NEIGHBOR RUPTURE DEGREE AND THE RELATIONS
BETWEEN OTHER PARAMETERS

GOKSEN BACAK-TURAN AND ALPAY KIRLANGIC

ApsTRACT. The vulnerability shows the resistance of the network until
communication breakdown after the disruption of certain stations or com-
munication links. This study introduces a rew vulnerability parameter,
neighbor rupture degree. The neighbor rupture degree of a noncomplete
connected graph G is defined to be
Nr(G) = max{w(G/S) — |8| — ¢(G/S) : § C V(G),w(G/S) > 1}

where S is any vertex subversion strategy of G, w(G/S) is the number
of connected components in G/S, and ¢(G/S) is the maximum order of
the components of G/S. In this paper, the neighbor rupture degree of
some classes of graphs are obtained and the relations between neighbor
rupture degree and other parameters are determined.

1. INTRODUCTION

In a communication network, the vulnerability parameters measure the re-
sistance of the network to disruption of operation after the failure of certain
stations or communication links. When & network begins losing stations or
communication links there is a loss in its effectiveness. Thus, a communication
network must be constructed to be as stable as possible, not only with respect
to the initial disruption, but also with respect to the possible reconstruction
of the network. Connectivity, integrity [3], tenacity [7], rupture degree [17]
and some other vulnerability parameters have been defined to measure the vul-
nerability of a graph. However most of these parameters do not consider the
neighborhoods of the affected vertices. On the other hand, in spy networks, if
a spy or a station is captured, then adjacent stations are unreliable. Therefore
neighborhoods should be taken into consideration in spy networks. Neverthe-
less there are very few parameters concerning neighborhoods such as neighbor
connectivity [11], neighbor integrity [8] and neighbor scattering [18].

Terminology and notation not defined in this paper can be found in [4].
Let G be a simple graph and let u be any vertex of G. The set N(u) =
{v € V(G)|v # u, v and u are adjacent} is the open neighborhood of u, and
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N[y] = {u} U N(u) is the closed neighborhood of u. A vertex u in G is said
to be subverted if the closed neighborhood of u is removed from G. A set
of vertices § = {uy,u2,...,Um} is called a vertex subversion strategy of G if
each of the vertices in S has been subverted from G. If S has been subverted
from the graph G, then the survival subgraph is disconnected, a clique, or the
empty graph. The survival subgraph is denoted by G/S. The most common
vulnerability parameters concerning to spy networks are as follows.

The neighbor connectivity of a graph G is

K(G)= min {ISI}

where S is a subversion strategy of G [11].

The neighbor integrity of a graph G is defined to be

NI(G) = min {|5]+(C/S)}

where S is any vertex subversion strategy of G and ¢(G/S) is the order of the
largest connected component of G/S [8].
The neighbor scattering number of a graph G is defined as

5(G) = max {w(CG/S) - S| : w(G/S) 2 1}

where S is any vertex subversion strategy of G and w(G/S) is the number of
connected components in the graph G/S [18].

The known parameters concerning about the neighborhoods do not deal with
the number of the removing vertices, the number of the components and the
number of the vertices in the largest component of the remaining graph in a
disrupted network simultaneously. In order to fill this void in the literature,
the current study proposes a definition of neighbor rupture degree which is a
new parameter concerning to these three values. Additionally, this study also
analyzes the relations between neighbor rupture degree and some other graph
parameters, and obtains neighbor rupture degree of some classes of graphs.

The neighbor rupture degree of a noncomplete connected graph G is defined
to be

Nr(G) = max{w(G/S) — |S| - c(G/S) : S C V(G),w(G/S) > 1}
where S is any vertex subversion strategy of G, w(G/S) is the number of
connected components in G/S, and ¢(G/S) is the maximum order of the com-
ponents of G/S [1]. In particular, the neighbor rupture degree of a complete
graph K, is defined to be (1 —n). A set § C V(G) is said to be the Nr-set of
G, if
Nr(G) = w(G/S) - |S| — ¢(G/S).

The neighbor rupture degree differs from neighbor integrity and rupture

degree in showing the vulnerability of networks. Consider the two graphs of
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order 3st containing the corona operation
Gi1=K,o[(t-2)K; U(t +3)K]
G2 =K;o[(s—2)K2U(s+3)K;]

where s and ¢t are integers and s > t + 2 > 4. It can be easily seen that the
neighbor integrity and the rupture degree of these graphs are equal.

NI(G,)=NI(G)=3
r(G1) =7(Ga) =2ts -2
On the other hand, the neighbor rupture degree of Gy and G5 are different.
Nr(G,)=2ts-2t+s-4
Nr(Gg)=2ts—t-2
Thus, the neighbor rupture degree is a better parameter then the neighbor
integrity and the rupture degree to distinguish these two graphs.

2. RELATIONS BETWEEN THE NEIGHBOR RUPTURE DEGREE AND OTHER
PARAMETERS

In this section some lower and upper bounds are given for the neighbor
rupture degree of a graph using different graph parameters.

Theorem 1. Let G be a graph of order n. Then,
Nr(G)=21—-n.
Proof. Let S be a subversion strategy of G. We have |S| < |N[S]| and
w(G/S) 2 1 for any graph G. Then,
w(G/S) < n—-|N[9]]| - c(G/S)+1<n—|S|-c(G/S)+1.
If we add w(G/S) to both sides, we get
2w(G/S) —n—-1< w(G/S) - |S| - ¢(G/S).
Then, by the definition of neighbor rupture degree, Nv(G) > 1 — n. O

Theorem 2. Let G be a graph of order n and K(G) be the neighbor connectivity

of G. Then,
Nr(G)<n-2K(G)-1.

Proof. Let S be an Nr-set of G. For any set S we have w(G/S) < n - {N[9]|,
¢(G/S) > 1 and K(G) < |S] < |N[S]|. Hence,

w(G/S) - |S| - ¢(G/S) < n — |N[S]| - |S]| - (G/S).
Thus, when we take the maximum of both sides, the proof is completed. [

Theorem 3. Let G be a graph of order n. Then,
Nr(G) < a(G) — NI(G).
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Proof. Let S be a subversion strategy of G. We have NI(G) < |S| + ¢(G/S)
for any S by the definition of neighbor integrity. If we subtract both sides from
w(G/S), we get

w(G/S) — NI(G) 2 w(G/S) — || - ¢(G/S).

Therefore, we have Nr(G) < a(G) — NI(G) since w(G/S) < a(G). 0O
Theorem 4. For any greph G, we have

Nr(G) £ 2a(G) - 2NI(G) - 7(G).
Proof. Let S be an r-set and S’ be an Nr-set of G. Hence

w(G - 8) - |S| - m(G - S)=r(G) and

w(G/S') - |8'| - (G/S’) = Nr(G).

If we add this two equalities, we get
r(G) + Nr(G) = w(G - S) — |S| - m(G — S) + w(G/S') - |S'| — ¢(G/S").

It follows from the definition of integrity and neighbor integrity that |S| +
m(G—S) > I(G) and |S'| +¢(G/S') 2 NI(G) for any § and S’. Since we have

w(G/S) < w(G - 5) < a(G)
for any S [17), 7(G) + N7(G) < 2¢(G) - I(G) — NI(G).
The proof is completed using the inequality NI(G) < I(G) [8]. a
Theorem 5. For any graph G,
Nr(G) >3- I(G) - NI(G) — r(G).

Proof. Let S be an I-set and S’ be an N I-set of G. Then we have the equalities
|S] + m(G - 8) = I(G) and |S'| +¢(G/S’) = NI(G). It follows from the
definition of rupture degree and neighbor rupture degree that

r(G) + Nr(G) > w(G - §) — |S| = m(G — §) + w(G/S") - |S'| - c(G/S").

Thus,
7(G) + Nr(G) > w(G - S) + w(G/S') - I(G) — NI(G).

Since we have w(G — S) > 2 and w(G/S’) > 1 for any set S and 5,
7(G) + Nr(G) = 83— I(G) — NI(G) is obtained and the proof is completed. O

The following corollary is easily obtained from Theorem 4 and Theorem 5.
Corollary 1. 3—-I(G) — NI(G) - (G) < Nr(G) < 2a(G) - 2NI(G) - r{G).
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3. NEIGHBOR RUPTURE DEGREE OF SOME CLASSES OF GRAPHS

In this section, we consider the neighbor rupture degree of path graphs, cycle
graphs, complete k-partite graphs, wheel graphs and complete k-ary trees.
Theorem 6. Let P, be a path graph of order n > 12. Then the neighbor
rupture degree of P, is ‘

_ 0, n=1(Mod4);
Nr(Fa) = { -1, n=0,2,3 (Mod 4).

Proof. Let S be a subversion strategy of P, and |S| = 2 be the number of
removing vertices from P,. There are two cases according to the number of

the elements in S. 1
Case 1: If z < 124—1, then w(P./S) <z+1 and o(P./S) > [ 1.

Hence

w(Pa/S) = |S| —c(Pa/S)Sz+1-2z-]

n-3z
z+1

n—3a:.ls1_n-3:c
z4+1 z4+1

and we have
n-3z

z+1 2
The function f(z) =1- ’:;_31’ is an increasing function and takes its maximum
value at z = |271]. Thus, we have f(|27}]) = 4 - l"_;%'—l and since the
4
neighbor rupture degree is integer valued, we get
n+3
Nr(P) < 4 - ———].
T( n) - I. LnT—lj + 1J
N7(P,) < —1 wheren =0,2,3 (Mod 4) and Nr(P,) < 0 wheren = 1 (Mod 4).
Therefore, we have

Nr(Py) < max{1 -

0, =1 (Mod 4);
Nr(Py,) S{ -1, :-—_"0,(2,30(M23d 4). @

Case 2: Ifz > r§1, then w(Pn/S) < z and c(P,/S) > 1. Therefore

w(Pp/S) —|S|—c(Pa/S)<z—2-1
and when we take the maximum of both sides we have
Nr(P,) < -1 - (2)
It can be easily seen that there is a subversion strategy S* of P, such that
1S*) = | 252 ), w(Pa/S*) = | 27| +1, ¢(Pn/S*) = 2 where n = 0,2,3 (Mod 4)
and c¢(P,/S*) = 1 where n =1 (Mod 4). Thus,

0, n=1(Mod 4);
Nr(Pn) 2 { -1, n=0,2,3 (Mod 4). @)
The proof is completed from (1), (2) and (3). O
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The neighbor rupture degrees of the path graph P, for n < 12 are given in
Table 1 below.

TABLE 1. Neighbor rupture degrees of P, for n <12

n |2 3 45 6 7 8 9 10 11
Nr(P,)|-1 -1t -1 0 -1 -1 -1 0 -1 -1

Theorem 7. Let C,, be a cycle graph of order n > 15. Then the neighbor
rupture degree of Cy, is
_f -1, n=0(Mod 4);

Nr(Cn) = { -2, n=1,2,3(Mod 4).
Proof. Let S be a subversion strategy of Cr and |S| = = be the number of
removing vertices of C,. There are two cases according to the number of the
vertices in S.
Case 1: If < 2], then we have w(Cn/S) < = and ¢(Cn/S) 2
Hence

n—3z
T

1.

-3z
T

w(Ca/S) = |S| — e(CafS) ST -7~ [F——] <3 - g- and

Nr(Cyn) £ mg.x{S - %}
The function f(z) = 3 — 2 is an increasing function and takes its maximum
value at z = |%]. The neighbor rupture degree is integer valued. Thus we get,
Nr(Ca) < 13- 737)-
1zl
N7(C,) < —1 wheren = 0 (Mod 4) and Nr(Cy) < -2 wheren = 1,2,3 (Mod 4).
Therefore,
-1, n=0(Mod 4);
Nr(Ca) < { —9 n=1,2,3(Mod 4). @
Case 2: Ifz > %, then w(Cn/S) < 2, ¢(Cn/S) 2 1 where n =0 (Mod 4) and
w(Ca/S) < z+1, c(Cpn/S) > 1 wheren=1,2,3 (Mod 4). Therefore, we have
-1, n=0(Mod 4);
Nr(Ca) < { —2 n=1,2,3 (Mod 4). (8)
It can be easily seen that there is a subversion strategy S* of Cj, such that
15*] = |2), w(Cn/S*) = |}l ¢(Cn/S*) = 1 where n = 0 (Mod 4) and
c(P,/8*) = 2 where n=1,2,3 (Mod 4). Thus, we have

-1, n=0(Mod4);
Nr(Cn) 2 { _2 n=1,2,3 (Mod4). (6)
The proof is completed from (4), (5) and (6). O
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TABLE 2. Neighbor rupture degrees of Cy for n < 15

n |3 4 5 6 7 8 9 10 11 12 13 14
NrCn) |2 -1 2 2 2 -1 2 2 2 -1 2 2

The neighbor rupture degrees of the cycle graph C, for n < 15 are given in
Table 2 above.

Theorem 8. The neighbor rupture degree of the complete k-partite graph is
Nr(Kp, ng,...ni) = max{ny,ng,...,ng} — 3.

Proof. Let S be a subversion strategy of Kp, n,,....,n, and let S contain the ele-
ments which belongs to only one of the sets V;. Otherwise w(Kn, n,,...ni/S) =
0 and this contradicts to the definition. Therefore let S C V; and |S| = z.
V(Knyng,.me) = V1UVaU... UV, is a partition where |Vi| = ny, |V2| = no,
(R} |Vk| = ng. Then, w(Knl,nz....,m,/S) =n; — and C(Knl,n,,...,nk/s) =1
By the definition of the neighbor rupture degree, we get

Nr(Kn, ng,oomi) = mfx{ni -2z -1}
The function f(z) = n; — 2z — 1 is a decreasing function and since 1 <z < n;
we have N7(Kp, n,....n.) = ni — 3. The proof is completed by taking
n; = max{ny,ng, ..., Nk} 0
Corollary 2. The neighbor rupture degree of the complete bipartite graph is
Nr(Kup ») = max{m,n} — 3.
Corollary 3. The neighbor rupture degree of the star graph K1 n is
Nr(Kin)=n-3.
Theorem 9. Let W, be a wheel graph of order n > 6. Then,

_ [ -1, n=1(Mod 4);
Nr(Wp) = { -2, n=0,2,3 (Mod 4).

Proof. A wheel graph W, is the join of a cycle Cr,—; and the complete graph
Ky, W, = K; + Cn_1. Let S be a subversion strategy of W,. Then, the
set S contains only some of the vertices belonging to the cycle, otherwise it
contradicts to w(W,/S) > 1. Let S = {v} where v € V(Cy-1), then we get
W,/S = P._4 and Nr(W,) = N7(P,_4) — 1. If we substitute

_ 0, n=1(Mod 4);
Nr(Pn_4) = { -1, n=0,2,3 (Mod 4)

we complete the proof. O
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Theorem 10. Let Ty 4 be a complete k-ary tree of depth d where k > 2. Then

( kd+2 _ f2
Erl d=0(Mod 4);
d+2 _ 2 —
K-Sk k=8 21 (Mod 4);
Nt (Tiod) = 4 K +1
ST kg2 -2
—TCT’ d=2(M0d4),‘
K42 g2 k1
‘ T 4=3(Mod4).

Proof. Let S be a subversion strategy of T4 and let | S| = z be the number of
removing vertices. There are four cases according to the depth of Tj 4.

Case 1: Let d=0 (Mod 4).
()10 <z < HE=D then w(Tha/S) < (K + & — 1)z +1 and c(Tia/S) 2 1.
Thus,
Nr(Tg,a) < m:x{(kz +k-1)z+1-z-1}= mfx{(k2 + k- 2)z}.

The function f(z) = (k2 -|; k — 2)z is an increasing function and it takes its
maximum value at z = 5%1_;19 Then,

kd+2 + 2kd+1 _ k2 — 2k

(k2 +1)(k+1)

(i) I 54D 1) < 7 < 20D then w(Tha/S) < (K2 + k - 1)(EE=R) +
(K2 = 1)(z — BE2=Dy g = D 4 p(k2 1) + 1 and ¢(Tk,a/S) 2 1. Then,
k2(k? — 1) k2(k4 — 1)

-1 k-1

Nr(Tiq) < (7)

+z(k?-2)}.

Nr(Ti,a) < max{ +a(k?~1)+1-2-1} = max{

The function f(z) = '—‘2—,&'{‘:}9 + (k% — 2) is an increasing function and it takes

. . _ K3(k4-1

its maximum value at z = _IE"TZ Therefore,

k2 (k4 - 1)
k2+1

(i) IF £45=0 11 < o < £528=1 9, then we have w(Tk,a/S) < =gt and
¢(Tx,a/S) 2 1. Thus,

Nr(Tea) < (8)

kd+d 1

e -z -1}

Nr(Tkq) < mgx{
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The function f(z) = ’L:,;‘_—;l — z — 1 is a decreasing function and it takes its

2pd_
maximum value at £ = %:1—12 + 1. Then,

kA2 9k? — |

Nr(Ty,a) < Pl

(9)

It can be easily seen that there is a subversion strategy S* of T 4 such that
2/1.d
|S*| = £%—1) where S contains all the vertices on the {2nd, 6th, 10th, 12th, ...,
(d — 2)th} levels. Then w(Tk,qa/S*) = %1—1- and ¢(Tk,4/S*) = 1. Thus
k2(k¢ - 1)

(kz—-f-l)' (10)

Nr(Tk,a) 2

The proof is completed by (7), (8), (9) and (10).
Case 2: Let d=1 (Mod 4).

() 0 <z < 550 then w(Tha/S) < (k2 + k — 1)z + 1 and c(Ti,a/5) 2 2.
Thus,

Nr(Tea) < mxax{(k:2 +k-lz+1-2-1}= mae:.x{(k:2 +k — 2)z}.
The function f(z) = (k? + k — 2)z is an increasing function and it takes its
d
maximum value at z = & _'lk . Then,

kd+2 + 2kd+1 — k3 —2k2
@+ Dk +1)

Nr(Tk,q) < (11)

(5i) If &K 41 < 5 < KUK ihen w(Th 4/S) < (K2 + k- 1) BER) 4
(k2 = 1)(z — MEI=B)) = BOS-h) | (32 _ 1)( - 1) and e(Tk,¢/S) > 1. Then,

Nr(Tka) < m}x{k—?’ig_—_ik—) + (k2 -1)z-1)-=z-1}
= mfx{icf,(c—lf-__Tk)— - k% + (k* - 2)z}

2.4
The function f(z) = £ kk__lk — k? 4 (k? — 2)z is an increasing function and it
: . K (kd-k
takes its maximum value at z = -—,(;‘71—2 Therefore,

kd+2_k3_k2_1
k2 +1

NT(Tk,d) < (12)
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(iif) If = 258 4 1, then w(Th,a/S) < (k2 + k — 1) HE=R)
d
(k2 — 1)(EG5h) — M=) 4 (k — 1) and ¢(Tk,a/S) 2 1. Then,

d _
Nr(Tia) < 111;1.)({(215:2 +k— 2)-IEH +k-1-z-1}
kd+2 - 3k2 k—
_ +k-3 (13)

k2+1

(iv) If £455R) 19 < o < BE21 2, then w(Tka/S) < ARt and
o(Tra/S) > 1. Then,

kdtd _ kb +1
k4 -1

Nr(Tq) < mf.x{ -z —1}.
The function f(z) = L“‘—;;'i_‘l'—k*—l — z — 1 is a decreasing function and it takes
its maximum value at = g,g—}d:}u + 2. Therefore,
k2 — 4k + k-4
k2+1
It is obvious that there is a subversion strategy S* of T q such that |S*| =
5’4’5‘_;11:2_'_1 where S contains all the vertices on the {3rd, 7th, 11th, ..., (d—2)th}
levels and one of the vertices on the first level. Then w(Tk,a/S*) = ﬁ%’%"—‘
and ¢(Tk,4/S*) = 1. Hence we get
k9+2 — 3k + k-3
k2 +1
The proof is completed by (11), (12), (13), (14) and (15).

Nr(Tk,a) < (14)

Nr(Tk,d) 2 (15)

Case 3: Let d=2 (Mod 4).

() 10 < = < 2E=9) then w(Thu/S) < (K +k - 1)z +1 and c(Tk,4/S) > 1.
Thus,

Nr(Tka) < mma.x{(k:2 +k-1z+1-z-1}= mzau({(k2 +k — 2)z}.

The function f(z) = (k* + k — 2)z is an increasing function and it takes its
d 2
maximum value at z = ﬂ%}f—z Then,

kd+2 + 2kd+1 — k- 2k3

E+ )k +1) (16)

Nr(Tea) <
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(i) If z = 2622 4 1 then w(Tha/S) < (K + k — 1)Xe=) 4 k2 and
¢(Tk,4/S) = 1. Then,

d _ L2
Nr(Teaq) < (k2+k—l)%+k2—x-l
kA2 4 2k 4 kS — 3k3 — k2 — 2k — 2 ar
B (k2 +1)(k + 1) : )
(iii) I 2= 41 < 3 < ERP=L then w(Tha/S) < (k2 + & — )=

k2 4 (k2 — 1)(z — HE=ED _ 1) = ﬁ;‘;}’_—gl + (k2 - 1)z and ¢(Tk,4/S) > 1. Thus,
Lo+2
Nr(Tk.4) <max{—54——+(k2- )z -z -1}

The function f(z) = "—Z;z;l + (k* — 2)z — 1 is an increasing function and it
takes its maximum value at = = £3—31 o —=1. Then,
kd+2 _ k2 _
k2 +1
(iv) If 55221 41 < 2 < B850 _ 2, then w(Tika/S) < EUFY and

¢(Tx,4/S) = 1. Then,

N7(Tk,a) < (18)

k2(kd+2 —
Nr(Tra) < ma.x{-(—l—l) z—1}.
The function f(z) = _J%__l_ll —z —1 is a decreasing function and it takes its
maximum value at z = " E3==1 4 1. Therefore,
kdt2 —2k2 -3
Nr(Ti,e) < —Eii (19)

It is obvious that there is a subversion strategy S* of T4 such that [S*| =
%— where S contains all the vertices on the {Oth,4th,8th,...,(d — 2)th}
levels. Then w(Ty q/S*) = ﬂ-’,:—,glﬂ and ¢(T,q4/S*) = 1. Hence we get
Rd+2 _ g2 _

T

The proof is completed by (16), (17), (18), (19) and (20).

Nr(Tea) 2 (20)
Case 4: Let d =3 (Mod 4).

Ifo<z< &;:_;1_1, then w(T,4/S) < (kK2 +k—1)z+1 and ¢(Tk,4/S) > 1.
Thus,

Nr(Ti,qa) < m:';ax{(lc2 +k-1lz+l-z-1}= mza.x{(k:2 + k - 2)z}.
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The function f(z) = (k% + k — 2)z is an increasing function and it takes its

maximum value at z = "—;’i — 1. Then,
kd+2 2kd+1 _ k5 —_ 2’64
Nr(Ti4) € —+ (21)

(K + Dk +1)
(i) If kst < 7 < B then w(Th0/S) < (K2 + & — 1)kgmst +

(k2 — 1)(z — Egm=d) = BEP=D) 4 (k2 _ 1)z and o(Tk,¢/S) > 1. Then,

Nr(Tra) < ma.x{-(——-)- (k* -1z —z -1}

The function f(z) = ﬂ%:_—l'll + (k? — 2)z — 1 is an increasing function and it
takes its maximum value at ¢ = ﬂl‘};ﬁ—;u Therefore,
kd+2 — k2 -k -1
<
NT‘(Tk,d) s k2 T1

(.(1;2 If/ :;%t';l—_lfzr +lss Kol 9 then w(Tpa/S) < EUTH=1 ang
ik d 2 1. ern,

(22)

3(pd+1 _
Nr(Tea) < ma.x{ﬁ(k—l—l) z -1}

The function f(z) = ﬂi::_#l —z —1 is a decreasing function and it takes its

maximum value at z = ﬂ'—‘,;_l—l'l)- + 1. Therefore,

Kit2 _2k2 — k-2
k2 +1

It is clear that there is a subversion strategy S* of Tk 4 such that |S*| =

ﬂ%&u where S contains all the vertices on the {1st,5th,9th, ..., (d — 2)th}

levels. Then w(Tk,qe/S*) = ﬂﬁtl—l and c(T;c 4/S*) = 1. Hence we get
1

NT‘(Tk,d) < (23)

kA2 _ g2 —
Nr(Ta) > Bk (24)
The proof is completed by (21), (22), (23) and (24). ]

In the following theorems, we obtain the neighbor rupture degree of the
cartesian product of a complete graph and a complete k-ary tree.

Theorem 11. Let Ty 4 be a complete k-ary tree of depth d and K, be a complete
graph with p vertices where 2< k <p—1. Then,

i +k’° ‘lkP “P ifdis odd;
Nr(Kp xTea) = pd+1 + k+— kp—p+2
E+1 ’

if d is even.
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kdtig
-1

Proof. A complete k-ary tree of depth d has vertices and the covering

number of T 4 is

kit — 1

R d is odd;
ﬂ(Tk,d) = k(kd _ 1)

W, d is even.

Let S be a subversion strategy of K, x Tk 4 and let |S| = z be the number of
the removing vertices. There are two cases according to the cardinality of S:

Case 1: If 1 £z < B(Tk,4) — 1, then w((Kp % Tk 4)/S) < kz + 1 and
c((Kp x Ti,a)/S) > p— 1. Thus we have

Nr(Kp x Tk q) < m:.x{lc:c +1-z-p+1}= mf.x{(k -1z +2-p}.
The function f(z) = (k — 1)z + 2 — p is an increasing function and it takes its
maximum value at z = $(T%,q) — 1. Then,

d+1 _ 2 — kp —
Kk +k2f1'°” PH2 it 4is odd;
NT(KP X Tk,d) < kd+1 _ k2 + k— kp-—p+3 ) ) (25)
1 , ifdis even.

Case 2: 1f B(Tia) < = < X521, then w((Kp X Tk,a)/S) < Eocl — 2 and
c((Kp x Tx,a})/S) > p — 1. Then, we get

kd+1 -1
Nr(Kp X Tk,4) gmf.x{ P -2z —p+1}
The function f(z) = "",:_11‘1 — 2z — p+ 1 is a decreasing function and takes its

minimum value at z = (T q4). Thus
d+1 —_ -
k +k'°+ 1"” P ifdisodd;
N"'(KP % Ti,a) < kd+l 4k — kp—-p+2 .. .. (26)
P , ifdiseven.

It is obvious that there is a subversion strategy S* of K, x Tk 4 such that
A2 _
|8*] = A(Tia), e((Kp x Tia)/S) = p — 1 and w((Kp x Tiea)/S) = L2

where d is odd and w((Kp x Tk,4)/S) = 5;2_—‘11 where d is even. Hence we get

kil 4t k—kp—p

Py , if d is odd;
Nr(Kp x Tx,q) 2 ki k—kp—p+2 .. . (27)
Py , if dis even.
The proof is completed by (25), (26) ve (27). 0
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Theorem 12. Let T} 4 be a complete k-ary tree of depth d and K, be a complete
graph with p vertices where k> p—12> 1. Then,

(k35— k4+4+k‘+°+kd+°-k‘;1_4;k‘-k3-k3+k —2— k‘(p-1)+p d=0 (Mod 5);
kd+5_kd+d+kd+3+kd+2_,;‘d:‘-ll_k‘_k:i_'_kl_k_kS(p_l)+P d=1 (Mod 5);

Nr(Kp x Te,a) = { kS e pd 3y pd i ki«:x-_;kc_,_ka —k3pk—2— k‘(p—1)+p d=2 (Mod 5);
k4+5‘k"+‘+k4+’+k"+’-1;:'_‘1%‘-k"+k’—k-k‘(p+1)+p d=3 (Mod 5);

{ kd+5—k¢+‘+k"+’+k4+’-l;‘:’f_ll-k‘«n’-k’-k-k‘(p-1)+p d=4 (Mod 5).

Proof. Let S be a subversion strategy of K, X Tk q and let |S| = = be the
number of removing vertices. There are five cases according to the depth of
the complete k-ary tree Tk 4.

Case 1: Let d=0 (Mod 5).

(Ifo<z< ﬂv—"};?_—_(f—dlll, then w((Kp x Tk,a)/S) < kz + ﬁ%x +1 and
c((Kp x Tx,a)/S) 2p—1. Thus,

k2
< = 1)z - .
Nr(Kp x Tk,a) < max{kz + k3 T 1 z+l—z—p+1}= ma.x{(k + = PEprY )z —-p+2}

The function f(z) = (k + F-"ﬁ — 1)z — p+ 2 is an increasing function and it
d
takes its maximum value at z = ﬁ}}’é’f—i} Then,

goH0 _ pdtd o gdH3 g3 pddY el k3 k2 Lk ~2-k5(p—-1) +
Nr(Kp x Ti,a) < e rP-1)+p 28)

(if) If BEEDED) 4y < g < B10L g then o(Kp X Tk,a)/S) 22— 1 and

w((Kp x Tr,a)/S) < AATHEER=kP =1 Then,

kd+6 4 d+3 +kd+2 ~k3-K2-1
k-1

—-z—p+1}.

Nr((Kp X Tk,q)) < max{

. 4434 d43 _p3 _p3_ . . .
The function f(z) = X"tk ”",;f_:z k*=k*~1_z_p+1is a decreasing function
3 d_
and it takes its maximum value at z = ﬂ"—",;}%’;——-ll + 1. Therefore,

RS - gdHS g gD gl gtk Sp kS kP KP4+ k—14p
K5 —1
It can be easily seen that there is a subversion strategy S* of K, x Tk q4 such that
d
|5*| = HEHDETD) where S contains all the vertices on the {1st, 4th, 6th, 9th,
11th, ..., (d — 4)th, (d — 1)th} levels of Ty 4. Then c((Kp X T,a)/S*) =p—1

(29)

Nr(Kp x Ti,a) £

kd+5+kd+3+kd+2_k3_k2_l
and w((Kp x Tk,4)/S*) = T Hence we get
d+6 d+4 4 pd+3 kd+2 - kd+l K K3 k2 4+ k-2 KkS(p —
Ne(Kp x Toa) 2 K+ 7 + k:’_ - + PV +P (4
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The proof is completed by (28), (29), and (30).
Case 2: Let d=1 (Mod 5).

() If 0 < z < KXkt ob=1 g then w((Kp x Tka)/S) S kz + gz +1
and ¢((Kp x Tk,a)/S) 2 p — 1. Thus,

k2 k2
Nr{Kp X T,a) < m:x{ka: + Wi-z-i- l-z-p+1}= mzax{(k+ Bl 1)z - p+2}.
The function f(z) = (k + ﬁ‘% — 1)z — p+ 2 is an increasing function and it

. . d+d 4 pddl _p2_
takes its maximum value at z = £—3&——=k=L _ 1. Then,
RS _ dtd |y pdhd g pd 43 Rl g8 L qp8 8 13 4 k2 2~ kSptp
(31)

Nr(Kp x Te,a) < Py
(ii) If 2 = E2+keP=k=1 ¢hen w((Kp x Th,a)/S) < (z—1)(k+ gigp) + k and
c((Kp X Ti,a)/S) 2 p — 1. Then,

k3
Nr(Kp x Ted) < (z-1)k+ Py

_ kd+s_kd+4+kd+3+kd+2_kd+l+ks_k4_k3+k2_k_k6?+p
- kS -1

)+k-—z—p+1

(32)
(i) If A HEETmk=1 41 < o < Aol — 1, then o(Kp  Tha)/S) 2P - 1

and w((K, x Te,a)/S) < Btk ATEk ok ok Thys,

d+6 o pd+3 4 pd+2 _ pd _ 13
NT(KpXTk.d)Sm:X{k s +k5—-1 Lok k-z—p+1}-

i d-b g g d43  pd+2 _pd g3 . . .
The function f(z) = E—tk—3k k"—k =k _ »_p+1is a decreasing function

. . . dd g pd+l _p2_
and it takes its maximum value at £ = -”—"’-’f;_l—"—l + 1. Therefore,

kd+5 - kd+4 kd+3 kd+2 - kd-}-l X . ks + K —k— k5 + 1
Nr(K, x Te,d) < B o ptptl g

It can be easily seen that there is a subversion strategy S* of Ky x Tia
such that |S*| = ﬂﬁiﬁ‘;‘;i—l{ﬁ where S contains all the vertices on the
{Oth, 2nd, 5th, Tth, 10th, . .., (d — 4)th, (d — 1)th} levels of Ti,a. Then w((Kp x
T q)/S*) = KLkt kEk ok and o (K X Ti,a)/S*) = p— 1. Hence we
get

RAHS | e | pdbd g pdHT bl L g5 g3 4 k2 g kSp 4
Nr(Kp x Tie,a) 2 F 1 ptpP (39)

The proof is completed by (31), (32), (33) and (34).
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Case 3: Let d =2 (Mod 5).

(i) 0 < & < Bkl ok =k then w((K, x Tk,a)/S) < kz + gz + 1 and
¢((Kp X T,q)/S) 2 p— 1. Thus we have

k2 k2
Nr(Kp x Ti,q4) Sm:x{k::+ m1+l—z—p+1}=m:x{(k+ Bl -z -p+2}.

The function f(z) = (k+ ;5‘% — 1)z — p+ 2 is an increasing function and it
takes its maximum value at = = W. Then,

kd+6_kd+4+kd+3+kd+2_kd+l_k7+k0+k5_k(+k3_k5p+p_2
k8 ~1

(i) If A2he D okOk® ) < g < Bk kP ok then o((Kp x Tk a)/S) 2 p-1

anc'lrtltl:((prT,,,d)/S) < (A okt ok oy ) k(2 Loty Sat B
1. en,

(35)

Nr(Kp x Tie,a) <

kd+4 + kd+l - ks — k3 k2
NeKp x Tha) S max{(— g2 =)k 3)
kd+e + kd+l — 6 _ k3
+ k(z-— e y—z—p+2}
kd+3 _ 5
= mgx{Tl— +(k—-1)z-p+2}.
kd+3_k5

The function f(z) = Sgg== + (k — 1)z — p+ 2 is an increasing function and
d d+1 3
it takes its maximum value at £ = "‘—H"%t—l'-"—"‘ Therefore,
kd+5—kd+‘+kd+s+kd+n—kd+‘+k5—k‘+k3—kz+k-k5p+p—2
-1
iii) If A2kt ki ok 1 < 5 < K21 ) then (K X Tk,a)/S) 2 p - 1
k-1 d+45 d43 d:% 4 2 P ’
and w((Kp x Tk,4)/S) < "4 =k =k =1 Then,
kA+E 4 fdt3 4 g2 _gd k21
kS ~1
d d 2 . . .
The function f(z) = &k “",;': ?‘i"‘ =1 _z—p+1is a decreasing function

d: d 3
and it takes its maximum value at = = ﬂ“'—’f;r:"‘—"‘ + 1. Therefore,

RUHE _ pd+a 4 pdH3 | pd¥3 _ pdtl _pd 3 443 e kSpipp 4l
kS ~-1

It can be easily seen that there is a subversion strategy S* of K, x Ty 4

such that |S*| = AT4kT =k ok where S contains all the vertices on the

{1st,3rd, 6th, 8th, 11th, ..., (d — 4)th,(d — 1)th} levels of T 4. Then, we have
d

‘UJ((KP X Tlc,d)/s.) = kd+5+kd+a_£§:;2_k4_k3-1 and C((Kp X Tk,d)/s‘) =p- 1.

Hence we get

(38)

Nr(Kp x Tra) €

Nr(Kp x Tk,a) Smgx{ -z—p+1}.

(37)

Nr(Kp x Te,a) £

fd+S _ pdta g pdd3 g pdd2 _ pddl g8 pd pd k2 k- kSp+p -2
Nr(Kp x Ta) 2 s 2P (38)
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The proof is completed by (35), (36), (37) and (38).
Case 4: Let d=3 (Mod 5).

(i) If 0 < o < Ak TokTok® then w((K)p x Ti,a)/S) < kz + gz +1 and
c((Kp X Tk.d)/S) > p— 1. Thus,

k2 k2
Nr(Kp x Ty g) < mg.x{ka:+ -,;-3—-_-;7::4- l—z—-p+l}= mzax{(k+ Byl 1)z -p+2}.

The function f(z) = (k + -;;f%—l- — 1)z — p+ 2 is an increasing function and it
takes its maximum value at M‘E&‘{"T—'k‘ Then,

RS o g td gl 2 ) g8 kT kO S ke —kpp—2
Nr(Kp x Ti,a) & PO

(ii) If w&“—l""’—"‘: +1<z< ﬂ*—";;“;";’a, then we have w((K, x
Toa)/S) < (KELkirirokt kKb (k4 ) + bz — AT SRk 4 and
c((Kyp x Ti,a)/S) 2 p — 1. Therefore,

(39)

kd+4 + kd+l - k’ - k‘ k2

Nr(Kp x Ty4) < m:x{( X6 — 1 Yk + k3 + 1)
kd+4 g gd+l T gl
+ k(z- S )+1—z—-p+1}
kd+3 _ k6
= mcax{_ks—_l- +(k—-1)z-p+2}.

The function f(z) = "—dgg:% + (k — 1)z — p + 2 is an increasing function and
d: d+41 3
it takes its maximum value at g = E—tkoT ok =k® Thys,

RS _ b g gD pdtZ gl g0 4 g8 a8 g3 402 9 _kSpgp
Nr(Kp x Tha) € g

(iii) If 7 = KXV ok ok® ) then we have o((Kp x Tk,4)/S) = p— 1 and
w((Kp x Tia)/S) < (EEAG=RT=kt ) (o 4 o) 4 k3 + k. Thus

(40)

R+ 4 gt _ T X R
Nr(Kp x Tew) < max{( w1 Wk + k3+1)+k +k-z~-p+1}
RAHS _ pdta o pdH3 4 2 bl g8 4 pd g3 L k3 g iSpip
= ¥ —1

(41)

(iv) If kP oktok® | 9 < gz < K251 1, then w((Kp X Tea)/S) <
KUkt ok Ok and (K % Tk,a)/S) 2 p — 1. Thus,

kd+5 4 gd+3 kd+2 _ g5 _ k8 _
Ne(Kp x Te,a) < max{E—E 522 —z-p+1}
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. A48 pd+3 ) d+2_ g5 _ g3 _ . . .

The function f(z) = &tk 3k — -k —k =k _3_p411 is a decreasing function
A . . di4 g dbl 251412

and it takes its maximum value at z = =3k 4k ="~k =1 4 1 Therefore,

KOHE — rttd g 43 g ot _ g+l kS 4k kB kP —k—kSp+p+ 1
K5 1
It can be easily seen that there is a subversion strategy S* of K, x Ty q
such that |§*| = EZt%4kSTok=k" | 1 where S contains all the vertices on
the {Oth, 2nd, 4th, 7th,9th,12th, ..., (d — 4)th, (d — 1)th} levels of de Then
w((Kp X Tk,a)/S*) = k‘*’*‘%‘*’-*‘-*"* and c((Kp X Tr,4)/S*) =p— 1.
Hence we get

(42)

Nr(Kp X The,a) <

RAHS | dHa g pdH3 4 pdd3 | pddl B gl g3 g3 g gSp g
Nr(Kp x Tr,a) 2 — PHP (4

The proof is completed by (39), (40), (41), (42) and (43).

Case 5: Let d=4 (Mod 5).
() If0 <z < BTt PR =k then w((K, x Tk,4)/S) < kz + gz +1 and
e((Kp X Te,a)/S) > p— 1. Thus,

k2 k?
Nr(K,,ka'd)Sma.x{kz+k3 1:;:+1 z—-p+1}= max{(k+k3+l—1)z-p+2}.

The function f(z) = (k + -m 1)z — p + 2 is an increasing function and it
takes its maximum value at z = & +EE Tk =k Then

kd+5 - kd+4 +kd+3 + kd+2 - kd+l - kﬂ + ka - kT - kG + 3':5 - k5 +p-2
Nr(Kp x Ti,a) S e )

. d4a g dtl_ g8 15 did g dbl g8 16
(if) If &tk b=k 11 < g g Egb o phdk —k=l then we have

w((Kp % Th4)/S) S (A HAGmnkok ) (4 ) 4 (g — Bt okt ity 1 g
and ¢((Kp x Ti,a)/S) 2 p— 1. Then,
kd+4+kd+1_k8_k5 k2
P W+ w3
d d+1_ 1.8 _ 15
+ ko E R R R a—pi1)
kS -1
kd+3_k7

= me{—E

)

Nr(Kp x Tua) < max{(

+(k-1)z—-p+2}.

The function f(z) = ﬁga_T + (k— 1)z — p+ 2 is an increasing function and

diay pdtl_g 836 5
Kkt sk tk —k-l Therefore,

it takes its maximum value at £ =

kd+5_kd+4+kd+3+kd+2_kd+l_k9+k3_kﬂ+2k5_k2_1_ksp+p

NT(K,, x Tk_,j) < %5 —1 (45)
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(iii) If k"D SkP ke okl ) < g < AUTIERY kO phen ay((Kp x T a)/S) <
d+4d_ pd+1 _; 8 15 2 - —k—

(At =kt ) oy ) (ko 1)+ (3 — AR ek Ocka (1) 4

and c¢((Kp x Tk,a)/S) 2 p — 1. Therefore,

kd+4 | gd+1 _ kB _ 5 k2
Nr(Kp x Ti,a) < m:.x{( %5 — 1 Yk + k41

(o - K+ 4 gd+l _ 8 4 kS 1

K5 — 1

KA+ 4 kS k-1
k(K5 — 1)

. d Qe - 3 . »
The function f(z) = %;‘—1— + (k+ % — 1)z — p + 2 is an increasing
function and it takes its maximum value at £ = %t‘li‘-l. Thus,

kA5 — jdtd 4 d+3 4 fd42 _ pd+l 4} S kS 4 k3 — k2 —k—kSp+p
kS -1

)

+ )(k+%)+1—z—p+1}

1
= max +(k+;—l)z—p+2}.

Nr(Kp X T ,a) < (46)

(iv) If £kl 4 ) < g < K221 ) then o(Kp X Tha)/S) 2 p— 1

and w((Kp x Tia)/5) S E#h"HP k' =k~k Then we get

kAHS g g3 g pdt2 _pd g2
K —1

Nr(Kp X Tk,a) £ m:x{ -z—p+1}.

. db pd+3 4 d43_pd_p3_ . . .
The function f(z) = ¥—3k3k =k =k =k _y_p4] is a decreasing function

d. d:
and it takes its maximum value at = = "—J'—‘i,':-;?l—"é‘—‘ + 1. Therefore,

kS _ pdtd g jd+3 . pd+2 _ fdl _fd L g3 _ 2k —kBp4p+ 1
Nr(Kp x Te,d) S s PIPT (an)

It is obvious that there is a subversion strategy S* of K, x Tk a4 such that |[S*| =

&‘ﬁﬂ%"ﬁl—rﬁ where S contains all the vertices on the {0th, 3rd, 5th, 8th, 10th,

13th,...,(d — 4)th, (d — 1)th} levels of T 4. Then ¢((K, x Ti,a)/S*) =p—1

and w((Kp X Ti,4)/S*) = kd+5+kd+3",;§ﬁz"k"" =k Hence we get

ka5 _ pd+4 4 pd+3 | pd+2 _ pddl g5 pd g3 g2 k5p+p
k5 -1

The proof is completed by (44), (45), (46), (47) and (48).

(48)

Nr(Kp x Ti,a) 2

O
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