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Abstract

Every graph can be associated to a characteristic exponential
equation involving powers of (say) 2, whose unknowns represent ver-
tex labels and whose general solution is equivalent to a graceful la-
belling of the graph. If we do not require that the solutions be
integers, we obtain a generalisation of a graceful labelling that uses
real numbers as labels. Some graphs that are well known to be non-
graceful become graceful in this more general context. Among other
things, “real-graceful” labellings provide some information on the
rigidity to be non-graceful, also asymptotically.
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1 Introduction

A graceful labelling of a graph having e edges is a vertex labelling that
uses distinct integers in [0,e] and produces, as differences on the edges,
all the integers whose absolute values range in [1,e]. Graceful labellings
are an increasingly popular research field whose connections with real-life
problems were first emphasised in (1, 2] and whose mathematical interest
and beauty are more and more acknowledged (see for example [3]). As an
example how a graceful labelling of a given graph G, with e edges, can be
fruitful in a close research field, we recall that the complete graph Kaey)
can be decomposed into 2e+1 copies of G once we regard its vertices as the
integers 0,1, ..., 2e and define any vertex of the i-th copy G; (0 < i < 2¢)
as the corresponding graceful label increased by i (see [6]).
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The effort of showing that some graphs or some classes of graphs are
graceful (that is, they admit a graceful labelling) often gives rise — and has
given, for decades - to a great number of nice constructions. In many cases
we can speak of art pieces tailored to a particular context. Nobody has still
succeeded in proving that all trees are graceful (see [5]). As to non-existence
results, the one that towers above is Rosa’s theorem (see [6]): all Eulerian
graphs with 4t + 1 or 4t + 2 edges (with any t) are not graceful. Its proof
is based on a double counting (mod 2) of the differences. For a different
reason, namely the total adjacency, complete graphs of order larger than 4
are not graceful (see [4]). Other necessary conditions for gracefulness seem
to be not enough explored yet (see [8]).

The present paper is devoted to a generalisation of a graceful labelling
in a new direction. Instead of relaxing the interval of admissible integers
for the labelling, and instead of allowing repetitions or gaps (see e.g. [7}),
we postulate that the labels be real numbers ranging in the usual interval
[0,€]. This choice would appear ridiculously trivial if we required that
the differences on the edges be the classical ones. On the contrary, the
extension to real numbers relies on a different way of defining gracefulness,
by means of an equation involving powers of 2 and having all the labels
as exponential unknowns. Using a simple arithmetical argument, we shall
show that in the standard setting (where labels are assumed to be integers)
such equation holds precisely when the unknowns are the labels of a graceful
labelling. Then, since nothing prevents the interpretation of the equation
in the field of real numbers, we make this step and look for possible real-
graceful labellings for some graphs that are, classically, not graceful. In
details, we provide “real-graceful” labellings for all non-graceful cycles and
for the complete graphs K; with 5 < i < 7. To this end we assign all but one
integer label, then we find the remaining label by solving the corresponding
equation.

The response of the label to the request of the exponential equation
seems an interesting information, which among other things expresses the
rigidity, the extent to which a graph is far from being graceful.

2 An arithmetical property and the basic definition

The definition of real-graceful labelling, which we are about to give, heavily
depends on a simple property involving powers of a given positive integer.
Curiously, we did not succeed as yet in finding a proof of it in the literature.
This is the reason why we present a proof. Let us denote by N the set of
non-negative integers.

Proposition 2.1. Let n be a positive integer. Among all the sums of the
form Y, a;2* yielding n and such that a; € N for all 4, the sum correspond-
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ing to the binary representation of n minimizes the quantity > ;ai,and it
is the only one to have this property. :

Proof. We denote by w(n) the number of 1s in the binary representation of
n (that is, the minimum sum in the claim). In the proof we use induction
on n. If n = 1 the claim holds. Let us assume that n is odd and that
Y ocicy bi28 = n for some coefficients b; which minimize the sum of all
coefficients over all such decompositions. Then by (which is certainly odd,
thus positive) is equal to 1, for otherwise we would obtain a smaller sum of
coefficients yielding n after decreasing by by 2 and increasing b; by 1. We
can therefore write 25* a8 35, ;<7 b;2¢~1. By the induction hypothesis, the
b;’s sum up to a number larger than w (25%) unless they are the coefficients
of the binary representation of -’-‘%1- Due to the minimizing property of the
b;'s, related to n, the former possibility can be excluded, so the conclusion is
reached. If n is even we reason in a similar way, by considering the smallest
i such that b; # 0. _ O

What we are mainly interested to is the following consequence.

Corollary 2.2. Let I be a positive integer. If

. ¢ _ 1\

Z 2"+ Z (5) = Z a2 + Z ay (—2-)
1<t 1<igI 1<5<J 1<k<K

for some positive integers J, K and with all aj, a; in N, then 3 ,a; +

3k a} # 2I unless the above equality is trivial.

Proof. After multiplying each side of the equality by 2m2*(/:K), on the left
side we obtain the binary representation of a positive integer, with as many
1s as 2I; the sum on the right side now has no fractions, and Proposition
2.1 is applicable. O

Now we are ready for the main definition. Notice that the number 2
(which will play a major role in the whole paper) could be replaced by other
integers, thus leading to a different definition of real-gracefulness.

Definition 2.3. Let us consider a simple graph G = (V, E) with no loops,
and denote |E| by e. An injective map v : V — [0,¢] is a real-graceful
labelling if

Z 97(w)=7(v) 4 9v(W)—7(u) _ge+l _og-e _ 1
{z,v}eE

As mentioned in the Introduction, the above definition can be considered
a generalisation of the graceful labelling by virtue of the following result.
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Theorem 2.4. If v is a real-graceful labelling whose labels are all integers,
then « is a graceful labelling.

Proof. If the absolute values of the differences y(u) — «y(v) cover the set
{1,2,...,e} when {u,v} varies in E - that is, if 7y is a classical graceful
labelling — then the sum in the above definition is equal to

214224 4204271 42724 27 =

_ (22+1__1 1 _20) + ((2‘2_1_):*_‘_1-_1 _ (2_1)0)

which, after a brief calculation, yields the number on the right side of the
equality. Due to Corollary 2.2, such number can be obtained only through
a labelling that generates the differences 1,2,...,e.

O

3 Real-gracefulness of cycles and complete graphs

Let us analyse the cycle Cyyo for some fixed integer £ > 1. We are in
the presence of an Eulerian graph whose number of edges does not allow
for a graceful labelling. Let us then look for a real-graceful labelling of it.
After writing its vertices (circularly ordered by adjacency) as vy, ..., vge 42,
we label v by 46+ 2 — 4 (0 < ¢ < 2t), then vai42 by 1if 0 < i <t and
byi+1ift+1<1i<2t—1. We leave the label of v4s1o as an unknown, z.
At this stage we have obtained 4t differences, namely all the integers from
2 to 4t + 2 except 2t. In order to obtain a real-graceful labelling of Cy¢, 2,
we should find a real number z € [0, 4t + 2] different from any label and
such that

2:!:-(4t+2) + 2(4t+2)—z + 23—(2t+2) + 2(2t+2)—a: = 21 + 2—1 + 22t _ 2—2t .

For, the two remaining differences must contribute to the expected quan-
tity, 24t+3 — 2-(4t+2) _ 1 together with all the already existing differences
that yield the other powers of 2. Let us denote 2* and 2% by X and T re-
spectively. After some routine calculations we have the following equation:

X2(1+7T)-4X (Ts + gTz +T) +16T3(T+1) =0.

Its solutions are T% (2T? +5T + 2= VAT + 4T3 + T2 + 4T + 4). For

example if ¢ = 3 we obtain, approximately, z; = 14.01 and zo = 7.99.
The first value is slightly too large because we are considering the cycle
C14. The real-graceful labelling given by the second value is, in circular or-
der, (14,0,13,1,12,2,11,3,10,5,9, 6, 8,z2). More generally, the admissible
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solution is O(4T') and does never reach 47T (the number in parentheses is
smaller than 272 + 5T +2 — (2T?+T), and TZ_;—I(4T+2) < 4T). As to the
other solution, it is O(4T2) and larger than this limit. The corresponding
labels tend to 2t + 2 and 4t + 2 respectively. The labellings we obtain for
any t have two numbers that almost coincide: as t increases, z tends to the
label adjacent to z itself.

We can reason in a similar way when dealing with any cycle of the
form Cjy:41. Notice that if we use a different labelling and leave again an
unknown z, we might find no solution. Let us indeed go back to Cy 42 and
consider the ingenuous labelling that does not avoid ¢ +1 in the middle. In
this case the requirement is

2:—(4t+2) + 2(4t+2)—z + 23-(2t+2) + 2(2t+2)—z =9! + 91 + 22 + 9-2 ,

because we have generated all the differences larger than 2. The correspond-
ing equation is X2(1 4+ T) — 27XT? + 16T* + 16T2, whose discriminant is
negative for all the admissible values of T. This experiment might indi-
cate that real-graceful labellings require a certain care, in the same spirit
as for classical graceful labellings. We do not possess a universal (and too
mechanical) remedy.

Now we are going to analyse the behaviour of some complete graphs, the
first being K5 — the smallest non-graceful. Let us label four of its vertices
by 10, 0, 1, 8. The remaining label, whatever it be, cannot generate the
differences from 3 to 6, so we write down the equation for a real-graceful

labelling:

2::—10+210—:+2:—8+28—:: +2z-1+21—z+2x+2—x = Z (2i+2—i) .
3<i<6

After replacing, as usual, 2% with X, we obtain: 1541X2 — 123120X +
1313792 = 0. The logarithms to the base 2 of its solutions are approxi-
mately equal to 3.66 and 6.07. Both numbers are suitable for achieving a
real-graceful labelling of K.

In the case of K¢ we can start with 15, 0, 1, 13, 4 (notice that we
are following the same recursion as above, trying to cover all the largest
differences and leaving as few empty spaces as possible). Let us denote
these labels by p1,...,p5 . In the present case we still have to obtain the
integers in J = {5,6,7,8,10}. The corresponding equation is

X2 Z 915—pi _ 215“°X(2‘° 221 + 2210-1) + Z ol5+pi _ .
1<i<5 jeJ ieJ 1<i<5

Here 10 has a special role because it is the largest label to obtain (the
equation related to Kp is, clearly, of the same form, as long as we take
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J ={3,4,5,6} and use the old four labels). Both the solutions, appr. 5.81
and 10.87, are acceptable. Similarly, we obtain two suitable solutions also
for K7 endowed with the labels 21, 0, 1, 19, 4, 14; they are appr. 5.19 and
15.50.

4 Some final remarks

When the order of the complete graph grows it is necessary to increase
the number of unknowns for the labels (see the related problem of Golomb
rulers, in [4]). In the next future it might be interesting to devise an
algorithm for real-graceful labellings of complete graphs that require the
smallest number of labels in R \ N. From this it might follow a certain
knowledge of the asymptotical behaviour of such labellings. Another ques-
tion is about the too large coefficients in the above equations for complete
graphs. It would be nice to find some shortcut that relieves from long
calculations. Finally, we are confident that the present generalisation can
be, sooner or later, connected to real-life problems similar to those which
accompanied the introduction of graceful labellings, many years ago.
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