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Abstract

In this paper, we get the following upper and lower bounds for
g—factorial [n],!

(4 D)oo (1 — )"l ™D < [n]g! < (g5 9)eo(1 — g) "eTT Y,

where n > 1, 0 < ¢ < 1 and the two sequences fo(n) and g;(n) tends
to zero through positive values. Also, we present two examples of
the two sequences fy(n) and gq(n).

Keywords: Stirling’s formula, g—gamma function, g—factorial.

1 Introduction.

Stirling’s formula
n

nl ~ V2w (-)" 1)

e
is used in many applications, especially in statistics and in the theory of
probability to help estimate the value of n!, where ~ is used to indicate
that the ratio of the two sides goes to 1 as n goes to co. In other words,

we have \
] n!

i, 2 = VAT @
Stirling’s formula was actually discovered by De Moivre (1667-1754) but
James Stirling (1692-1770) improved it by finding the value of the constant
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V.

A number of upper and lower bounds for n! have been obtained by
various authors. Most bounds are of the form

2nm (g—)n e* < n! < V2nm (g)neﬁ", (3)

where a, and 8, tends to zero through positive values. Here some exam-
ples of o, and Bn:

W = YT Bn = th (E. Cesiro [2])
On = T57s Brn = 1= (J. V. Uspensky [10])
ap = 13,1“ Bn =t (H. Robbins [9)])
On = Ton 360n Bn =1 (T. S. Nenjundiah [8])
Qp = m— (A J. Maria [6])
an = T35 — T50aT Br = 15 — meosswe (P R. Beesack [1])
Tn(n+1)+1

,where 'yn = 30_1?&5-‘12?"
On =T — 550:% — 138 DPn= (R. Michel [7])

The g—gamma function Iy(z) is deﬁned by the infinite product [4]

Ty (z) = o _ y1-e; 5 20,-1,-9,.., (4)

(9% D)oo
where q is a fixed real number 0 < ¢ < 1 and the g—shifted factorials are
defined by
(a;q)o =1,
(a;9)k = H,-o(l —ag’); k=1,2,..,

(a;9)o0 = H.=0(1 aq )
This function is a g—analogue of the gamma function since we have

;im1 Ly(z) = T'(x).
Also, it satisfies the functional equation
Tg(z +1) = [z]gTq(z), To(1)=1, (5)
which is a g—extension of the well-known functional equation
Mz +1)=2l'(z), I'(1)=1,

where [z]q = %2_9;;- is the g—number of z and lim,_.i[z], = z, see [5] for
details and related facts.

In this paper, we will get a g—analogue of the inequality (3) for the
g—factorial which is defined by (5]

[n)g! = [nlq[n — 1]q...[2g[1]g = Tq(n + 1),

which is the g—analog of the relation n! = I'(n + 1) where limq_,1[n]y! = nl.
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2 Main result.
We begin with the sequence {K,,} defined by
Kn=[n-11—-¢)" V% 0<g<l; n>1, (6)

for which K, _ 1 -
Knt1 1—gqn

By using relation (7), we can show that K, > K, ; for all n > 1. Now,

the idea of the proof is to find positive sequences {f,(n)}, {g4(n)} both of

which tend to zero, such that

fo(n) = fo(n +1) < —log(l — ¢") < go(n) —gg(n+1), n>1.
Then

xplfy(n) = ol + 1)) < 2 <expla(m) ~ga(n +1)  (®

and hence '
Knt1 exp(—fy(n +1)) < Kn exp(—fo(n)), ©
Kny1 exp(—gqo(n+1)) > Kn exp(—gy(n))- (10)
Now define the following two sequences -
zn = Kn exp(—fo(n)), (11)
¥ = Kn exp(—go(n). )

By using relation (9), the sequence {z, } is monotone decreasing and bounded
below by zero. Then lim,,—,o Tn = a4 exist and a, > 0. But f,(n) tends to

zero, then v
lim K, = nlingo Zn exp(fqe(n)) = aq (13)

n—00
also exists. Similarly, By using relation (10), the sequence {y»} is monotone
increasing with yn41 < Kny1 < Ky < ... < K, so that lim, o yn = b,
exists with by > 0. Then

ag = lim Kp= lim y, exp(gy(n)) = b,. (14)
But (@:0)
4 @)n
Nyl = ——
==
then

ag = lim K= lim [n—1];(1 - q)" Y2
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= lim (¢:9)n-1(1 - 9)"? = (Gi0)e(1 - @)% (15)
Then the relation

Yn < Gg < Tn, n>10<g<1 (16)
gives us the following theorem:

Theorem 1. The g—factorial [n],! satisfies the double inequality

(4 Doo(1—q) "D < [n]g! < (4;9)00(1-q) %), n 21 0<g <1

(17)
where fy(n) and go(n) are two sequences tend to zero through positive values
and satisfy

fa(n) — fo(n+1) < —log(l = q") < gg(n) —gqo(n+1), n=>1. (18)

The double inequality (17) is a g—analogue of the inequality (3).

3 Some special cases of the two sequences
fo(n) and gy(n).

3.1 Casel
By applying the Mean value theorem to the natural log, we get

log(1 + z) — log(1) = % (19)
for some £ € (1,1 + z). Then

z—% <log(l+z)<z, z>0. (20)

This is the logarithmic inequality. Also, the range of validity can be ex-
tended to include —1 < z < 0 as well [3]. So, if we put z = —¢"; n > 1, we
get

_—
- _qqu <log(l—g®) < —q", n>1 (21)
Then n
¢ <-lgl-g) <o a2l (22)
but
q q"
1—q"<1—q’ n>1l 0<g<l1. (23)
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Then

n
¢ <-lg(l-g) <7 2l (24)
and hence
+1 q" gt
" —g" T < —log(l —q") < - ; n21, 25
q"—q g(1—4q") - =97 (25)
where ¢" —g" "1 >0for0<g<1.
It will then follow that (18) holds with
My(n) =¢q" (26)
and
‘I(n) ( )2 ) (27)

where, the two sequences M,y (n) and Ng(n) tends to zero through positive
values. By using (17), we have :

Lemma 3.1. The g—factorial [n),! satisfies the double inequality

n+t+1
(@0)0(1-9)" """ < [n)g! < (¢;9)co(l—g) "eT7, n21;0<g<L
(28)

3.2 Case 2

In view of the two sequences M,(n) and Ny(n), we can improve the double
inequality (28). Consider the sequence

N
(1-¢@1-g")’

which tends two zero through positive values. Let

To(n) =

wq(n) = Tq(n) _TQ(n+ 1) +1°g(1 _qn) = (1 — qn)g:_ qn+1) +10g(1 _qn),

which tends to zero as n tends to infinity. Also,

@ (1—q™") +q(2-¢"*)(1 -q"))

d_n¢q(n) = (1 - qn)z(l _ qn+1)2 Iqu < 01

where 0 < ¢ < 1 and n > 1. Then

Pe(n) >0
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and hence
—log(1l - q") < Ty(n) —Ty(n+1).

Also, consider the sequence

Sg(n) = q_"

b

1-g¢

which tends two zero through positive values. Let
Pq(n) = Sq(n) — Sq(n + 1) +log(l — g") = q" +log(1 — ¢"),
which tends to zero as n tends to infinity. Also,

d g*"logq

I Pa(n) = = >0,

where 0 < g < 1 and n > 1. Then

pg(n) <0

and hence
Sq(n) — Sq(n + 1) < —log(1 —q").

It will then follow that (18) holds with the two sequences S,(n) and T,(n).
Hence by using (17), we get

Lemma 3.2. The q—factorial [n],! satisfies the double inequality

n4l n+1l
(6;9)oo(1-9) "7 < [n]g! < (¢;9)oo(1—g) @G-, n>1,0<g<1.
(29)

Of course the double inequality (29) is better than the double inequality
(28) for n > 1.
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