function on V(G). Then, G has a spanning tree T with
degr(v) < h(v) for every v € V(G), if for every S C V(G)

e(G\S) <) (h(v) -2) +2.

vES

For a given subset X C V(G) with |X| = b, define

[ k-1, vex
h’(”)‘{ k, v € V(G)\ X.

Suppose that G satisfies the following condition; for every nonempty subset
S cV(G),
e(G\S) < (k—-2)S|+2-b.
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Then,

e(G\S) < (k-2)|S|+2-|SNX|< Y (h(v) —2) +2.
veES

Thus, by Theorem 3, G has a k-tree in which the vertices in X have degree
less than k.
Next, for a subset X C V(G) with |X| = b, we consider the following

function;
k+1 veEX
h(v) = ’
@) { k, ve V(G)\ X.
By Theorem 3, if for every subset S C V(G),
c(G\S) < (k-2)|S|+2+]SnX]|,

then G has a spanning (k+1)-tree T such that degy(z) < kforz € V(G)\X.
In particular, G has a spanning tree T with te(T, k) < b. This condition is
slightly stronger than the one in Theorem 2. Thus, Theorem 3 does not
imply Theorem 2.
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