Bounds of q-factorial $[n]_q!$

M. Mansour¹ and M. A. Obaid²

King AbdulAziz University, Faculty of Science, Mathematics Department, P. O. Box 80203, Jeddah 21589, Saudi Arabia.

> ¹ mansour@mans.edu.eg ²drmobaid@yahoo.com

Abstract

In this paper, we get the following upper and lower bounds for q-factorial $[n]_q!$

$$(q;q)_{\infty}(1-q)^{-n}e^{f_q(n+1)} < [n]_q! < (q;q)_{\infty}(1-q)^{-n}e^{g_q(n+1)},$$

where $n \ge 1$, 0 < q < 1 and the two sequences $f_q(n)$ and $g_q(n)$ tends to zero through positive values. Also, we present two examples of the two sequences $f_q(n)$ and $g_q(n)$.

Keywords: Stirling's formula, q-gamma function, q-factorial.

1 Introduction.

Stirling's formula

$$n! \sim \sqrt{2n\pi} \left(\frac{n}{e}\right)^n$$
 (1)

is used in many applications, especially in statistics and in the theory of probability to help estimate the value of n!, where \sim is used to indicate that the ratio of the two sides goes to 1 as n goes to ∞ . In other words, we have

$$\lim_{n \to \infty} \frac{n!}{n^{n+1/2}e^{-n}} = \sqrt{2\pi}.$$
 (2)

Stirling's formula was actually discovered by De Moivre (1667-1754) but James Stirling (1692-1770) improved it by finding the value of the constant

²⁰⁰⁰ Mathematics Subject Classification: 33D05 and 11B65.

¹Permanent address: M. Mansour, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.

 $\sqrt{2\pi}$

A number of upper and lower bounds for n! have been obtained by various authors. Most bounds are of the form

$$\sqrt{2n\pi} \left(\frac{n}{e}\right)^n e^{\alpha_n} < n! < \sqrt{2n\pi} \left(\frac{n}{e}\right)^n e^{\beta_n}, \tag{3}$$

where α_n and β_n tends to zero through positive values. Here some examples of α_n and β_n :

$$\begin{array}{lll} \alpha_n = \frac{1}{12n+1/4} & \beta_n = \frac{1}{12n} & \text{(E. Cesàro [2])} \\ \alpha_n = \frac{1}{12n+6} & \beta_n = \frac{1}{12n} & \text{(J. V. Uspensky [10])} \\ \alpha_n = \frac{1}{12n+1} & \beta_n = \frac{1}{12n} & \text{(H. Robbins [9])} \\ \alpha_n = \frac{1}{12n} - \frac{1}{360n^3} & \beta_n = \frac{1}{12n} & \text{(T. S. Nanjundiah [8])} \\ \alpha_n = \frac{1}{12n+\frac{3}{2(2n+1)}} & \text{(A. J. Maria [6])} \\ \alpha_n = \frac{1}{12n} - \frac{3}{360n^3} & \beta_n = \frac{1}{12n} - \frac{1}{(360+\gamma_n)n^3} & \text{(P. R. Beesack [1])} \\ \text{, where } \gamma_n = 30 \frac{7n(n+1)+1}{n^2(n+1)^2} \\ \alpha_n = \frac{1}{12n} - \frac{1}{360n^3} - \frac{1}{120n^4} & \beta_n = \frac{1}{12n} & \text{(R. Michel [7])} \\ \text{The } q-\text{gamma function } \Gamma_q(x) \text{ is defined by the infinite product [4]} \end{array}$$

$$\Gamma_q(x) = \frac{(q;q)_{\infty}}{(q^x;q)_{\infty}} (1-q)^{1-x}; \qquad x \neq 0, -1, -2, ...,$$
(4)

where q is a fixed real number 0 < q < 1 and the q-shifted factorials are defined by

$$(a;q)_0=1,$$

$$(a;q)_k = \prod_{j=0}^{k-1} (1 - aq^j); \qquad k = 1, 2, \dots,$$

$$(a;q)_{\infty} = \prod_{i=0}^{\infty} (1 - aq^i).$$

$$(a;q)_{\infty} = \prod_{i=0}^{\infty} (1 - aq^i).$$

This function is a q-analogue of the gamma function since we have

$$\lim_{q\to 1}\Gamma_q(x)=\Gamma(x).$$

Also, it satisfies the functional equation

$$\Gamma_{\mathbf{q}}(x+1) = [x]_{\mathbf{q}}\Gamma_{\mathbf{q}}(x), \quad \Gamma_{\mathbf{q}}(1) = 1, \tag{5}$$

which is a q-extension of the well-known functional equation

$$\Gamma(x+1) = x\Gamma(x), \quad \Gamma(1) = 1,$$

where $[x]_q = \frac{1-q^x}{1-q}$ is the q-number of x and $\lim_{q\to 1} [x]_q = x$, see [5] for details and related facts.

In this paper, we will get a q-analogue of the inequality (3) for the q-factorial which is defined by [5]

$$[n]_q! = [n]_q[n-1]_q...[2]_q[1]_q = \Gamma_q(n+1),$$

which is the q-analog of the relation $n! = \Gamma(n+1)$ where $\lim_{q\to 1} [n]_q! = n!$.

2 Main result.

We begin with the sequence $\{K_n\}$ defined by

$$K_n = [n-1]_q!(1-q)^{n-1/2}; \qquad 0 < q < 1; \quad n \ge 1,$$
 (6)

for which

$$\frac{K_n}{K_{n+1}} = \frac{1}{1 - q^n}. (7)$$

By using relation (7), we can show that $K_n \geq K_{n+1}$ for all $n \geq 1$. Now, the idea of the proof is to find positive sequences $\{f_q(n)\}, \{g_q(n)\}$ both of which tend to zero, such that

$$f_q(n) - f_q(n+1) < -\log(1-q^n) < g_q(n) - g_q(n+1), \quad n \ge 1.$$

Then

$$\exp(f_q(n) - f_q(n+1)) < \frac{K_n}{K_{n+1}} < \exp(g_q(n) - g_q(n+1))$$
 (8)

and hence

$$K_{n+1} \exp(-f_q(n+1)) < K_n \exp(-f_q(n)),$$
 (9)

$$K_{n+1} \exp(-g_q(n+1)) > K_n \exp(-g_q(n)).$$
 (10)

Now define the following two sequences

$$x_n = K_n \exp(-f_q(n)), \tag{11}$$

$$y_n = K_n \exp(-g_q(n)). \tag{12}$$

By using relation (9), the sequence $\{x_n\}$ is monotone decreasing and bounded below by zero. Then $\lim_{n\to\infty} x_n = a_q$ exist and $a_q \ge 0$. But $f_q(n)$ tends to zero, then

$$\lim_{n \to \infty} K_n = \lim_{n \to \infty} x_n \exp(f_q(n)) = a_q$$
 (13)

also exists. Similarly, By using relation (10), the sequence $\{y_n\}$ is monotone increasing with $y_{n+1} < K_{n+1} < K_n < ... < K_1$, so that $\lim_{n\to\infty} y_n = b_q$ exists with $b_q > 0$. Then

$$a_q = \lim_{n \to \infty} K_n = \lim_{n \to \infty} y_n \exp(g_q(n)) = b_q. \tag{14}$$

But

$$[n]_q! = \frac{(q;q)_n}{(1-q)^n}$$

then

$$a_q = \lim_{n \to \infty} K_n = \lim_{n \to \infty} [n-1]_q! (1-q)^{n-1/2}$$

$$= \lim_{n \to \infty} (q; q)_{n-1} (1-q)^{1/2} = (q; q)_{\infty} (1-q)^{1/2}.$$
 (15)

Then the relation

$$y_n < a_q < x_n, \qquad n \ge 1; \ 0 < q < 1$$
 (16)

gives us the following theorem:

Theorem 1. The q-factorial $[n]_q!$ satisfies the double inequality

$$(q;q)_{\infty}(1-q)^{-n}e^{f_q(n+1)} < [n]_q! < (q;q)_{\infty}(1-q)^{-n}e^{g_q(n+1)}, \quad n \ge 1; \ 0 < q < 1$$
(17)

where $f_q(n)$ and $g_q(n)$ are two sequences tend to zero through positive values and satisfy

$$f_q(n) - f_q(n+1) < -\log(1-q^n) < g_q(n) - g_q(n+1), \quad n \ge 1.$$
 (18)

The double inequality (17) is a q-analogue of the inequality (3).

3 Some special cases of the two sequences $f_q(n)$ and $g_q(n)$.

3.1 Case 1

By applying the Mean value theorem to the natural log, we get

$$\log(1+x) - \log(1) = \frac{(1+x)-1}{\xi} \tag{19}$$

for some $\xi \in (1, 1+x)$. Then

$$\frac{x}{x+1} < \log(1+x) < x, \quad x > 0.$$
 (20)

This is the logarithmic inequality. Also, the range of validity can be extended to include -1 < x < 0 as well [3]. So, if we put $x = -q^n$; $n \ge 1$, we get

$$\frac{-q^n}{1-q^n} < \log(1-q^n) < -q^n, \qquad n \ge 1.$$
 (21)

Then

$$q^n < -\log(1-q^n) < \frac{q^n}{1-q^n}; \qquad n \ge 1,$$
 (22)

but

$$\frac{q^n}{1 - q^n} < \frac{q^n}{1 - q}, \qquad n \ge 1; \ 0 < q < 1.$$
 (23)

Then

$$q^n < -\log(1-q^n) < \frac{q^n}{1-q}; \qquad n \ge 1,$$
 (24)

and hence

$$q^n - q^{n+1} < -\log(1 - q^n) < \frac{q^n}{(1 - q)^2} - \frac{q^{n+1}}{(1 - q)^2}; \qquad n \ge 1,$$
 (25)

where $q^n - q^{n+1} > 0$ for 0 < q < 1. It will then follow that (18) holds with

$$M_q(n) = q^n \tag{26}$$

and

$$N_q(n) = \frac{q^n}{(1-q)^2},\tag{27}$$

where, the two sequences $M_q(n)$ and $N_q(n)$ tends to zero through positive values. By using (17), we have

Lemma 3.1. The q-factorial $[n]_q!$ satisfies the double inequality

$$(q;q)_{\infty}(1-q)^{-n}e^{q^{n+1}} < [n]_q! < (q;q)_{\infty}(1-q)^{-n}e^{\frac{q^{n+1}}{(1-q)^2}}, \quad n \ge 1; \ 0 < q < 1.$$
(28)

3.2 Case 2

In view of the two sequences $M_q(n)$ and $N_q(n)$, we can improve the double inequality (28). Consider the sequence

$$T_q(n) = \frac{q^n}{(1-q)(1-q^n)},$$

which tends two zero through positive values. Let

$$\psi_q(n) = T_q(n) - T_q(n+1) + \log(1-q^n) = \frac{q^n}{(1-q^n)(1-q^{n+1})} + \log(1-q^n),$$

which tends to zero as n tends to infinity. Also,

$$\frac{d}{dn}\psi_q(n) = \frac{q^{2n}\left((1-q^{n+1}) + q(2-q^{n+1})(1-q^n)\right)}{(1-q^n)^2(1-q^{n+1})^2}\log q < 0,$$

where 0 < q < 1 and $n \ge 1$. Then

$$\psi_q(n) > 0$$

and hence

$$-\log(1-q^n) < T_q(n) - T_q(n+1).$$

Also, consider the sequence

$$S_q(n) = \frac{q^n}{1-q},$$

which tends two zero through positive values. Let

$$\varphi_q(n) = S_q(n) - S_q(n+1) + \log(1-q^n) = q^n + \log(1-q^n),$$

which tends to zero as n tends to infinity. Also,

$$\frac{d}{dn}\varphi_q(n) = -\frac{q^{2n}\log q}{(1-q^n)} > 0,$$

where 0 < q < 1 and $n \ge 1$. Then

$$\varphi_a(n) < 0$$

and hence

$$S_q(n) - S_q(n+1) < -\log(1-q^n).$$

It will then follow that (18) holds with the two sequences $S_q(n)$ and $T_q(n)$. Hence by using (17), we get

Lemma 3.2. The q-factorial $[n]_q!$ satisfies the double inequality

$$(q;q)_{\infty}(1-q)^{-n}e^{\frac{q^{n+1}}{1-q}} < [n]_q! < (q;q)_{\infty}(1-q)^{-n}e^{\frac{q^{n+1}}{(1-q)(1-q^{n+1})}}, \quad n \ge 1; \ 0 < q < 1.$$

$$(29)$$

Of course the double inequality (29) is better than the double inequality (28) for n > 1.

References

- P. R. Beesack, Improvement of Stirling's formula by elementary methods, Univ. Beograd, Publ. Elektrotenhn, Fak. Ser. Mat. Fiz. No. 274-301, (1969) 17-21.
- [2] E. Cesàro, Elements Lehrbuch der algebraischen analysis und der Infinitesimalrechnung, Leipzig, 1922.
- [3] M. J. Cloud and B. C. Drachman, Inequalities with applications to engineering, Springer-Verlag New York, 1998.

- [4] G. Gasper and M. Rahman, Basic hypergeometric series, Cambridge Univ. Press, 1990.
- [5] T. Kim, Lee-C. Jang and Heungsu Yi, A note on the modified q-Bernstein polynomials, Discrete Dynamics in Nature and Society Vol. 2010, Article ID 706483, 12 pages.
- [6] A. J. Maria, A remark on Striling's formula, Amer. Math. Monthly, 72, (1965) 1096-1098.
- [7] R. Michel, On Stirling's formula, Amer. Math. Monthly, 109(4): (2002) 388-390.
- [8] T. S. Nanjundiah, Note on Stirling's formula, Amer. Math. Monthly, 66, (1965) 701-703.
- [9] H. Robbins, A remark on Stirling's formula, Amer. Math. Monthly, 62, (1955) 26-29.
- [10] J. V. Uspensky, Introduction to mathematical probability, McGraw Hill, New York, 1937.