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Abstract

In this paper we show that the sequences p (n, k) := 2" 2% (" %)
and q(n,k) := 2"~ 22 ("7%), k = 0,...,|3], are strictly log-
concave and then unimodal with at most two consecutive modes.
We localize the modes and the integers where there is a plateau. We
also give a combinatorial interpretation of p (n, k) and g (n, k) . These
sequences are associated respectively to the Pell numbers and the
Pell-Lucas numbers for which we give some trigonometric relations.
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1 Introduction

A finite positive sequence vy is said to be unimodal if there exists an integer
Isuchthat vg < v; <+ < wv_y <Y = VYq1 > -+ 2 V. The integer ! is
called a mode of the sequence (vi) . The sequence is logarithmically concave
(log-concave for short) if vZ > vg—1Vk+1 for 1 < k < n — 1. Obviously, log-
concavity is stronger than unimodality. Also if the sequence is strictly
log-concave (SLC for short), i.e. if the previous inequalities are strict, then
the sequences have at most two consecutive modes (a peak or a plateau).

The following Newton’s Theorem, see [3], is usually used for the study
of unimodality.
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Theorem 1 Let (v;);_, be a real sequence. If the polynomial =0 Ui’

has only real zeros, then
v > n—;.J_J—'L-l'Uj—lvj+1’ for 1<j<n-1
As a consequence, if ('Uj);-l=0 is positive and satisfies the hypothesis of
the previous Theorem then it is SLC. In this case, its smallest mode r
satisfies vr41 — v < 0 and v, — vr—; > 0 and the sequence (UJ');:O admits
a plateau of two elements {r,7 + 1} if and only if we have v,4; — v, =0.
Let (F..), (L), (Pn) and (@) be the sequences defined, for n € N, by

Fn= Fn_1+Fn_2, F0= 0, F1= 1, Pn= 2Pn—1+Pn_2, P0= 0, P1= 1,
L,= Ln—l"'Ln—?’ L0= 2: L1= 1, Qn= 2Qn-—l+Qn—2’ Q0= 2’ Ql= 2.

(F,) is the sequence of Fibonacci numbers (SLOANE A000045), (L,) the
sequence of Lucas numbers (SLOANE A000032), (P,) the sequence of Pell
numbers (SLOANE A000129), and (Q,) the sequence of Pell-Lucas numbers
(SLOANE A002203). We have

(Fa) =(0,1,1,2,3,5,8,13,...), (La) = (2, , , , 7,11,18,29,...),

(P.) = (0,1,2,5,12,29,70,...), (Qn) = (2,2,6,14,34,82,198,...).

We can prove easily the following Binet forms:

F, _71_((1+f) (1-2~/5)") and L,.=(L’s2=@)"+(“2 5)",
Po=3ls (1+vD)" = (1-vD)") and @ = 14+ V)" + (1-vD)".

Tanny and Zuker [10] and Benoumhani [1] establish, respectively, the
unimodality of the sequences (" %) and n—_—,;(""‘) They determined ex-
plicitly there modes and the integers where there is a plateau. These two
sequences are related to the Fibonacci and Lucas numbers by the relations

Fa =SH (09 (e 2 0) and Lo = T 220 (09 (2 1),

The combinatorial significations of (", *) and ") are known, see

Graham and al [2, p. 310}, Riordan [6, p. 198], Stanley [9, p. 73], and
Sloane [8, A034807].

In a dual way, we prove the unimodality of sequences p (n, k) and g (n, k).
These two sequences are related respectively to the Pell and Pell-Lucas
numbers by the relations

Popy = Elﬁz(')' gn—2k (n;k) and Q,, = El.s'.l gn—2k_n_ nzk n;k)
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Our main results are the following two Theorems and the combinatorial
interpretation of p(n, k) and g(n, k) given in section two;

Theorem 2 The sequences (p(n,k)) and (q(n,k)), k =0,...,|3], are
unimodal with at most two consecutive modes. Their respective smallest
modes r, and s, are

[4n -3-VBZF16n + 9]
8 a

Th =

nd 8, =

[471—5—\/8??]
2 )

They satisfy Tn,8n € {l_% (1 - jQ)J , I--’:_,l (1 - lg).'}

By setting, am = §Pam — 1, Bm = 15(Qam-1 — 14), ¥m = $(Q2m —
(=1)™ Pam), and 6m := F5(8Pam—1 — (=1)™ Qam—1 — 10), the integers n
for which these sequences admit a plateaw {rn,rn + 1} and {sp, sn + 1} are
respectively n = ay, and n = vy, with r, = By, and 8, = 6y, for m > 1.

The sequences (am), (Bm), (Ym), (0m) satisfy the following recur-
rent relations a,, = 34am-1 — Am-2 + 32, Bm = 34Bm-1 — Bm—2 + 28,
Ym = 34Ym-2 — Ym-4, and Oy, = 3462 — Op,—4 + 20. These recurrent
relations and the computation of the first terms show that these sequences
are sequences of integers.

The first values of n for which the sequences admit a plateau are re-

spectively

m n = 0m Tn = fm M| Nn=9Ym | $n =0m
1 5 0 1 11 1

2 203 29 2 134 19

3 6 929 1014 and 3 373 54

4 235 415 34 475 4 4 552 666

5 7 997 213 1171 164 5 12 671 1 855
6 271 669 859 39 785 129 6 | 154 634 22 645
7 |1 9228 778 025 | 1 351 523 250 7 | 430 441 63 036

Melham [5] gives sums involving Fibonacci, Lucas, Pell and Pell-Lucas
numbers. We establish complementary relations in the same vein:

Theorem 3 For m > n > 0, we have

1. tan™! (%) +tan~! (gﬁ) = tan~! (572-7) , Jorm —n = 1mod?2.
2. tan~! (Pany2) — tan™! (Ppn) = tan~1 (7,-2—) and

3n+1

-1 2 —
Tizotan™ (27) = 5.
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3. tan™! (QL;*-‘-) - $tan™? (Q—""z"—’) = tan~! (62;7.) ,n>1 and
-1 2)_3
ZJ’ZO tan ! (Q_QJ-) = T".

As a consequence of the first relation of Theorem 3, we obtain

tan~1 (-P’;’:;) + tan~? ('Q‘o,‘fﬁ) =I

This relation can also be deduced by adding the relations (2.24) and
(2.25) given in Melham [5].
The infinite sums given by 2. and 3. of Theorem 3 are similar to the

following result of Lehmer [4]: 3.5, tan~? (7511?) =1Z.

2 Combinatorial interpretation

Among the main results, we give a combinatorial interpretation of p (n, k)
and q(n,k).

Theorem 4

1. The number of words formed with the letters A, B, C and D, of length
n, beginning with k consecutive A’s and containing ezactly k times
the letter B is equal to p(n, k).

2. The number of ways to arrange k adults and n — k children, among
whom at least k are boys, around a table in such a way the left neighbor
of each adult is a boy, is equal to q(n, k).

Proof. The first interpretation is obtained by a simple combinatorial com-
putation.

For the second one, label the places in the table 1,2,...,n in the clock-
wise order. We wish to place k& adults no two consecutive. Place the n — k
children. When the place labeled 1 is occupied by a child, we insert k&
adults into the n — k spaces between the children in (";*) ways. If not,
place the k — 1 adults into the n — k — 1 spaces between the children (we
omit the places labeled 2 and n adjacent to the labeled place 1) in (";"
ways. Hence, we obtain (";*) + ("c*) = z2¢("%") possibilities. For the
places occupied by the children, we have at least k boys, then (n — k) — k
can be occupied by a boy or a girl, which gives 27~2* possibilities, which
clearly establishes the result. m

For n even, the sequence (—1)"—’c p(n,k) is considered in Sloane [8,
A117438].
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3 Proof of Theorem 2 and Theorem 3

We need the following lemmas.
Lemma 5 We have
1. 81 = {(z,y) e N? | 22 - 2y% = 1} = {(3Q2m, Pom) | m €N},
2. 85 :={(z,y) e N? | 22 -8 =1}= {(%ng,%sz) | m € N},
3. S3:={(z,y) e N? |22 - 8y? =1 and z = 1 (mod4)}
= {(3Qum, 3Pam) | m € N},
4. Sq:={(z,y) N2 |22 -8y = -7 and z = —1(mod4)}
= {(4P2m — 0 Qo $Qom — ﬁ——;ﬂpzm) |me N'}

Proof. 1. is well known (see [11]). 2. is a consequence of 1. usmg the
fact that (z,y) € S2 & (z,2y) € S with Py, even. 3. use 2Q2m
1(mod4) & m = 0(mod2). 4. For € € {~1,1} we have 22 — 8y?
-7& (y +!£’"’e")2 (‘”"""”’)2 = 1. In addition for (z,y) € S;, we have
z2>y> 5% and x+y =0(mod7), and then 2 > 0 and y+eE >0
fore = :I:l Thus (z,y) € S, if and only if we can find € € {-1,1} such that
z = —1(mod4) and (y + eZtlL, 22H) € S, using 2., this is equivalent to
z = 4Py — QZm)y—Q(QZm-€P2m) (a:,y)eNandz——l(mod4)
Since Qo a.nd P,,,, are even, necessarily = and y are integers. The condition

=-1 (mod 4) is equivalent to € = 2Q2m (mod4). Using Binet formula, :
we obtain Qom =1 —2m = (-1)" (mod4), which gives € = (=1)™
verify then that = and y belongto Nonly form > 1. =

Lemma 6 For m,n € N, we have
1. 4P, = Qn + Qn-1 and Q, = 2P, + 2P, _,, forn > 1.

2. PrnQn+PaQm =2Pim and PQO+(_1)m—n wQn = Qm—an+n;
form 2=n.

8. P}, =1+ PpPons2 and Q3, =8+ Q2n-1Q2n41, forn>1. -

Proof. Use Binet forms. =

Let F,, (z), Lp (xz P, (z) and @, () be the generating polynomials
of the sequences (";*), =2z ("z¥), p(n,k) and q(n,k), k = 0,1,...,|}]
respectively. The values of these polynomials at z = 1 are respectively
Fn+1, Lm Pn+1 and Qn-

Benoumbhani [1], established the reality of zeros of polynomials F, (z)
and L., (z) . We obtain the reality of zeros of polynomials P, (z) and @, (z),
using the relations
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P, (x) = EH’J 2n—2k(n-k)xk = 9"F, (g)
Qn(2) i= D on-k 2 (")t = 2L ().

Their zeros are respectively 2z = —(1 + tan® = +1) and z;, = —(1+
tan? GE-UT) for k= 1,.

The sequences p (n, ) and q(n k) are SLC by Theorem 1, then uni-
modal with a peak or a plateau with two elements. For all integer k£ =
0,...,|2] = 1, we have p(n,k + 1) — p(n, k) = 2*~2-2 o=l 0 A, (k)

and q(n,k+1) — g(n,k) = 2"‘2"‘2275%31; (k), where A, (z) =
872 -2(4n—8)x+n(n—>5) and B, (z) =822 -2(4n—5)z+n? —5n+
4. The signs of (p(n,k + 1) — p(n,k)) and (g(n,k+ 1) — g(n,k)) are the
same of A, (k) and B, (k) respectively. For n > 5, we have A, (0) =
n(n=5) >0, A, (%) = -n(n+2) < 0, B,(0) = n(n—5)+4 >
0, B, (%) = 4 — n? < 0. We deduce that each of A, (z) and By (z) have
a unique root in the interval [0, 2]. By setting them & (n) and I (n) re-
spectively, we have r, = [h(n)] = [ﬂ;b@im-l and s, = [I(n)] =

l'4n-s-§[8nj 3-7'| )

The sequence (p (n, k)) admits a plateau if and only if h (n) € N, which is
equivalent to the existence of an integer z > 0 satisfying 8n%+16n+9 = z2
and 4n — 3 — z = 0(mod8). These conditions can be written as follows
(z,m+ 1) € S3 and 4n—3 —z = 0(mod8) . The Lemma 5 gives 2 = 1 Qum
andn = -2-P4,,, —1, with m > 1. By using the first relation of Lemma 6, we
then have dn — 3 — £ = 88,, = 0(mod8). All integers m > 1, answer to
the question and r, = 8,,. We can do the same for the sequence (g (n,k)).

For the proof of Theorem 3: The first relation follows from the well

known relations tan~!(z) + tan~!(y) = tan~! (l—x”;) if zy < 1 and

tan~! (z) — tan~! (y) = tan~! (%) if zy > -1, with z = pﬂ- and

y = , for m > n, and using the second relations of Lemma 6. The
last re atxons of Lemma 6 give the second and the third relations of the
Theorem. The infinite sum follows immediately.

Remark 7 Let (T, (z)) and (U, (z)) be the sequences of Chebyshev poly-
nomials of the first and second kind [7]. It is well known that

Toti1 (z) = 22T, (z) — T,,..l (z) with To(z) =1 and Ty (z) = :c,
Uns1 (z) = 22Uy (z) — Un—1 (z) with Ug (z) =1 and U (z) =

We have T, (z) = 5-Qn (3}) and U, (z) =z™P, (3}), forn 2 1, and
thus
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Ta(%) = § Ti(~1)*q(n, k)22 and U (z) = Ty (~1)*p(n, )z,
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