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Abstract

A set S of vertices of a graph G = (V, E) without isolated vertex
is a total dominating set if every vertex of V(G) is adjacent to some
vertex in S. The total domination number v,(G) is the minimum
cardinality of a total dominating set of G. The total domination
subdivision number sd,,(G) is the minimum number of edges that
must be subdivided (each edge in G can be subdivided at most once)
in order to increase the total domination number. In this paper we
first prove that sd.,(G) < n—4+2 for every simple connected graph
G of order n > 3. We also classify all simple connected graphs G
with sd (G)=n-6+2,n—-6+1,andn — 4.
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1 Introduction

Let G = (V(G), E(G)) be a graph of order n with no isolated vertices. The
neighborhood of a vertex u is denoted by Ng(u) and its degree |Ng(u)|
by degg(u) (briefly N(u) and deg(u) when no ambiguity on the graph
is possible). A matching in a graph is a set of non-loop edges with no
shared end-vertices. A perfect matching M in a graph G is a matching
with V(M) = V(G). The maximum number of edges of a matching in G
is denoted by o/(G). In order to work on the total dominating sets of G,
we must suppose that the minimum degree J of G is positive. We use [10]
for terminology and notation which are not defined here.

A set S of vertices of G is a dominating set if (V(G)\ S) C N(S). The
domination number of G, denoted +(G), is the minimum cardinality of a
dominating set of G. A (G)-set is a dominating set of G of cardinality
v(G). When an edge uv of G is subdivided by inserting a new vertex z
between u and v, the domination number does not decrease. The domi-
nation subdivision number sd,(G) is the minimum number of edges of G
that must be subdivided in order to increase the domination number. This
concept was first introduced by Velammal in his Ph.D. thesis [9].

A set S of vertices of G is a total (connected) dominating set if it is a
dominating set of G such that G[S] has no isolated vertex (G|[S] is con-
nected). The minimum cardinality of a total (connected) dominating set,
denoted by v:(G) (7:(G)), is called the total (connected) domination num-
ber of G. A 4;(G)-set (7.(G)-set) is a total (connected) dominating set of
G of cardinality 7;(G) (7:(G)). The total domination subdivision number
sd,,(G) is the minimum number of edges of G that must be subdivided
in order to increase the total domination number. Similarly, the connected
domination subdivision number sd,, (G) is the minimum number of edges
of a connected graph G that must be subdivided in order to increase the
connected domination number. Since the total domination number of the
graph K5 dose not change when its only edge is subdivided, in the study
of total (connected) domination subdivision number we must assume that
the graph is of order n > 3.

It is rather difficult to construct graphs with large values of sd,(G),
sd.,(G) or sd, (G) and the first conjecture on the subject (see [9]) was
that sd,(G) < 3 for every G. However, it is now known that the three
parameters can be arbitrary large (see (1] for sd,(G), [7] for sd,,(G) and
(3] for sd,. (G)). It is also difficult to find general and good upper bounds
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for these parameters. Bhattacharya and Vijayakumar [1] prove that if
n = |V(G)| is large enough, then sd,(G) < 4/nlnn + 5 and the authors
of [6] ask whether sd,,(G) < n. Some bounds are given in terms of the
corresponding domination parameters. For instance, sd,(G) < 7(G) +1
[1,5), 5, (G) < n—7(G)+1 [4] and sdy,(G) < n~7c(G)~1 with equality
if and only if G is a path or a cycle [3].

Our purpose in this paper is that of establishing an upper bound for
8d,(G) in terms of the order and the minimum degree of G. We prove
that sd,,(G) < n — 6 + 2 for every simple connected graph G of order
n > 3. We also characterize all simple connected graphs G with sd,, (G) =
n—68+2n—08+1,and n— 4. We will use the following results on </,
7e(G), 1(G) and sd,, (G).

Theorem A. [2] Let G be a simple graph of order n such that § > k and
n > 2k for some k € N. Then ¢/(G) = k.

Theorem B. [8] For every connected graph G, 7.(G) <n - A.

Theorem C. [8] For every tree T, 7.(T) = n — A if and only if T" has at
most one vertex of degree three or more.

Theorem D. [6] If G is a graph of order n > 3 and v,(G) = 2 or 3, then
1< sdy,(G) <3

Theorem E. [4] For every simple connected graph G of order n > 3,
8dy, (G) £ n = %(G) +1.

Theorem F. [4] If G is a simple connected graph of order n > 3 different
from P3, C3, K4, Ps,Cg then sd.,, (G) < n—7(G).

Theorem G. [3] Let G be a graph of order n > 3. If there exists a
ve-set S of G such that each vertex of S has an S-private neighbor, then

8d+,(G) < 7.(G).
The proof of the following lemma is straightforward and therefore omitted.

Lemma 1. (1) sd,,(K3) =2 and sd,, (K,) = 3 for n > 4.
(2) For every matching M in K, of size at least 2, sd,, (K, — M) = 2.

2 An upper bound

In this section we prove that for every simple connected graph G of order
n > 3, sd., (G) < n— &+ 2. We make use of the following three lemmas in
the proof of Theorem 5.

Lemma 2. If G contains a matching M such that v(G) < |M|, then
8d,, (G) < 1(G) + 1.
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Proof. Let G’ be obtained by subdividing +,(G)+ 1 edges of M. Each total
dominating set of G’ has order at least 1:(G) + 1. Hence, 7(G’) > %(G)
which implies sd,, (G) < 1%(G) + 1. O

Lemma 3. Let G be a simple connected graph. If v € V(G) is contained
in a 3-cycle and deg(v) > v:(G), then sd,,(G) < deg(v) + 1.

Proof. Let N(v) = {v1,...,V4eg(v)} and v1v2 € E(G). Let G’ be obtained
from G by subdividing the edges viva and vv;, 1 < ¢ < deg(v), with
deg(v) + 1 new vertices a,bi,...,beg(v), respectively. Let S be a 7(G')-
set. If v € S, then b; € S forsomeiand vy or v € S. Now S\ {4; |1 <i <
deg(v)} is a total dominating set for G. If v & S, then b;,v; € S for some ¢
and v; € S for each j # i. Both cases imply that v:(G’) 2 %(G) + 1 and
hence sd,,(G) < deg(v) + 1. ]

Lemma 4. If G is a simple connected graph of order n > 3 with § > 1:(G),
then sd,,(G) £ 1(G) + 1.

Proof. If 4;(G) = 2 or 3, then sd., (G) = 3 < %(G) + 1 by Theorem D. Let
1(G) = 4. If &/(G) = 7(G) + 1, then sd.,(G) < 7%(G) + 1 by Lemma 2.
Now assume o’ = o/(G) < %(G) and M = {e; = vyv1,...,€q’ = Ug'Var}
is a maximum matching of G. Clearly, X = V(G) \ {us,v; |1 i<’} is
an independent set. We consider two cases.

Casel. 62 [g] By Theorem F, we see that sd,(G) < n — 1(G). If

7@ +1< [g J, then & > 7:(G) + 1 and n > 2(7(G) + 1). This implies
that o/(G) = 7:(G) + 1 by Theorem A, which is a contradiction. Therefore
we have 7,(G) > [g |. This implies that sd,(G) < n — lg ] < lg J+1<
%(G) + 1.

Case 2. 6 < ['5‘ | = 1. 6§ > %(G) +1, then &/(G) > 1(G) +1 by
Theorem A, which is a contradiction. Therefore we have § = v:(G), which
implies @'(G) > 7:(G) by Theorem A. Hence, o/(G) = %(G) = § by
assumption. Since 2a/(G) < n — 2, it follows that |X| > 2. Let z,y €
X. If zu;,yv; € E(G) for some i (the case zv;,yu; € E(G) is similar),
then M’ = (M \ {u;v;}) U {zu;, yv;} is a matching of G larger than M, a
contradiction. Therefore 26 < deg(z) + deg(y) < 2o’ = 24, which implies
deg(r) = 7(G) = &/(G) for each z € X.

If 2u;, zv; € E(G) for some z € X and some 1 < i < o/(G), then sd,, (G) <
7(G) + 1 by Lemma 3. Now, without loss of generality, we may assume
N(z) = {u; | 1 £i < &/(G)} for each z € X. Let G’ be obtained from G by
subdividing the edges zu;, 1 < i < o’(G), with new vertices by,...,b,,(c),
respectively. Let S be a v,(G’)-set. If z € S, then b; € S for some ¢ and
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since |X| > 2 we see that u; € S for some j. Now S\ {b; | 1 < i < n(G)}
is a total dominating set for G. Hence, v:(G’) > 7(G) + 1. If € S, then
b; € S for some i and u; € S for each j. Therefore v.(G') 2 %(G) + 1.
This implies sd,,(G) < 1(G)- a

Now we are ready to prove the main theorem of this section.

Theorem 5. If G is a simple connected graph of order n > 3, then
8d, (G) <n—-0+2.

Proof. If § < 7(G) — 1, then
8dy,(G) Sn—n(G)+1<n—-4, (1)

by Theorem E. Let § > v:(G). If 4.(G) = 1, then obviously 7:(G) = 2 and
hence

sdy,(C)S3<n—6+2, @
by Theorem D. If v.(G) > 2, then %(G) < 7.(G). Now by Lemma 4 and
Theorem B,

841, (C) < (GC)+1 <L 1(G)+1<n-A+1<n—-6+1. 3)
This completes the proof. a

The next theorem characterizes the graphs whose total domination sub-
division number is n — § + 2.

Theorem 6. Let G be a simple connected graph of order n > 3. Then
sd.,,(G) =n -6 + 2 if and only if G is isomorphic to K, (n > 4).

Proof. If G ~ K, (n > 4), then sd,,(G) =3 =n—§ + 2 by Lemma 1.
Conversely, let sd,,(G) =n — 4§+ 2. By (1) and (3) in Theorem 5 we have
d > 1(G) and v(G) = 2. By Theorem D,3 <n-0+2 = 38d,,(G) < 3,
which implies sd,,(G) = 3 and § = n — 1. Therefore, G ~ K,, (n > 3).
Since sd., (K3) = 2 by Lemma 1, it follows that n > 4. This completes the
proof. 0

3 Graphs with sd,,(G)=n—-6§+1

In this section first we characterize all simple connected graphs G with
7(G) = 2 and sd,,(G) = 3. Then we characterize all simple connected
graphs whose total domination subdivision number is n — § + 1.

We make use of the graph ngKn_m, 1 < m < n-1, in the remaining
sections. These graphs are known in the literature as split graphs with the
mazimum number of edges. We note that Py ~ K§ v Ky, K3 ~ K€ vV K,
and K4—82K20VK2.
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Lemma 7. Letn>3 and1<m<n—1. Then 1(KSV Kn—m) =2 and

2 when m>2n—-221
sy (K V Kn-m) = { 3 otherwise.

Proof. If m =n—1, then K& |V K, is a star K n_;. Obviously, we have
Y¢(K1,n—1) = 2 and since n > 3, we have sd,, (K}, ,,_1) =2 Ifm=n-2,
then every pair of adja,cent vertices forms a 1, (KS_, V K2). Now it is
easy to see that sd,, (KS_ , V K2) = 2. Finally, let 1 <m < n -3 and
G = KSV Kp—m. Then there is a subset X of V(G) such that G ~
K“'Xl V K, |x)and 1 £ |X| < n—3. Obviously, every pair of distinct
vertices of V(G) \ X forms a total dominating set for G, hence 7,(G) = 2.
Let e = ujv1,e2 = ugvs € E(G) and let G’ be obtained from G by
subdividing the edges e; and e;. At least one endpoint of e; and ez, say v;
and vp, must be in V(G) \ X. Moreover, a vertex z € V(G) \ X is adjacent
to every vertex z € V(G) — {z}. If v = v2 and V(G) — X # {w1,u2, 01},
then {v1,2z} is a ‘yt(G )-set, where z € V(G) \ X and z ¢ {uj,uz,n}. If

= vy and V(G) — X = {u1,uz,v1}, then {v1,2} is a v:(G')-set, where
z e X Ifv # v and w3 = ug, then {u1,2} is a 7(G’)-set, where
z € Ng(uw), z # v1,v2. If v1 # vy and uy # uz, then {v,v2} is 2 7(G')-
set. Therefore, we must bisect at least three edges. Hence, by Theorem D,
sdy)(G) = 3. a

Theorem 8. Let G be a simple connected graph of order n. The following
statements are equivalent.

1. %(G) =2 and sd.,(G) =
2. § > 3 and each two edges of G are contained in a K4 —e.
3. G is isomorphic to K&, V K, for some 1 <m <n—3.

Proof. (1 = 2) First assume § = 1, z € V(G) with deg(z) = 1 and
zyz is a path in G. Let G’ be obtained from G by subdividing the edges
zy,yz. Then v,(G’') > 3, a contradiction. Now assume § = 2, z € V(G)
with deg(z) = 2 and zy,zz € E(G). Let G’ be obtained from G by
subdividing the edges zy,zz. Then v (G’) > 3, a contradiction. Hence,
§>3andn > 4. If n = 4, then G ~ K4 by Theorem 6. Let n > 5 and
e, = uyvy, ez = ugva € E(G). Let G’ be obtained from G by subdividing
the edges e;, e2. First suppose that e; and ez do not have a common end-
vertex. Since sd., (G) = 3 and 7,(G) = 2, we may assume {u1,up} is a
7:(G")-set. This implies that ujuz,uv2,u2v1 € E(G). Therefore, ey,e2
are contained in a K4 — e. Now suppose that u; = ug. Let S be a total
dominating set of G’. Since :(G) = 2 and sd.,,(G) = 3, we have u; € S.
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Let S = {u),2}. Then z must be adjacent to u;,v;, vz, which implies that
e1, ez are contained in a K4 —e.

(2 = 3) Let X be a maximum independent set of G. If |X| = 1, then
G~K,=K VK, 1 Let |X|>2. Since § >3, |[V(G)\ X]| = 3.

Claim 1 Each vertex of X is adjacent to every vertex of V(G) \ X.
Proof of Claim 1: Let, to the contrary, z € X,y € V(G)\X and zy € E(G).
Since G is connected, zw € E(G) for some w € V(G) \ X. On the other
hand, since X is a maximum independent set, y is adjacent to a vertex
z of X. By assumption zw,yz are contained in a K4 — e, which implies
zy € E(G), a contradiction. This proves Claim 1.

Claim 2 The induced subgraph G[V(G) \ X] is a complete graph.

Proof of Claim 2: Let z,y € V(G)\ X and z;, 2 € X. By Claim 1, we have
zz1,y22 € E(G). Now by assumption, zz,y2o are contained in a K4 — e,
which implies zy € E(G). This proves Claim 2.

Therefore G =~ Kfy, V Kn—|x| and |X]£n-3.
(3==1) By Lemma 7. O

Lemma 9. If G is a simple connected graph of order n with v(G) > 3
and at least two vertices of degree three or more, then 1,(G) <n—-A - 1.

Proof. Since 1:(G) > 3, 1:(G) £ 7(G) £ n— A, the latter inequality by
Theorem B. Equality holds in the latter inequality if and only if G has at
most one vertex of degree three or more by Theorem C. Now the result
follows. O

The next theorem characterizes the graphs whose total domination sub-
division number is n —d + 1.

Theorem 10. Let G be a simple connected graph of order n > 3. Then
8d, (G)=n—-46+1ifand only if G~ K3 or G K§V K2 (n > 5).

Proof. If G ~ K3 or G~ K§V K2 (n 2 5), then sd,,(G) =n—-46+1 by
Lemma 1 and Theorem 8.

Conversely, let sd.,,(G) =n—4d+1. By (1) in Theorem 5, § > %(G). If
7.(G) = 1, then %,(G) = 2 and hence n — 4 + 1 = sd,,,(G) < 3 by Theorem
D. This implies 6 > n—2. If § = n — 1, then G ~ K3 by Lemma 1. Let
d =n—2. Then v,(G) = 2 and sd.,(G) = 3, hence G ~ K§V K,_2 (n > 5)
by Theorem 8. Let 4.(G) > 2. Then by (3) in Theorem 5, 4(G) =n—4
and § = A. First suppose that n > 6. We have § > 1(G) = n - §,
which implies § > 3. Now by Lemma 9 we obtain ~;(G) < 3. Moreover,
n—6+1=%(G)+1=sd,(G) <3 by (3) in Theorem 5 and Theorem
D, which implies 7,(G) = 2, sd,,(G) = 3 and § = A = n — 2. Therefore
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G ~ K, — M, where M is a perfect matching of G. This contradicts Lemma
1(2). Let n < 5. If n = 3, then obviously G ~ K3. If n = 4, since G
- is connected, it follows that 4;(G) = 2. Now, by Theorem D, we have
n—6+ 1= sd,,(G) < 3. Therefore § > 2. By Lemma 1, § = 2 and we
have sd,,(G) = 4 — 2+ 1 = 3. Since sd,,(Cy) = 1, we must have A = 3.
This leads to G ~ K, — e, a contradiction by Theorem 8. Hence, there
is no graph of order 4 with sd,(G) =4 — é + 1. Finally, if n = 5, then
7(G) < 3 and we have 5 — § + 1 = sd,,(G) < 3. This leads to § > 3. By
Lemma 1, § = 3 and we obtain v:(G) = 2 and sd,,,(G) = 3. This implies
G ~ K5 V K3 by Theorem 8. O

4 Graphs with sd,,(G) =n—¢

In this section we characterize all simple connected graphs G whose total
domination subdivision number is n — §. We make use of the following
three lemmas in this section.

Lemma 11. For every simple connected graph G of order n > 6 and
52n—3, ’)’g(G)=2.

Proof. Let € V(G) be a vertex of degree § and X = V(G)\ N[z]. Clearly
|X| < 2. If X =0, then G is a complete graph and 1,(G) = 2. If |[X| =1
and r; € X, then N(z) = N(z;), which implies that {z,y} is a 7.(G)-set
for each y € N(z). Let | X| = 2 and 24,z € X. Clearly N(z1)NN(z2) # (?)
Now {z,y} is a 7:(G)-set for each y € N(z1) N N(z3).

Lemma 12. For every simple connected graph G of order n, 2 < n £ 9,
and § > 2], w(€) < 3.

Proof. If n = 2,3,4, then clearly %(G) = 2. Let n = 5. If A > 2, then
1%(G) = 2. If A = 2, then G is a 5-cycle and 7,(G) = 3. If n = 6,
then the statement is true by Lemma 11. Let n = 7 (respectively, 8).
If § > 4 (respectively, 5), then the statement holds by Lemma 11. Let
§ = 3 (respectively, 4) and deg(z) = 8. Assume X = V(G)\ N[z] =
{z1,22,23}. If A(G[X]) = 2 and z122,z123 € E(G), then {z,y,z:} is a
total dominating set of G for every vertex y € N(z1)NN(z). If A(G[X]) =
0, then obviously {z,y} is a 4:(G)-set for each y € N(z). Now assume
A(G[X]) = 1 and z1z2 € E(G). Then {z, 2,7} is a total dominating set
of G for each vertex z € N(z;) N N(z). Finally, let n = 9. If § > 6, then
the statement holds by Lemma 11. If § = 5, then an argument similar to
that described for n = 7 shows that the statement is true. Now assume
§ =4, deg(z) = 4 and X = V(G) \ N[z] = {z1,22,23,24}. If A(G[X]) =
3 and 772, 2123, 7124 € E(G), then {z,y,z:} is a total dominating set
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of G for each y € N(z;) N N(z). Let A(G[X]) = 2 and 23,7123 €
E(G). If deggxj(za) < 1, then N(z) N N(z1) N N(z4) # @, and hence
{z,z1,y} is a total dominating set of G for each y € N(z) N N(z1) NN (z4).
If deggx)(z4) = 2, then G[X] is the 4-cycle (z;,z2,%4,%3). It is now
clear that there exist vertices y;,y2 € N(z), which dominate z; for ¢ =
1,2,3,4. Thus {z,y1,y2} is a total dominating set of G. If A(G[X]) =1,
then {z,y1,y2} is a total dominating set of G for each y,y2 € N(z). If
A(G[X]) = 0, then {z,y} is a v:(G)-set for every y € N(z). This completes
the proof. a

Lemma 13. For every simple connected graph G of order n > 10 and
§2n-57(G) L3

Proof. If 6 > n — 3, then the statement is true by Lemma 11. If § =
n — 4, then an argument similar to that described for n = 7 in Lemma
12 shows that :(G) < 3. Let § = n -5, deg(z) = d and X = V(G) \
Niz] = {z1,z2,23,24}. If A(G[X]) = 0,1,2, then there are vertices, say
z; and T2, such that z,z2 &€ E(G). Now {z,z,,y} is a total dominating
set of G for each y € N(z) N N(z;) N N(z4). Assume A(G[X]) = 3 and
T1Z2, 2123, 7124 € E(G). Then {z,zy,y} is a total dominating set for each
y € N(x) N N(z;). This completes the proof. a

Putting Lemmas 11, 12 and 13 together, we have:

Theorem 14. For every simple connected graph G of order n > 2 and
6 > max{n — 5, [gj}, 7(G) < 3.

We are now ready to characterize the graphs G of order n > 3 whose
total domination subdivision number is n — 4.

Theorem 15. Let G be a simple connected graph of order n > 3. Then
8d,(G)=n—-4difand only if G ~ Ky —e, P3, K§V Kn_3 (n > 6) or
K, — M, where M is a matching of size at least 2.
Proof. If G ~ K4 —e, P3, or K§V K,,_3 (n > 6), then obviously sd.,(G) =
n—46. If G ~ K, — M, where M is a matching of size at least 2, then
8d,, (G) =n — 6 by Lemma 1.

Conversely, Let sd.,(G) = n— 4. First suppose § < 7:(G) — 1. Then by
Theorem E,

n—0=3sd,(G)<n-n(G)+1<n-4.

Hence, sd,,(G) = n—(G)+1 and 1,(G) = 6§ + 1. By Theorems E and F,
G =~ P;. Now suppose d > 7;(G). By Lemma 4, we have n—§ = sd.,,(G) <

7(G) + 1. This implies that n < 26 + 1 or § > [g J. I %(G) = 1, then
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A =n—1 and y(G) = 2. By Theorem D, n — 6 = sd,,(G) < 3 and hence
0 > n — 3. On the other hand, by Lemma 1, < n —2. If § =n — 3, then
8d.,(G) =3 and G >~ K§V K,_3 (n > 5) by Theorem 8. If § = n — 2, then
(G) = sd.,(G) = 2 and G ~ K, — M, where M is a matching of G of
size at least two by Theorem 8.

If 4.(G) > 2, then by Lemmas 9 and 12 we have v,(G) < 3. By Theorem
D, n -6 = sd,,(G) < 3, which implies 6 > n — 3. If n > 6, then 7(G) =2
by Lemma 11. Now we have v.(G) = 2, which implies n — § = 3d.,,(G) =
sd, (G) < 2 by Theorem G, and hence § =n — 2 by Lemma 1. Moreover,
since v.(G) = 2, we have A = § = n — 2. Therefore G ~ K,, — M, where
M is a perfect matching of G.

If n =3, then obviously § =n—-2=1,sdy,, =n—-0 =2and G =~ P;.
Finally, if 4 < n < 5, then %(G) < 3 by Lemma 12, and sd,,(G) < 3 by
Theorem D. This implies § = n — sd.,,(G) = n — 3. On the other hand, by
Lemma 1 we have § < n — 2. If n = 4, then obviously sd,, (G) < 2, which
implies § = 2 and hence G ~ K; — e. If n = 5 and § = 3, then since n is
odd and sd,,(G) = 2, it follows that A =4 and G ~ K, — M, where M is
a matching of size 2. If n = 5 and § = 2, then since sd,,,(Cs) = 1, it follows
that A > 3 and 4:(G) = 2. This implies sd,,(G) < 2, a contradiction. This
completes the proof. 0
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