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Abstract. For a finite field F,: of order p*, where p is a prime and ¢ 2> 1,
we consider the digraph G(Fpt, k) that has all the elements of Iy as ver-
tices and a directed edge E(a, b) if and only if a* = b, where a,b € Fpe. We
completely determine the structure of G(Fpe, k), the isomorphic digraphs
of Fpe and the longest cycle in G(Fp, k).
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1 Introduction

Let Fpe be a finite field of order pt, where p is a prime and ¢ is a positive
integer, the graph G(Fp, k) (k is a positive integer) is a digraph whose set
of vertices is all the elements of Fpe and for which there is a directed edge
E(a,b) from a € Fpe to b € Fpe if and only if a* = b. The digraph G(Zn, k)
associated with powers modulo n, has been studied in {1]—(3] and [5]—[6].
In this paper, we will generalize some results which were presented in [2],
[3] and [6] from prime fields Z, to finite fields Fp:.

A component of a digraph is a directed subgraph which is a maxi-
mal connected subgraph of the associated undirected graph. Suppose o
is a vertex of a digraph, the in-degree of o, denoted by indeg(c), is the
number of directed edges coming into . Cycles of length ¢ are called ¢-
cycles and are assumed to be oriented counterclockwise. « is said to be at
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height h, h > 0, if h is the minimal nonnegative integer such that o isa
cycle vertex. Moreover, FC refers to the tree attached to the cycle vertex
o of the digraph G.

2 The structure of digraphs of cyclic groups

It is well known that the unit group of a finite field [ is a cyclic group
Cpt—1 of order p* — 1, and we denote the set of nonzero elements of Fpe by
lF;.. Hence, ]F;. 2 Cpe—y. In this section, we investigate the structure of
digraphs G(Cy,, k) of cyclic groups C,,. Throughout this paper, we denote

C, = (a) with the order of a is o(a) = n, and let e be the identity of Cy,.

Theorem 2.1. [4] Let n = uv, where u is the largest divisor of n relatively
prime to k. Suppose ged(n, k) = d. Then in G(Chn, k), we have

(1) For a® € C,, indeg(a®) > 0 if and only if d|z.

(2) If d|z, then indeg(a®) = d.

(3) G(Chn, k) has ezactly one component if and only if g|k for any prime
divisor q of n.

(4) The element a is a cycle vertex in G(Cr, k) if and only if ged(o(a), k) =
1, if and only if o(a)|u.

(5) The number of all cycle vertices in G(Chn, k) is equal to u.

(6) Let  be a cycle vertex in G(Cy, k). Then FG(Cnik) o pC(Cn k)

Theorem 2.2. Letn > 1.
(1) Suppose ged(n, k) =1. Then G(Chn, k) is the disjoint union

G(Cn,k) = (o(ordak) U- - U o(ordak)),
din

o(d)/ordak

where o(l) is the cycle of length 1, ¢(d) is the Buler totient function.
(2) Suppose ged(n, k) > 1, n = uv, where u is the largest divisor of n
relatively prime to k. Then

G(Ca, k) = | (0(0rdak, FECD) U ..U o ordyk, FEC-H)),
dfu o(d)/ordak

where o(l, FS (C"'k)) consists of a cycle of length | with a copy of the tree
FECu%) gttached to each vertes.
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Proof. (1) Let C, = Ud]n H,, where Hy is the set of elements with order
d in Cy, d|n. Since ged(n, k) = 1, we have ged(d, k) = 1 and ordgk > 1 for
din. So for g € Hy, ordgk is the least positive integer such that g"m"k =g.
This implies that each Hy is the disjoint union of cycles of length ordgk.
Moreover, by |Hg| = ¢(d) we have the formula.

(2) By Theorem 2.1 (4), for o € Cy, a is a cycle vertex of G(Cp, k)
if and only if o(a)|u. Let Hy; be the set of elements with order d in C,,
d|u. By the similar argument of (1) above, we derive that each Hy is the
disjoint union of ¢(d)/ordgk cycles of length ordsk.

By Theorem 2.1 (3), G(Cy, k) has exactly one component. Now suppose
Com(e) is the component of G(Chp, k) containing the identity e. If we can
show G(C,,k) = Com(e), then by Theorem 2.1 (6), the formula holds.
In fact, let C,, = {(a), o(a) = n, while C, = (b), o(b) = v. Ifa® is a
vertex of Com(e), then (aF)”j = e for some integer j. Hence, n|zk?, i.e.,
uv|zkd. Moreover, since ged(u, k) = 1, we have u|z. Conversely, suppose
z = uz,. Since g|k for any prime divisor of v, there exists a positive integer
h such that v|k*. Hence, uv|uk® and so wv|uz,k*, ie., n|zk". Thus we
have (a’)"h = e. So we can conclude that a® is a vertex of Com(e) if
and only if u|z. Now let H = {a*™|m = 1,...,v}. Then a € Com(e)
if and only if o € H. It is easy to show that H = (a*). So H is a
subgroup of C,,. Moreover, since |[H| = v, we have H = C,,. Therefore,

G(Cy, k) = Com(e). a

Corollary 2.3. (1) Fort > 1, G(Cy:, k) is a complete k-ary tree of height
t with the root in e.
(2) If n = k*m, where ged(m,k) =1, m > 1, t > 1, then

G(Cn, k) = | (o(ordak, FEC ™) U ... U a(ordgk, FE ™))
dm ‘P(d)/ord.gk

3 Isomorphic digraphs of cyclic groups

In this section we give a sufficient and necessary condition for which
G(Chp, k1) = G(Chp, k2). We will show in the following theorem that if n is
fixed, only finitely many distinct digraphs result as k varies.

Theorem 3.1. G(C,, k1) = G(Chp, k2) if and only if nlk; — ks.
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Proof. Suppose G(Cp, k1) = G(Cn,kz). Then (a®)*t = (a®)*2 for z =

1,...,n. Hence, n|ky—ko. Conversely, assume that n|k;—kz, then a*t = a*2
and hence (a®)* = (a®)* for z = 1,...,n, which implies that G(Cy, k1) =
G(Ch, k2). This completes our proof. O

Lemma 3.2. (1) Suppose that g|n if and only if qlk, where q is prime. Let
m be a positive integer, and ged(n,m) = 1. Then G(Cp, k) = G(C,, km).

(2) Suppose that ged(n, k1) = ged(n, k2). Moreover, gln if and only if
glk1, if and only if glks, where q is prime. Then there ezists m > 1 and
ged(n,m) = 1 such that kz = kym (mod n).

Proof. (1) Let E(G(Cn,k)) be the set of edges of G(Cy, k) and E(a,b)
the directed edge from vertex a to vertex b. We define f : E(G(Cy,k)) =
E(G(Cn, km)) by f(E(a®,a*%)) = E(a™=,a*™’%) for a® € Cp.

Firstly, we will check that f is one-to-one and onto. Suppose a™*! =
a™22, then n|m(z; — z2). Since ged(n,m) = 1, we have n|z; — z2. Hence,
a®' = a*3, Therefore, f is one-to-one. On the other hand, since gcd(n, m) =

1, if 1 € y < n, there exists a unique integer zo (1 < zo < n) satisfing
may = y(mod n). Hence, f(E(a®,a**)) = E(a¥,a*™¥). So f is onto
G(Chp, km).

Second, by Theorem 2.1 (3), both G(Cn,k) and G(Cy, km) have ex-
actly one component, respectively. We will show that the height of a** in
G(Ch, k) is h if and only if the height of a*™% in G(Cp,km) is h. Let
the height of a** in G(Cn, k) be h, then A is the least positive integer such
that (a*%)k" = e. Thus (ab™’z)(km)" = ¢ If (akm’=)(km)"~! — ¢ then
(a*"2)™"*" = e. Since ged(n, m) = 1, we have a¥"® = ¢, ie., (a**)"
which implies that the height of a** in G(Cy, k) is h — 1, which is a contra-
diction. Hence, the height of a¥™** in G(Chn,km) is also h. Similarly, we
can check that if the height of a*™*2 in G(C,, km) is h, then the height of
a*® in G(Cn, k) is also h.

Finally, we will show that (a*1)¥ = (a**2)*’ if and only if (ak™’#1)(km)’
= (akm*z2)m) for i > 0. On the one hand, by (a**1)*' = (a*=2)¥,
we derive that n|ki*t1(z; — x3). Thus n|ki+*!mi*+2(z) — x,), therefore
(akm*=1)(km)! — (gkm*z2)(km)’  On the other hand, by (akm?z1)(km)! —
(akm*=2)km)’ we have n|kitlmit3(z) — z). It is clear n|kit}(zy — z3)
Ic:z;)kj (akzz)kj

=e)

because ged(n,m) = 1, hence (a
By the above argument, we can conclude that G(Cy, k) = G(Chr, km).
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(2) By hypothesis, let n = pf' --- pts, ky = py*- - ploplioil- - 937, ko =
e pac Py ---p¥s, where py,...,p, are distinct primes, and for i =
1,...,0,1 S M <t,whileforj=0+1,...,s, z;2t; 21 and y; 2 t;.
Since ged(p1 - - - Pos Po+1 - -+ Ps) = 1, there exists a positive integer mg such

that

p:..r:lx—ta“ "'Pf’—t'mo = pg?:-ll—ta-}l .. ~p£’"" (mod ptlx .. _p‘tra).
Clearly, p; tmo fori=1,...,0.
Ifpj t mo for j = 0 +1,...,8, let m = my, then ged(n,m) = 1
and k; = kym(mod n). If there exists a nonempty subset B of A =
{o +1,...,8} such that p;/mo for i € B, while p; { mg for j € A\ B,

let m =mo+p---plr [I p;- Then we have ged(n,m) = 1 and kp =
JEA\B
ki1m (mod n), as desired. O

Theorem 3.3. G(Cp, k1) = G(Ch,k2) if and only if the following two
conditions are satisfied.

(1) ged(n, k1) = ged(n, k2).

(2) There exists a positive integer u such that n = uv, u is the largest di-
visor of n relatively prime to ky and is also the largest divisor of n relatively
prime to ka. Moreover, for any d|u, ordgk; = ordgk,.

Proof. If gcd(n, k1) = 1, by Theorem 2.2 (1), the proof is clear. In the
following, assume that ged(n, k;) > 1.

Firstly, we prove the necessity of this theorem. Suppose G(Cy,k;) &
G(Chn, k2). By Theorem 2.1 (1) and (2), we have ged(n, k1) = ged(n, k2).
If n = uv and u is the largest divisor of n relatively prime to kj, it is
easy to check that u is also the largest divisor of n relatively prime to
ks because ged(n, k) = ged(n, k). Furthermore, by Theorem 2.1 (2),
G(Cuy, k1) = G(Cy, k2). Hence, for any d|u, ordgk; = ordaks.

Conversely, suppose ged(n, ki) = ged(n, k3) and for any dlu, ordgk; =
ordgks. By Theorem 2.2 (1), we derive that G(C\, k1) = G(Cy, k2). More-
over, since ged(u, v) = 1, we have ged(v, k1) = ged(v, k2) and g|k;, g|k2 for
any prime divisor of v. We can assume that v = pi‘ -..pts and

ky = kimi,where k| = p}* -+ p}op3oit -+ p%e, ged(v, my) = 1,

ko = kyma, where ki = pi“ ~~p$"pg‘f,_+1‘ oo p¥e ged(v, mg) = 1,
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P1,...,Ds are distinct primes, and for i = 1,...,0, 1 < \; < t;, while for
j=o0+1,...,8,; 2t; 21 and y; > ¢;. By Lemma 3.2 (1), G(C,, k1) =
G(Cy, ki) = G(Cy, k1) and G(Cy, ko) = G(Cy,khmy) = G(Cy,kb).
Moreover, by Lemma 3.2 (2), there exists a positive integer m such that
ged(m,v) = 1 and k3 = kjm (mod v). Using Theorem 3.1, G(Cy, k%) =
G(Cy,kim) = G(Cy, k). Therefore, G(Cy, k1) & G(Cy, k2). Hence, by
Theorem 2.2 (2), we can conclude that G(Cy, k1) & G(Ch, k2). O

For example, G(Cs, 3) = G(Cs, 7), G(Cs, 2) & G(Cs, 6). See Fig. 1—4.

Q O a©a3 a2C>a6 a5©a7

e at

Fig. 1. The digraph G(Cs, 3)

9 9 aOa7 a2©a6 a5©a3

Fig. 2. The digraph G(Cs,7)

at at
a2 a6 3 3 a2 a6
a o—>] e X1 Q'o—n +—
a® a’

Fig. 3. The digraph G(Cs,2) Fig. 4. The digraph G(Cs, 8)

4 Occurrence of long cycles in G(Fy, k)

In this section we provide an upper bound for the cycle lengths appear-
ing in G(Fp, k).

Theorem 4.1. Ifp* — 1 is a power of 2, i.e., pt —1=2%, s> 1. Then
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(1) (p,t,8) = (3,2,3) or (22 +1,1,27), where 22 +1 is a Fermat prime,
r21.

(2) Let p = 22 + 1 > 5 be a Fermat prime. Then the length of the
longest cycle in G(Fp, k) is less than or equal to %’. Moreover, G(F,, k)
contains a cycle of length %1 if and only if ordgerk = l:—l.

Proof. (1) Suppose that ¢t > 3. Ift > 3is odd, since p'—1 = (p—1)(p* "1 +
<4 p+1) and clearly pt~1 +..- +p+1 > 1 is odd, we have p* — 1 is not
a power of 2 when t > 3 is odd. If ¢ > 3 is even, let t = 2k, h > 1. Since
pt—1=p% —1=(p"+1)(p" — 1), we derive that p* — 1 is not a power of
2 when t > 3 is even. So t < 2 and it is easy to derive the result.

(2) Since p = 27 +1 > 5, r > 2. If 2|k, by Theorem 2.1 (3),
G(Fp,k) contains exactly one component with a 1-cycle. We know we
are not interested in longest cycles of length 1. Now suppose 2 { k, then
by Theorem 2.2 (1), the length of each cycle in G(Fy, k) is ordqk, where
dlp — 1. Clearly ordgk|ordp-1k. Hence the maximal length of cycles is
ord,—1k = ordgrk. However, Z,- does not have a primitive root for
r > 2. Thus ordgark < (227) = 22", Furthermore, since orda- k|22 1,
we have ordyark < 222 = 21, as desired. O

For example, the length of the longest cycles in G(Fy7, k) is %1 =4if
and only if k = 3,5,11,13.

Theorem 4.2. Suppose p* > 5 is not a power of 2.
(1) The length of the longest cycle in G(Fp, k) is less than or equal to

p=3

z .

92) G(Fy, k) contains a cycle of length B3 if and only if E-L s an

( ) P Y 2 2

odd prime, and k is a primitive root modulo p* — 1 or modulo P——Zi, where
t=1, ort >3 is odd withp = 3.

Proof. (1) It is a direct consequence of [4, Proposition 3.17].

(2) Suppose that the length of the longest cycle in G(Fp:, k) is P‘243
Let pt —1=2°7, 7> 3isodd, s > 1.

Case 1. Let ged(p® — 1,k) = 1. By Theorem 2.2 (1), the length of
each cycle in G(Fy,, k) is ordgk, where d|p® — 1. Since ordgk < ordpe_1k <
@(pt—1) = 2°71p(7) < 2°~ 17, we have orde_1k = p(p*—1) = 2‘_2:35 While
p(pt—~1) = o(2°7) = 2°" (1), #— =2"1r—1,sos=1and p(7) = 7~1.
Hence, 7 is an odd prime. Therefore, p* — 1 = 27 for some odd prime 7. If
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t =1, then P—— is an odd prime. Moreover, by ord,_1k = 23, we derive

that k is a prlmltxve root modulo p—1. On the other hand, ift > 1 and ¢ is
even, let t = 2r. Then 27 = p*—1 = p?" —1, which is impossible. Therefore,
t is odd if t > 1. Moreover, since T= % (P_l)(”‘_l"'"'*”“) is an odd
prime, we derive that p = 3 and £ is an odd prime. By ords:_ 1k = —2—3,
k is a primitive root modulo 3¢ — 1

Case 2. Let ged(p® — 1,k) > 1 and p* — 1 = uv, where u is the largest
divisor of n relatively prime to k. Since p* —1 > 5, clearly v > 2. By
Theorem 2.2 (2), the length of the longest cycle in G(Fp, k) is equal to the
length of the longest cycle in G(Cy, k). It is obvious that v = 2. Hence
u—-1= piz-_3 Therefore G(Cy, k) contains exactly two components and so
¢(u) = ordyk = u — 1 due to Theorem 2.2 (1). Hence u is an odd prime.
So we have p* — 1 = 2u for some odd prime u. If ¢ = 1, then Lgl- is an odd
prime. Moreover, by ord "‘E—"k = %3, we derive that k is a primitive root
modulo ”;—1 On the other hand, if t > 1, by the similar argument of Case
1 above, we should derive that ¢ must be odd and p = 3, as desired.

The sufficiency of this theorem is easy to check. (]

For example, the length of the longest cycles in G(F3s, k) is —— =12
if and only if k£ = 2,7,11, 15,18, 19, 20, 24.
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