A Ballot Number Formulary

H. W. Gould and Jocelyn Quaintance
West Virginia University
gould @math.wvu.edu, jquainta@math.wvu.edu

June 4, 2008

1 Imtroduction

In this paper we present a collection of interesting binomial identities and ex-
pansions for the ballot numbers B(n, k) with indications of proofs and sources
when known. Some of the formulas are old and some apparently new. The Ballot
numbers are quite often defined by the formula

n—k({n+k\ _
m ( k ) = —B(k,n) (1.1)

B(n,k) =
with 0 < k < n, and n > 1. Note B(0,0) is undefined in (1.1). However, we
will adopt, whenever necessary, a customary convention that B(0,0) = 1. These
numbers have been studied extensively. This is the principal definition which we
adopt. For the most part our formulas will be stated using the binomial coefficient
notation. Gould [10], [11] has studied identities and expansions involving Rothe
polynomials

Ax(a,b) = a_:_bé ( ‘”;cb’“ ) 1.2)
so that the Ballot numbers may also be expressed in terms of these as
B(n, k) = Ak(n — k,2) = Ar(n, 1) — An(k,1). (1.3)
The numbers are sometimes defined differently by the formula
e ("5)-(54) =R (1) e
See, e.g. Riordan [20, p.130], so that
Qn-1,x = B(n,k). (1.5)
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In this form they arose historically as the solution to the recurrence
Qnk = Gn-1,k + Qn,k-1,0nn = Gn-1,n, (1.6)

where n > k and with the boundary condition a; ¢ = 1, and making the conven-
tion that ag o = 1. The formula (1.4) as the solution of (1.6) was found by Joseph
Bertrand [4] and MacMahon [19].

The notation a,, + is used by Carlitz and Riordan [5]. The a, ;. were first called
lattice permutations by MacMahon [19, Sect.III, Chap. V]. The term “ballot num-
bers” arises when we consider an election where two candidates A and B are
running and the final vote is n votes for A and k votes for B, and all partial returns
correctly predict the winner. The lattice path interpretation is understood in the
following way. Let a vote for A be represented by a horizontal line and a vote for
B be represented by a vertical line. Then the lattice path that arises starts at (0, 0)
and ends at (n, k) with the stipulation that the path never crosses the diagonal
connecting these points. Note that when k = n, then

1 2n
Qpn = m ( n ) = C’(n) (1.7)

the so-called Catalan numbers. These enumerate the number of different products
of n + 1 elements in a given order in nonassociative multiplication. See Gould
[13] for a long bibliography and history of these numbers. They were first studied
by Catalan, Euler, Segner and Fuss. Kuchinski 18] has studied correspondences
between several dozen structures enumerated by the Catalan numbers. Of course
it is also well-known that the ordinary generating function for C(n) is

Z Cln)z" = ——— ”‘4’ (1.8)

n=0

2 List of identities

Identity 1: (Ordinary generating function for B(n, k)) Let n > 1, then
n—k ( n+k ) % 1-2z
> ik = = T @D
ent k k (1 -z)nt

and whenn = 0,

o0
z ("+k)z’°= ! 22)

k=0
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Proof of Identity 1: To prove Identity 1, we make use of the negative transforma-
tion of the binomial polynomial. For easy reference, we list this transformation

below.
-z \_, qynf T+n-1
(7)-er(2) e
Thus, we have

in—k ( n+k )zk___i(n—k)(n-i-k—l)!xk

—nt k k pard kin!
[s =] o0
=Z( TL+”:—1 )xk_Z( n+£—1 )x"
k=0 k=1
[~ ] —n o0 . .
=Z(—1)'°( k )m"—x""“Z( 1'71 )x’
k=0 j=n
- T _ 1-2z
=(1-2) T2 ~ A= o
Identity 2: (Catalan numbers as sums of Ballot numbers)
" n—k k
> () =owm Z

k=0
Proof of Identity 2: The proof of Identity 2 uses the following two binomial coef-
ficient identities. Each of these identities is easily proven by induction on n and
can be found in Gould [12] as (1.49) and (1.52) respectively.

=~ z+k z+n+1
>(7tf)=() e
~(k\_{n+1
>(5)=(5%1) @o

<.

In particular,

zn:%;_:(n:k)=f:(n+z+l )_i(n-l-:—l)

k=0
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Remark 2.1 We provide a simple combinatorial explanation that justifies the va-
lidity of Identity 2. Each summand in the left hand side of Equation (2.4) counts
the number of lattice paths from (n — k,0) to (n,n) which never cross the diag-
onal y = z. By summing over all 0 < k < n, we count the number of lattice
paths from (0,0) to (n,n) which never cross y = =, which is C(n). Thus, for a
fixed n, Identity 2 provides a partition of C(n), which is reminiscent of how, for
0 < k < n, S(n, k), the Stirling number of the second kind, partitions B(n), the
nth Bell Number.

Identity 3:

" k(n—k) ( n+k 2n
Ig ntk ( k ) (n+2) @n

Proof of Identity 3:
z":k(n—k) n+k z(n k)(n+k-1)!
n+k - 1in!

k=0
_E(n k)(n-i-k )

k=0
2n-1
J;(27; g—lg’)
2n—-1 n—1
=2nj§(:;) JZ;(]+1)( )
w3 (1)-0e0 £ (L)

j=n+l

=2n( n2:1 ) —(n+1)( n"’f2 ) by (2.6),

and, by simple manipulation of the factorials, it is easy to show that

2”( n?l)"(n“)( 2::21)=(n2-|7-l2) 0.
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Identity 4: (in Gould [12])

>

(n+k)2n_k=(2n) @.8)
k=0 " n

Proof of Identity 4: The proof of Identity 4 uses Pascal’s recurrence which, for
easy reference, we list below.

n n-—1 n-—1
(#)-(:z)+ () @
It also uses the following binomial coefficient identity which is easily proven by
induction on n and can be found in Gould [12] as (1.79).

Z( "',*c'k )2**:2" (2.10)

=0

In particular

=9 —2(2"-1)2" + ( 2n ) = ( 2: ) by(2.10). O

Zn_k(nzk)(n+1—k)2"-‘°=4" 211
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Proof of Identity 5:
Zn—:(n-}i—k)(n+1_k)2n-k
k=on+
Pn—k(n+k o pk s~ _(pHE-D1!
_”“)Z +k( k )2 ;(n—l)!(k—l)!z

+Zk(n+k Dl gnok

2 (k= 1)l

n+k-1)! _._
=+ () Z:(n( e

k(n+k—1)! ._
G e)

—(n+1)( )+(-n+1)z("+’° 1)2
+(n+1)z(”+k 1)2
()32

i n+k‘-—1 n—k
—2nZ( k—1 )2

=(n+1)( >+(n+1)z(n+3+1)2—j—1
SR (7 )ren(2)
=(n+1)< )+(n+1)i<n+g+1)2ﬂ-f-1

3=0

—4"n+n( n ) by (2.10)
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Now let m = n + 1 in the remaining sum. Then, the previous line becomes

2n n - m+.7 m—j—2
(2n+l)( o )—4n+mz< j )2

=0
_%(?)"%(21?:11)
=(2n+1)< 2: )—4%-%( 21;”)

_m ( 2m - 11 ) + ma™2 by (2.10)

2 m

n 2n n+l/( 2n42 n+lf 2n+1
—4 +(2n+1)( . )——4—( o )___2__( A )=4n.

The last equality comes by writing the binomial coefficients as factorials and sim-
plifying. O

Identity 6: (The m" difference operator applied to Ballot numbers)
m
_ym-k [ ™ n—k({n+k\_n—-2m/f n
Seor(7)im ()= (n) e
k=0
Remark 2.2 Ifm = n, Identity 6 simply becomes
= n\n—k [ n+k
> o(-ynk ( ) — ( ) =-1, (2.13)
= k Jn+k k
which is the nt? difference operator applied to the Ballot numbers.

Proof of Identity 6: To prove Identity 6, we use the following two well known
facts about binomial polynomials. The first is the negative transformation given
by (2.3) and the second is the Vandermonde Convolution, both of which are found
in [12]. The Vandermonde Convolution is listed below.

kz:;(:)(ngk)=(x:y) (2.14)
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In particular,

s (1) (7)) wew, e

k=0

+er (W7 ) (F)

k=0

() () e
=2(-1)™ ( mon ) +(=1)mH ( m-n+l ) by (2.14)

m

=2(”;1)-(;)="‘n2m<:;) by(23). O

Identity 7: (Generalized Larcombe Ballot number identity due to Gould [14])
m . .
3 (=1y z z+n—1+k—j\2+j_n—kn+k
j=°( D ( J ) ( k—j T n+k k @15

Identity 8: (Inverse generalized Larcombe Ballot number identity due to Gould
(14])

o (Z ) (7)o () e

k=0

I
0N
=

3

/N

3

3

3

S S

Remark 2.3 The proofs of Identities 7 and 8 can be found, in complete detail, in
Gould [14].
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Identity 9: (Chebyshev Inversion Formula) Given any two sequences {a,}32,
and {b,}32¢, note that

- ,
an=3 (" )ba-k (2.17)

k=0

if and only if

bo =S (- 1)’°n = ( "Z ) P (2.18)
k=0

Remark 2.4 This inverse pair and its proof is stated in Riordan [20, Pp.61-63].
Identity 10: (A Fibonacci number relation)

k
Z( l)kn+k ( " )Fn+1-k =1 (2.19)
with
1,
Fopr=), ( . ) (2.20)
k=0

where F,, is the n-th Fibonacci number.

Proof of Identity 10: Use the Chebyshev Inversion Formula with a, = Fy4; and
by =1.

Identity 11: (Binomial identity (3.54) in Gould [12])
= en—k( n+k z 1 [ z/2
g(—l) n+k( k )(n—k)-é“—'f";_( n ) @21)

Proof of Identity 11: Let D = . We look at the operator (D)" acting on a
differentiable function f(z). In particular, the first few iterations of this operator

give us
(L0) s = L2
(1 )f() f”(x) f(z)
z

x3
1 3 (3) 3flt 3 /
(20) =120 200, 2
1\ “@ @ 155" 155/
<;D) foy =1 24(95) fxs(z) . ie(x)_ 1;7(2)'
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Inspection of these four equations leads to the formation of the following sum,
which is easily proven by the induction technique of [22].

n n
(30) @) =3 ansaD*1(@), e22)
x
k=0
where agp = 1, an0 =0forn > 1, ap x = 0for k > n, and
Gnilktl = (—2n+k+ l)an,k.;.l + an k- (2.23)

Using (2.23), we are able to form a table of values for the a,, . Inspection of these
values leads to an alternative formula for a,, x, namely,

(=1)"*@n—-k—1)1 _ (=1)"*kn! (2n—k

An k= (k- 1)(n- k)IZn— (271 — k)k!2”'k n ) . (2.24)

Note that Equation (2.24) can be proven by induction on Recurrence (2.23).
Now, let f(z) = zP. Through repeated iterations, we can easily show that

n n—1
1 - - E+n-1
= P — gp—2n — = P2 (_Npl [ 2
(zD) 2P =2 kl-lo(p 2k) = zP~*"(-2)"n! ( n ) .
(2.25)

But from (2.22), we have
1 _ - p!
- P — 2n+k pk.p — P—2n ¥
( zD) T kE—oa n kT D =g kz_o Gn k T (2.26)

Thus, comparing (2.25) with (2.26), we have

Za,,,,,k!( Z ) = (=2)"n! ( 7 +n” -1 ) : (227)

k=0

which is a polynomial identity of degree n in p, and hence the identity is true for
all real or complex values of p. Now we let z = p and put (2.24) into the left sum
of (2.27). Thus, we obtain

(1) (7 ragon(F70). o

k=0

If we let k — n — k and use (2.3) on the right hand term of Equation (2.28), we
obtain Equation (2.21). O
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Definition: Ballot number polynomial studied by Aval, Bergeron and Bergeron
(2]

" n—k
Folt) = ,;,%ﬂ ( ":" )t" (229)

They arrive at F,(¢) as the Hilbert series of the space of super-covariant polyno-
mials.

Identity 12: (Generating function for the Ballot number polynomial (2.29))

— n_ 1-20—1T=%z
Y Falt)e” = —; GTe=D) (2.30)
Proof of Identity 12:
Zx ZB(n,k)t" Zx ZB(n k)t + Zz"B n,0) + B(0,0)
n=0 n=1
=Y t*>" B(n,k)z" +1——+B(0 0)
k=1 n=k

o0
k n+k d
t E B(n + k, k) +—1—z+B(0’0)

0
00
k n n+2k) n T
l(xt)gln“k( . )z +—1_z+B(0,0)

_§ 3" n+2k Y\ .
_,,z;lx §n+2k( k )(t )+ 7=+ B(0,0)
S~ gn 3" n+2k .
=2 tz)* 4 B(0,0

,; ,,Zﬂ,nmk( )( )¥ + B(0,0)
=D 2" Y _ Ax(n,2)(tz)" + B(0,0).

n=1 k=0

In [11], Gould showed that

oo
ZAk(a, b)z" = u%, where z = u;—; 1. 2.31)

Thus, by (2.31),

f: Ax(n, 2)(tz)* = u™, tz =

k=0
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This implies

w= 1-y1-dtz
B 2tz :
Hence,
o0 o0 - .
Zz“ZAk(n,2)(tm)k + B(0,0) = B(0,0) —1 +Z (_1—____ \/21t—4tx)
n=1 k=0 —
2t —1—+1—diz
Therefore,
n=0 k=0
o1Vt Es 1-oVT-dE
= 2z +t-1) =T ot+z-1

Identity 13: (A double series generating function of Stanley and Gessel [8])

o0
ln—kl ( n+k\ nx_ L Ty
k=§=o aE \ k)Y =R@ R -1y 232

Proof of Identity 13:

SSes ik () SRR ()

n=0 k=0 n=0k=n
0 0 k
k=n( n+k
Sene+Xey gt (1)
n=0 k=0 n=0

Fo(y) + Y 2" Fa(y) + Fo(2) + )_y*Fi(z)
n=1 k=1
1-2¢-/1T—4dzy + Fo(z) + 1-2y—/T—=4dzy

= Fo(y) + ey STy =1) by (2.30)
= Fo(y) + Fo(a) + = e Il)' Iy
= Fo(y) + Fo(z) = 1+ 7——— Iz h: o
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Identity 14: (Another double series generating function)

— n-—k(n+k) e l1—2z
> —F Yk = ——— (2.33)
k=0,n=0n+k k 1'—x_y
Proof of Identity 14:
[o =2~ ]
Sy r (TR )
n=0k=0 "
(o <] [o e <]
n—k{ n+k
=B(o,o)—Zx"+ZZn+k( % )"y“
k= n=1 k=0

-1 1-2z Y
_B(0’0)+1—x+ l-zl-z—y

y—2
— y — z *
Now if B(0,0) = 0, the previous line gives the double variable generating func-

tion provided by Gessel [9, P.185]. On the other hand, if B(0,0) = 1, the previous
line becomes

= B(0,0) +

y—z _ 1-2z
l-y—z 1l-y-—=z
Identity 15: (Convolution of Ballot numbers) For n > 1,

(]

1+

> B(a,k)B(b,n—k) = Ble+b+1,n)—2B(a+b+1,n—1) (234
k=0
Proof of Identity 15: Let a and b be fixed integers greater than or equal to 1. Using
Identity 1, we can form the following ordinary generating functions F(z,a) and
F(z,b) where

1-2z
F(z,a) gB(a ,n)z" = i x)a+1 2.35)
F(z,b) = ZB(b n)z" = (—% 2.36)
n=0

Thus, the Cauchy Convolution implies that

F(z,a)F(z,b) = ZZB(a, )B(b,n — k)z™. (2.37)

n=0 k=0
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However, we also note that

(1 -2z)?

=g = (1-2)2_Blatb+1mpa’ by (21)

n=0
(2.38)

F(z,a)F(z,b) =

[ ] [~}
= EB(a+b+1,n)x"—2zB(a+b+l,n—1)z".

n=0 n=0

(2.39)
Comparing the coefficients of (2.38) with (2.39) proves the identity. D
Identity 16: (Another Ballot number convolution) Let r > 1.
r
Y B(z+k,k)B(y+r—kr—Fk) =Blz+y+nr). (2.40)
k=0
Proof of Identity 16: In [11}, Gould showed that
r
3" Ak(z, 2)Ar-k(y, 2) = Ar(z + 9, 2), (2.41)

k=0

for all complex values of z,y, and z. If we let z = 2, Equation (2.41) becomes

Z Ag(z, 2)Ar-k(y’ 2) = Ar(z+y, 2). (2.42)
k=0

Recall from Equation (1.3) that B(n, k) = Aix(n — k,2). Thus, it is easy to
show that Ax(z,2) = B(z + k,k), Ar—k(¥,2) = B(y +7 — k,7 — k), and
Ar(z +v,2) = B(z + y + r,7). Substituting these three idendities into (2.42)
gives us the desired result. O

378



3 The Ballot Number Matrix and Its Inverse
10 0 0 0 O O O

1 1.0 0 O O O O

1 5 14 28 42 42 0 O
1 6 20 48 90 132 132 O

1 7 27 75 165 297 429 429

Table 1: Values of B(n, k). Rows correspond ton = 1,2, 3, ... and columns to
k=0,1,..n

We use Table 1 to define, for a given sequence {f(n)}32o, a new sequence

{9(n)}220, where

g(n) =Y _ B(n, k}f (k).
k=0
Remark 3.1 In (3.1), we assume B(0,0) = 1.
By inverting Equation (3.1), we have
f(n) =Y A(n, k)g(k),
k=0

where the A(n, k) is the inverse of the Ballot number B(n, k).
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-1 1 0 0 0 0 0 0
1 1
3 -1 5 0 0 0 0 0
=1 2 =1 1
T0 5 2 5 0 0 0 0
—1 =3 5 =1 1
140 70 28 5 14 0 0 Y
L =1 =1 L =1 L
420 105 84 16 14 a2 0 0
=3 =L =1 =1 1 =1 L 9
3080 1540 264 330 14 42 132
i _6 =17 -1 =3 2 =1 1
8008 12012 24024 858 4004 273 132 4

Table 2: Values of A(n, k). Rows correspond to n = 1,2, 3, ... and columns to
k=0,1,...,n

If we let g(n) = 1, then Equation (3.1) implies that f(0) = 1 and f(n) = 0,
whenever n > 1. Hence, Equation (3.2) becomes

n
0= ZA(n, k), whenever n2>2. 3.3)

In other words, from the second row onward, the row sum of the entries in Table
2 is zero.

Remark 3.2 In Equation (2.3), we have (3.1) for f(n) = 1. Thus, Equation (3.2)
implies

n
) A(n, k)C(k) =1. (3.4)
k=0
Remark 3.3 In Equation (2.6), we have f(n) = n. Thus, its inverse has the form

ZA(n k)( kt2 ) (3.5)

Remark 3.4 To find the inverse of Equation (2.7), we note that an equivalent form
of (2.7) is
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Thus, the inverse becomes

> A(n,k) ( 2: ) 27k =2" e (3.6)
k=0
3 Aln, k) ( 2: ) gn-k =1, G.7)
k=0

4 Variations on Ballot Numbers

The most common variation on a ballot number is the rotated form given (1.4).
Table 3 give the values of these rotated ballot numbers.

35 75 90 42
44 110 165 132

1

1 1

1 2

1 3 2

1 4 5

1 5 9 5

1 6 14 14

1 7 20 28 14
1 8 27 48 42
1 9

1 10

Table 3: Values of an_g41,6 = ( 7,: ) - ( k z 1 ) In this table, rows correspond to

n=1,2,3,..andcolumnstok =0,1,..., | 3].

Remark 4.1 Note that diagonals in Table 1 correspond to rows in Table 3 and
conversely.

Various authors, e.g.Carlitz [6],[7] have studied the Ballot numbers arranged as in
Table 3. Ordman [21] posed the identity

Hl()-( - w

k=0
The proof follows easily from identity (3.76) in Gould [11].
This sum of squares should be compared with Identity 2 where the sum of the
Ballot numbers gives the Catalan numbers in a different manner.
Another way to express (4.1) is the identity
L3]
)" B*(n—k,k) =C(n). @.2)
k=0
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Another variation involving Ballot numbers is the following alternating sum. The
numbers generated by the alternating sum

n
> _(=1)*B(n,k), 3)
=0
viz. 1, 1,0, 1, -2, 6, 18, 57, -186, 622, -2120, . . . are essentially, except for

signs, tabulated as Seq. No. A000957 in Neil Sloane’s Online Encyclopedia of
Integer Sequences, and are called Fine Numbers (after Nathan J. Fine). Certainly
one avenue for future research involves exploring the algebraic and combinatorial
structure of these Fine Numbers.
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