The digraphs from finite fields*

Yangjiang Wei[†], Gaohua Tang School of Mathematical Sciences, Guangxi Teachers Education University, Nanning 530023, China

Abstract. For a finite field \mathbb{F}_{p^t} of order p^t , where p is a prime and $t \geq 1$, we consider the digraph $G(\mathbb{F}_{p^t}, k)$ that has all the elements of \mathbb{F}_{p^t} as vertices and a directed edge E(a, b) if and only if $a^k = b$, where $a, b \in \mathbb{F}_{p^t}$. We completely determine the structure of $G(\mathbb{F}_{p^t}, k)$, the isomorphic digraphs of \mathbb{F}_{p^t} and the longest cycle in $G(\mathbb{F}_{p^t}, k)$.

2010 MSC: 05C05; 11A07;13M05

Keywords: digraph; component; isomorphic digraphs

1 Introduction

Let \mathbb{F}_{p^t} be a finite field of order p^t , where p is a prime and t is a positive integer, the graph $G(\mathbb{F}_{p^t}, k)$ (k is a positive integer) is a digraph whose set of vertices is all the elements of \mathbb{F}_{p^t} and for which there is a directed edge E(a, b) from $a \in \mathbb{F}_{p^t}$ to $b \in \mathbb{F}_{p^t}$ if and only if $a^k = b$. The digraph $G(\mathbb{Z}_n, k)$ associated with powers modulo n, has been studied in [1]—[3] and [5]—[6]. In this paper, we will generalize some results which were presented in [2], [3] and [6] from prime fields \mathbb{Z}_p to finite fields \mathbb{F}_{p^t} .

A component of a digraph is a directed subgraph which is a maximal connected subgraph of the associated undirected graph. Suppose α is a vertex of a digraph, the in-degree of α , denoted by $indeg(\alpha)$, is the number of directed edges coming into α . Cycles of length t are called t-cycles and are assumed to be oriented counterclockwise. α is said to be at

^{*}This research was supported by the Guangxi Natural Science Foundation (2011GXNSFA018139, 2010GXNSFB013048, 0991102), Guangxi New Century 1000 Talents Project and the Scientific Research Foundation of Guangxi Educational Committee (200911LX284, 201012MS140).

[†]Corresponding author: weiyangjiang2004@yahoo.com.cn.

height h, $h \geqslant 0$, if h is the minimal nonnegative integer such that α^{k^h} is a cycle vertex. Moreover, F^G_{α} refers to the tree attached to the cycle vertex α of the digraph G.

2 The structure of digraphs of cyclic groups

It is well known that the unit group of a finite field \mathbb{F}_{p^t} is a cyclic group C_{p^t-1} of order p^t-1 , and we denote the set of nonzero elements of \mathbb{F}_{p^t} by $\mathbb{F}_{p^t}^*$. Hence, $\mathbb{F}_{p^t}^* \cong C_{p^t-1}$. In this section, we investigate the structure of digraphs $G(C_n, k)$ of cyclic groups C_n . Throughout this paper, we denote $C_n = \langle a \rangle$ with the order of a is o(a) = n, and let e be the identity of C_n .

Theorem 2.1. [4] Let n = uv, where u is the largest divisor of n relatively prime to k. Suppose gcd(n,k) = d. Then in $G(C_n,k)$, we have

- (1) For $a^x \in C_n$, indeg $(a^x) > 0$ if and only if d|x.
- (2) If d|x, then $indeg(a^x) = d$.
- (3) $G(C_n, k)$ has exactly one component if and only if q|k for any prime divisor q of n.
- (4) The element α is a cycle vertex in $G(C_n, k)$ if and only if $gcd(o(\alpha), k) =$ 1, if and only if $o(\alpha)|u$.

 - (5) The number of all cycle vertices in G(C_n, k) is equal to u.
 (6) Let α be a cycle vertex in G(C_n, k). Then F_α^{G(C_n,k)} ≅ F_e^{G(C_n,k)}.

Theorem 2.2. Let n > 1.

(1) Suppose gcd(n, k) = 1. Then $G(C_n, k)$ is the disjoint union

$$G(C_n, k) = \bigcup_{d|n} \underbrace{(\sigma(\operatorname{ord}_d k) \cup \cdots \cup \sigma(\operatorname{ord}_d k))}_{\varphi(d)/\operatorname{ord}_d k},$$

where $\sigma(l)$ is the cycle of length l, $\varphi(d)$ is the Euler totient function.

(2) Suppose gcd(n,k) > 1, n = uv, where u is the largest divisor of n relatively prime to k. Then

$$G(C_n, k) = \bigcup_{d|u} \underbrace{(\sigma(\operatorname{ord}_d k, F_e^{G(C_v, k)}) \cup \cdots \cup \sigma(\operatorname{ord}_d k, F_e^{G(C_v, k)}))}_{\varphi(d)/\operatorname{ord}_d k},$$

where $\sigma(l, F_e^{G(C_v,k)})$ consists of a cycle of length l with a copy of the tree $F_e^{G(C_v,k)}$ attached to each vertex.

Proof. (1) Let $C_n = \bigcup_{d|n} H_d$, where H_d is the set of elements with order d in C_n , d|n. Since $\gcd(n,k)=1$, we have $\gcd(d,k)=1$ and $\operatorname{ord}_d k \geqslant 1$ for d|n. So for $g \in H_d$, $\operatorname{ord}_d k$ is the least positive integer such that $g^{k^{\operatorname{ord}_d k}} = g$. This implies that each H_d is the disjoint union of cycles of length $\operatorname{ord}_d k$. Moreover, by $|H_d| = \varphi(d)$ we have the formula.

(2) By Theorem 2.1 (4), for $\alpha \in C_n$, α is a cycle vertex of $G(C_n, k)$ if and only if $o(\alpha)|u$. Let H_d be the set of elements with order d in C_n , d|u. By the similar argument of (1) above, we derive that each H_d is the disjoint union of $\varphi(d)/\operatorname{ord}_d k$ cycles of length $\operatorname{ord}_d k$.

By Theorem 2.1 (3), $G(C_v, k)$ has exactly one component. Now suppose Com(e) is the component of $G(C_n, k)$ containing the identity e. If we can show $G(C_v, k) \cong Com(e)$, then by Theorem 2.1 (6), the formula holds. In fact, let $C_n = \langle a \rangle$, o(a) = n, while $C_v = \langle b \rangle$, o(b) = v. If a^x is a vertex of Com(e), then $(a^x)^{k^j} = e$ for some integer j. Hence, $n|xk^j$, i.e., $uv|xk^j$. Moreover, since gcd(u, k) = 1, we have u|x. Conversely, suppose $x = ux_1$. Since q|k for any prime divisor of v, there exists a positive integer h such that $v|k^h$. Hence, $uv|uk^h$ and so $uv|ux_1k^h$, i.e., $n|xk^h$. Thus we have $(a^x)^{k^h} = e$. So we can conclude that a^x is a vertex of Com(e) if and only if u|x. Now let $H = \{a^{um} | m = 1, \ldots, v\}$. Then $\alpha \in Com(e)$ if and only if $\alpha \in H$. It is easy to show that $H = \langle a^u \rangle$. So H is a subgroup of C_n . Moreover, since |H| = v, we have $H \cong C_v$. Therefore, $G(C_v, k) \cong Com(e)$.

Corollary 2.3. (1) For $t \ge 1$, $G(C_{k^t}, k)$ is a complete k-ary tree of height t with the root in e.

(2) If $n = k^t m$, where gcd(m, k) = 1, m > 1, $t \ge 1$, then

$$G(C_n,k) = \bigcup_{d|m} \underbrace{(\sigma(\operatorname{ord}_d k, F_e^{G(C_{k^t},k)}) \cup \cdots \cup \sigma(\operatorname{ord}_d k, F_e^{G(C_{k^t},k)}))}_{\varphi(d)/\operatorname{ord}_d k}.$$

3 Isomorphic digraphs of cyclic groups

In this section we give a sufficient and necessary condition for which $G(C_n, k_1) \cong G(C_n, k_2)$. We will show in the following theorem that if n is fixed, only finitely many distinct digraphs result as k varies.

Theorem 3.1. $G(C_n, k_1) = G(C_n, k_2)$ if and only if $n|k_1 - k_2$.

Proof. Suppose $G(C_n, k_1) = G(C_n, k_2)$. Then $(a^x)^{k_1} = (a^x)^{k_2}$ for $x = 1, \ldots, n$. Hence, $n|k_1-k_2$. Conversely, assume that $n|k_1-k_2$, then $a^{k_1} = a^{k_2}$ and hence $(a^x)^{k_1} = (a^x)^{k_2}$ for $x = 1, \ldots, n$, which implies that $G(C_n, k_1) = G(C_n, k_2)$. This completes our proof.

Lemma 3.2. (1) Suppose that q|n if and only if q|k, where q is prime. Let m be a positive integer, and gcd(n,m) = 1. Then $G(C_n,k) \cong G(C_n,km)$.

(2) Suppose that $gcd(n, k_1) = gcd(n, k_2)$. Moreover, q|n if and only if $q|k_1$, if and only if $q|k_2$, where q is prime. Then there exists $m \ge 1$ and gcd(n, m) = 1 such that $k_2 \equiv k_1 m \pmod{n}$.

Proof. (1) Let $E(G(C_n, k))$ be the set of edges of $G(C_n, k)$ and E(a, b) the directed edge from vertex a to vertex b. We define $f: E(G(C_n, k)) \to E(G(C_n, km))$ by $f(E(a^x, a^{kx})) = E(a^{mx}, a^{km^2x})$ for $a^x \in C_n$.

Firstly, we will check that f is one-to-one and onto. Suppose $a^{mx_1}=a^{mx_2}$, then $n|m(x_1-x_2)$. Since $\gcd(n,m)=1$, we have $n|x_1-x_2$. Hence, $a^{x_1}=a^{x_2}$. Therefore, f is one-to-one. On the other hand, since $\gcd(n,m)=1$, if $1\leqslant y\leqslant n$, there exists a unique integer x_0 $(1\leqslant x_0\leqslant n)$ satisfing $mx_0\equiv y\ (\text{mod }n)$. Hence, $f(E(a^{x_0},a^{kx_0}))=E(a^y,a^{kmy})$. So f is onto $G(C_n,km)$.

Second, by Theorem 2.1 (3), both $G(C_n, k)$ and $G(C_n, km)$ have exactly one component, respectively. We will show that the height of a^{kx} in $G(C_n, k)$ is h if and only if the height of a^{km^2x} in $G(C_n, km)$ is h. Let the height of a^{kx} in $G(C_n, k)$ be h, then h is the least positive integer such that $(a^{kx})^{k^h} = e$. Thus $(a^{km^2x})^{(km)^h} = e$. If $(a^{km^2x})^{(km)^{h-1}} = e$, then $(a^{k^hx})^{m^{h+1}} = e$. Since $\gcd(n, m) = 1$, we have $a^{k^hx} = e$, i.e., $(a^{kx})^{k^{h-1}} = e$, which implies that the height of a^{kx} in $G(C_n, k)$ is h-1, which is a contradiction. Hence, the height of a^{km^2x} in $G(C_n, km)$ is also h. Similarly, we can check that if the height of a^{km^2x} in $G(C_n, km)$ is h, then the height of a^{kx} in $G(C_n, k)$ is also h.

Finally, we will show that $(a^{kx_1})^{k^j} = (a^{kx_2})^{k^j}$ if and only if $(a^{km^2x_1})^{(km)^j}$ $= (a^{km^2x_2})^{(km)^j}$, for $j \ge 0$. On the one hand, by $(a^{kx_1})^{k^j} = (a^{kx_2})^{k^j}$, we derive that $n|k^{j+1}(x_1-x_2)$. Thus $n|k^{j+1}m^{j+2}(x_1-x_2)$, therefore $(a^{km^2x_1})^{(km)^j} = (a^{km^2x_2})^{(km)^j}$. On the other hand, by $(a^{km^2x_1})^{(km)^j} = (a^{km^2x_2})^{(km)^j}$, we have $n|k^{j+1}m^{j+2}(x_1-x_2)$. It is clear $n|k^{j+1}(x_1-x_2)$ because $\gcd(n,m)=1$, hence $(a^{kx_1})^{k^j}=(a^{kx_2})^{k^j}$.

By the above argument, we can conclude that $G(C_n, k) \cong G(C_n, km)$.

(2) By hypothesis, let $n=p_1^{t_1}\cdots p_s^{t_s}$, $k_1=p_1^{\lambda_1}\cdots p_{\sigma}^{\lambda_{\sigma}}p_{\sigma+1}^{x_{\sigma+1}}\cdots p_s^{x_s}$, $k_2=p_1^{\lambda_1}\cdots p_{\sigma}^{\lambda_{\sigma}}p_{\sigma+1}^{y_{\sigma+1}}\cdots p_s^{y_s}$, where p_1,\ldots,p_s are distinct primes, and for $i=1,\ldots,\sigma,\ 1\leqslant \lambda_i < t_i$, while for $j=\sigma+1,\ldots,s,\ x_j\geqslant t_j\geqslant 1$ and $y_j\geqslant t_j$. Since $\gcd(p_1\cdots p_{\sigma},p_{\sigma+1}\cdots p_s)=1$, there exists a positive integer m_0 such that

$$p_{\sigma+1}^{x_{\sigma+1}-t_{\sigma+1}}\cdots p_s^{x_s-t_s}m_0\equiv p_{\sigma+1}^{y_{\sigma+1}-t_{\sigma+1}}\cdots p_s^{y_s-t_s}\ (\mathrm{mod}\ p_1^{t_1}\cdots p_{\sigma}^{t_\sigma}).$$

Clearly, $p_i \nmid m_0$ for $i = 1, \ldots, \sigma$.

If $p_j \nmid m_0$ for $j = \sigma + 1, \ldots, s$, let $m = m_0$, then $\gcd(n, m) = 1$ and $k_2 \equiv k_1 m \pmod{n}$. If there exists a nonempty subset B of $A = \{\sigma + 1, \ldots, s\}$ such that $p_i | m_0$ for $i \in B$, while $p_j \nmid m_0$ for $j \in A \setminus B$, let $m = m_0 + p_1^{t_1} \cdots p_{\sigma}^{t_{\sigma}} \prod_{j \in A \setminus B} p_j$. Then we have $\gcd(n, m) = 1$ and $k_2 \equiv k_1 m \pmod{n}$, as desired.

Theorem 3.3. $G(C_n, k_1) \cong G(C_n, k_2)$ if and only if the following two conditions are satisfied.

- (1) $gcd(n, k_1) = gcd(n, k_2)$.
- (2) There exists a positive integer u such that n = uv, u is the largest divisor of n relatively prime to k_1 and is also the largest divisor of n relatively prime to k_2 . Moreover, for any d|u, $\operatorname{ord}_d k_1 = \operatorname{ord}_d k_2$.

Proof. If $gcd(n, k_1) = 1$, by Theorem 2.2 (1), the proof is clear. In the following, assume that $gcd(n, k_1) > 1$.

Firstly, we prove the necessity of this theorem. Suppose $G(C_n, k_1) \cong G(C_n, k_2)$. By Theorem 2.1 (1) and (2), we have $\gcd(n, k_1) = \gcd(n, k_2)$. If n = uv and u is the largest divisor of n relatively prime to k_1 , it is easy to check that u is also the largest divisor of n relatively prime to k_2 because $\gcd(n, k_1) = \gcd(n, k_2)$. Furthermore, by Theorem 2.1 (2), $G(C_u, k_1) \cong G(C_u, k_2)$. Hence, for any d|u, $\operatorname{ord}_d k_1 = \operatorname{ord}_d k_2$.

Conversely, suppose $\gcd(n, k_1) = \gcd(n, k_2)$ and for any d|u, $\operatorname{ord}_d k_1 = \operatorname{ord}_d k_2$. By Theorem 2.2 (1), we derive that $G(C_u, k_1) \cong G(C_u, k_2)$. Moreover, since $\gcd(u, v) = 1$, we have $\gcd(v, k_1) = \gcd(v, k_2)$ and $q|k_1, q|k_2$ for any prime divisor of v. We can assume that $v = p_1^{t_1} \cdots p_s^{t_s}$ and

$$k_1 = k_1' m_1, where \ k_1' = p_1^{\lambda_1} \cdots p_{\sigma}^{\lambda_{\sigma}} p_{\sigma+1}^{x_{\sigma+1}} \cdots p_s^{x_s}, \gcd(v, m_1) = 1,$$

 $k_2 = k_2' m_2, where \ k_2' = p_1^{\lambda_1} \cdots p_{\sigma}^{\lambda_{\sigma}} p_{\sigma+1}^{y_{\sigma+1}} \cdots p_s^{y_s}, \gcd(v, m_2) = 1,$

 p_1,\ldots,p_s are distinct primes, and for $i=1,\ldots,\sigma$, $1\leqslant \lambda_i < t_i$, while for $j=\sigma+1,\ldots,s, \, x_j\geqslant t_j\geqslant 1$ and $y_j\geqslant t_j$. By Lemma 3.2 (1), $G(C_v,k_1)=G(C_v,k_1'm_1)\cong G(C_v,k_1')$ and $G(C_v,k_2)=G(C_v,k_2'm_2)\cong G(C_v,k_2')$. Moreover, by Lemma 3.2 (2), there exists a positive integer m such that $\gcd(m,v)=1$ and $k_2'\equiv k_1'm\pmod v$. Using Theorem 3.1, $G(C_v,k_2')=G(C_v,k_1'm)\cong G(C_v,k_1')$. Therefore, $G(C_v,k_1)\cong G(C_v,k_2)$. Hence, by Theorem 2.2 (2), we can conclude that $G(C_n,k_1)\cong G(C_n,k_2)$.

For example, $G(C_8,3) \cong G(C_8,7)$, $G(C_8,2) \cong G(C_8,6)$. See Fig. 1—4.

$$\bigcap_{e} \quad \bigcap_{a^4} \quad a \bigcap a^3 \quad a^2 \bigcap a^6 \quad a^5 \bigcap a^7$$

Fig. 1. The digraph $G(C_8,3)$

$$\bigcap_{a} \quad \bigcap_{a^4} \quad a \bigcap a^7 \quad a^2 \bigcap a^6 \quad a^5 \bigcap a^3$$

Fig. 2. The digraph $G(C_8,7)$

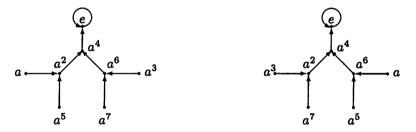


Fig. 3. The digraph $G(C_8, 2)$

Fig. 4. The digraph $G(C_8, 6)$

4 Occurrence of long cycles in $G(\mathbb{F}_{p^t}, k)$

In this section we provide an upper bound for the cycle lengths appearing in $G(\mathbb{F}_{p^t}, k)$.

Theorem 4.1. If $p^t - 1$ is a power of 2, i.e., $p^t - 1 = 2^s$, $s \ge 1$. Then

- (1) (p, t, s) = (3, 2, 3) or $(2^{2^r} + 1, 1, 2^r)$, where $2^{2^r} + 1$ is a Fermat prime, $r \ge 1$.
- (2) Let $p=2^{2^r}+1>5$ be a Fermat prime. Then the length of the longest cycle in $G(\mathbb{F}_p,k)$ is less than or equal to $\frac{p-1}{4}$. Moreover, $G(\mathbb{F}_p,k)$ contains a cycle of length $\frac{p-1}{4}$ if and only if $\operatorname{ord}_{2^{2^r}}k=\frac{p-1}{4}$.
- **Proof.** (1) Suppose that $t \ge 3$. If $t \ge 3$ is odd, since $p^t 1 = (p-1)(p^{t-1} + \cdots + p+1)$ and clearly $p^{t-1} + \cdots + p+1 > 1$ is odd, we have $p^t 1$ is not a power of 2 when $t \ge 3$ is odd. If $t \ge 3$ is even, let t = 2h, h > 1. Since $p^t 1 = p^{2h} 1 = (p^h + 1)(p^h 1)$, we derive that $p^t 1$ is not a power of 2 when $t \ge 3$ is even. So $t \le 2$ and it is easy to derive the result.
- (2) Since $p=2^{2^r}+1>5$, $r\geqslant 2$. If 2|k, by Theorem 2.1 (3), $G(\mathbb{F}_p^*,k)$ contains exactly one component with a 1-cycle. We know we are not interested in longest cycles of length 1. Now suppose $2\nmid k$, then by Theorem 2.2 (1), the length of each cycle in $G(\mathbb{F}_p^*,k)$ is $\operatorname{ord}_d k$, where d|p-1. Clearly $\operatorname{ord}_d k|\operatorname{ord}_{p-1}k$. Hence the maximal length of cycles is $\operatorname{ord}_{p-1}k=\operatorname{ord}_{2^{2^r}}k$. However, $\mathbb{Z}_{2^{2^r}}^*$ does not have a primitive root for $r\geqslant 2$. Thus $\operatorname{ord}_{2^{2^r}}k<\varphi(2^{2^r})=2^{2^r-1}$. Furthermore, since $\operatorname{ord}_{2^{2^r}}k|2^{2^r-1}$, we have $\operatorname{ord}_{2^{2^r}}k\leqslant 2^{2^r-2}=\frac{p-1}{4}$, as desired.

For example, the length of the longest cycles in $G(\mathbb{F}_{17}, k)$ is $\frac{p-1}{4} = 4$ if and only if k = 3, 5, 11, 13.

Theorem 4.2. Suppose $p^t > 5$ is not a power of 2.

- (1) The length of the longest cycle in $G(\mathbb{F}_{p^t}, k)$ is less than or equal to $\frac{p^t-3}{2}$.
- (2) $G(\mathbb{F}_{p^t}, k)$ contains a cycle of length $\frac{p^t-3}{2}$ if and only if $\frac{p^t-1}{2}$ is an odd prime, and k is a primitive root modulo p^t-1 or modulo $\frac{p^t-1}{2}$, where t=1, or $t\geqslant 3$ is odd with p=3.

Proof. (1) It is a direct consequence of [4, Proposition 3.17].

- (2) Suppose that the length of the longest cycle in $G(\mathbb{F}_{p^t}, k)$ is $\frac{p^t-3}{2}$. Let $p^t-1=2^s\tau$, $\tau\geqslant 3$ is odd, $s\geqslant 1$.
- Case 1. Let $\gcd(p^t-1,k)=1$. By Theorem 2.2 (1), the length of each cycle in $G(\mathbb{F}_{p^t}^*,k)$ is $\operatorname{ord}_d k$, where $d|p^t-1$. Since $\operatorname{ord}_d k\leqslant \operatorname{ord}_{p^t-1} k\leqslant \varphi(p^t-1)=2^{s-1}\varphi(\tau)<2^{s-1}\tau$, we have $\operatorname{ord}_{p^t-1} k=\varphi(p^t-1)=\frac{p^t-3}{2}$. While $\varphi(p^t-1)=\varphi(2^s\tau)=2^{s-1}\varphi(\tau), \frac{p^t-3}{2}=2^{s-1}\tau-1$, so s=1 and $\varphi(\tau)=\tau-1$. Hence, τ is an odd prime. Therefore, $p^t-1=2\tau$ for some odd prime τ . If

t=1, then $\frac{p-1}{2}$ is an odd prime. Moreover, by $\operatorname{ord}_{p-1}k=\frac{p-3}{2}$, we derive that k is a primitive root modulo p-1. On the other hand, if t>1 and t is even, let t=2r. Then $2\tau=p^t-1=p^{2r}-1$, which is impossible. Therefore, t is odd if t>1. Moreover, since $\tau=\frac{p^t-1}{2}=\frac{(p-1)(p^{t-1}+\cdots+p+1)}{2}$ is an odd prime, we derive that p=3 and $\frac{3^t-1}{2}$ is an odd prime. By $\operatorname{ord}_{3^t-1}k=\frac{3^t-3}{2}$, k is a primitive root modulo 3^t-1 .

Case 2. Let $\gcd(p^t-1,k)>1$ and $p^t-1=uv$, where u is the largest divisor of n relatively prime to k. Since $p^t-1>5$, clearly $v\geqslant 2$. By Theorem 2.2 (2), the length of the longest cycle in $G(\mathbb{F}_{p^t},k)$ is equal to the length of the longest cycle in $G(C_u,k)$. It is obvious that v=2. Hence $u-1=\frac{p^t-3}{2}$. Therefore $G(C_u,k)$ contains exactly two components and so $\varphi(u)=\operatorname{ord}_u k=u-1$ due to Theorem 2.2 (1). Hence u is an odd prime. So we have $p^t-1=2u$ for some odd prime u. If t=1, then $\frac{p-1}{2}$ is an odd prime. Moreover, by $\operatorname{ord}_{\frac{p-1}{2}}k=\frac{p-3}{2}$, we derive that k is a primitive root modulo $\frac{p-1}{2}$. On the other hand, if t>1, by the similar argument of Case 1 above, we should derive that t must be odd and p=3, as desired.

The sufficiency of this theorem is easy to check.

For example, the length of the longest cycles in $G(\mathbb{F}_{3^3}, k)$ is $\frac{3^3-3}{2}=12$ if and only if k=2,7,11,15,18,19,20,24.

References

- W. Carlip, M. Mincheva: Symmetry of iteration digraphs. Czechoslovak Math. J. 58, 131-145 (2008)
- [2] C. Lucheta, E. Miller, C. Reiter: Digraphs from powers modulo p. Fibonacci Quart. 34, 226-239 (1996)
- [3] T.D. Rogers: The graph of the square mapping on the prime fields. Discrete Math. 148, 317-324 (1996)
- [4] M. Sha: Digraphs from endomorphisms of finite cyclic groups. ArXiV, July 10 (2010)
- [5] L. Somer, M. Křížek: On a connection of number theory with graph theory. Czechoslovak Math. J. 54 (129), 465–485 (2004)
- [6] L. Somer, M. Křížek: On symmetric digraphs of the congruence $x^k \equiv y \pmod{n}$. Discrete Math. 309, 1999–2009 (2009)