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Abstract

Let G be a graph of order n, and let a, b, k be nonnegative integers
with 1 < a < b. A spanning subgraph F of G is called an [a, b]-factor
if a < dp(x) < b for each z € V(G). Then a graph G is called an
(a, b, k)- crltlca.l graph if G— N has an [a, b]-factor for each N C V(G)
with [N| = k. In this paper, it is proved that G is an (a,b,k)-
critical graph if n > ‘ﬂb"—l{lﬂ—l + &, bind(G) > %‘#
and §(G) # LL-_-_I%?-_"_L*-_ J.
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1 Introduction

Many physical structures can conveniently be modelled by networks. A
wide variety of systems can be described by complex networks. Factors and
factorizations in networks are very useful in combinatorial design, network
design, circuit layout and so on [1]. It is well-known that a network can
be represented by a graph. Vertices and edges of the graph correspond to
nodes and links between the nodes, respectively. Henceforth, we use the
term graph instead of network.

All graphs considered in this paper will be finite and undirected simple
graphs. Let G be a graph. We use V(G) and E(G) to denote its vertex
set and edge set, respectively. For any z € V(G), the degree and the
neighborhood of z in G are denoted by dg(z) and Ng(z), respectively.
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For § C V(G), we write Ng(S) = ,es Ne(z), and denote by G[S] the
subgraph of G induced by S, and G — § = G[V(G) \ S]. We say that S is
independent if Ng(S)N S = 0. We denote by §(G) the minimum degree of
G. The binding number of G is defined as

Ne(X)| .

x| 10 # X CV(G), No(X) #V(G)}-

bind(G) = min{—<—= I

For a real number r, we use || to denote the floor of », which is the
largest integer smaller than or equal to r, and also use [r] to denote the
ceiling of r, which is the least integer greater than or equal to r.

Let a and b be two integers with 0 < a < b. Then a spanning subgraph
F of G is called an [a, b]-factor if a < dp(x) < b for each z € V(G). (where
of course dr denotes the degree in F). And ifa = b = k, then an [a, b]-factor
is called a k-factor. A graph G is called an (a, b, k)-critical graph if G — N
has an [a, b]-factor for each N C V(G) with |[N| = k. If G is an (a, b, k)-
critical graph, then we also say that G is (a,b, k)-critical. If a = b = n,
then an (a, b, k)-critical graph is simply called an (n, k)-critical graph. In
particular, a (1, k)-critical graph is simply called a k-critical graph. Some
other terminologies and notations can be found in {2].

Many authors have investigated graph factors [3-13]). The following
results on (a, b, k)-critical graphs are known.

Theorem 1 (14 Let G be a graph of order n, and let a,b and k be non-
negative integers such that 1 < a < b. If the binding number bind(G) >

f:‘_'*'z:_l — 12 andn > ﬁ“—"'b_—l)éw + st_kT’ then G is an (e, b, k)-critical

graph.

Theorem 2 18 Let a, b and k be nonnegative integers with 1 < a < b,
and let G be a graph of order n with n > Qi'—bll-)bjm + k. Suppose that

a—-1)n+|X|+bk—-1
a+b—-1
for every non-empty independent subset X of V(G), and

a—1)n+a+b+bk—2
a+b—-1 )

ING(X)] > §

Q) > (
Then G is an (a, b, k)-critical graph.
Motivated by the above theorems, we prove the following result, which

is a binding number condition for graphs to be (a, b, k)-critical graphs. Our
result is an improvement of Theorem 1.
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Theorem 3 Let G be a graph of order n, and let a,b and k be nonnegative
integers such that 1 < a < b. Ifn > Sﬂ%a—"ﬂ + %, bind(G) >

(D) and §(G) # |L=Unted2 | then G is an (a,b, k)-critical

graph.
In Theorem 3, if k = 0, then we get the following corollary.

Corollary 1 Let G be a graph of order n, and let a,b be two integers such
that 1 < a < b Ifn > @ib=DEH=2 pingg) > atb=l gnd §(G) #
[M |, then G has an [a, b]-factor.

a4-b—1

Unfortunately, the authors do not know whether the binding number
condition in Theorem 3 are best possible. But, the result of Theorem 3 is

stronger than one of Theorem 1 if §(G) # |_$_l°‘1 Ztatl;%k—z ].

2 The Proof of Theorem 3

Proof of Theorem 3. For any X C V(G) with X # 0 and Ng(X) #
V(G). Let Y = V(G) \ Ng(X). Obviously, § # Y C V(G). Now, we prove
the following claims.

Claim 1. XNNg(Y)=0.

Proof. Suppose that X N Ng(Y) # 0. Then there exists z € X N
Ne(Y). Since z € Ng(Y'), we have y € Y such that zy € E(G). Thus, we
obtain y € Ng(z) C Ng(X). Which contradicts y € Y = V(G) \ Ne(X).
This completes the proof of Claim 1.

Claim 2. (b-1)(n—-1) 2 bk.

Proof. Usingl <a<bandn> M)T,(“—"'b'—zl + %, we have

b-1(n-1) b-n->b+1

b-1)(a+b-1)a+b-2)
b

(a+b—-2)+bk-b+1

bk +a—1 > bk.

+bk—b+1

v

v

This completes the proof of Claim 2.

Claim 3. |Ng(X)| > {e=tntiXlsbeo]

Proof. By Claim 1, we have
|X|+|Ne(Y)| < n 1
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and
No(Y) # V(0. @)

From (1), (2), bind(G) > ==Y and the definition of bind(G), we
get

(a+b-1)n-1) . [Ne(Y)|
T < bind(G) < T
. n—lXl __n-|X]
= V(G \Ne(X)| n—|Na(X)I’
which implies
|Ng(X)|Z‘n—b(n_lxl)(n_l—k). (3)

(a+b-1)(n-1)

According to (3), 1 € a < b, Claim 2 and X # 0, we obtain
b(n— | X|)(n—1-k)
Ne(X)| 2 n = = =D
(a+b-1)(n-1m—-bn—1-k)n+bn—1-k)|X|
(a+b-1)n-1)
(a=1)(n—-1)n+(n-1)|X|+((b-1)(n—1) — bk)|X| + bkn
(a+b-1)(n-1)
(ea-1)(n=-1)n+@n-1)X|+((b-1)(n—1)—bk) + bkn
(e+bd-1)(n-1)
(e—-1Nmn-1n+(n-1)|X|+bk(n-1)+(b-1)(n-1)
(a+b-1)(n-1)
(e=1)n+|X|+bk+(b—1)
a+b-1
(a—l)n+|Xl+bk—1
a+b-1
This completes the proof of Claim 3.
In terms of @ # X C V(G) and |[Ng(X)| > L=tntlXtks(b-1) | e
have

a—1)n+bk+b
a+b-1
. -1 b+bk—2

Claim 4. 6§(G) > (e-lntetbite-2

Proof. Assume that §(G) < 5"—*%. Using (4), we obtain

5G) > { (4)

a—1n+a+bdb+bk—2
a+b-1

f(a,—l n+b+bk

(
e U P (ORI

8
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which implies,

—1)n+b+bk
a+b—1 1=1 )

That contradicts the condition of Theorem 3. The proof of Claim 4 is

complete.

According to Claim3, Claim 4 and Theorem 2, G is an (a, b, k)-critical
graph. This completes the proof of Theorem 3.

(e—~1)n+a+b+bk—2

5(G)=[(a a+b-1
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