THE BINET-LIKE FORMULA OF A FAMILY OF THE CONDITIONAL SEQUENCES BY MATRIX METHODS

MURAT SAHIN

ABSTRACT. Let $a_0, a_1, ... a_{r-1}$ be positive integers and define a conditional sequence $\{q_n\}$, with initial conditions $q_0 = 0$ and $q_1 = 1$, and for all $n \ge 2$, $q_n = a_t q_{n-1} + q_{n-2}$ where $n \equiv t \pmod{r}$. For r = 2, the author studied it in [1]. For general $\{q_n\}$, we found a closed form of the generating function for $\{q_n\}$ in terms of the continuant in [2]. In this paper, we give the matrix representation and a Binet-like formula for the conditional sequence $\{q_n\}$ by using the matrix methods.

1. Introduction

Recently, the authors introduced further generalization of the Fibonacci sequence, namely the generalized Fibonacci sequence, defined by

$$F_0^{(a,b)} = 0, F_0^{(a,b)} = 1, F_n^{(a,b)} = \begin{cases} aF_{n-1}^{(a,b)} + F_{n-2}^{(a,b)} &, & \text{if } n \text{ is even} \\ bF_{n-1}^{(a,b)} + F_{n-2}^{(a,b)} &, & \text{if } n \text{ is odd} \end{cases}$$

for any two non-zero real numbers a and b (see [1]). They find the generating function and Binet like formula for the generalized Fibonacci sequence. This new generalization produces a distinct sequence for each new choice of a and b. In fact, one can get many famous sequence, such as Fibonacci sequence, Pell numbers, k-Fibonacci numbers,...etc., by altering the values of a and b in the sequence. Also, the following open problem was given in [1].

Remark 1.1 (An Open Problem). Let $a_0, a_1, ..., a_{r-1}$ be positive integers and define a sequence $\{q_n\}$ as follows. Set

$$q_0 = 0$$
 and $q_1 = 1$,

and for all $n \ge 2$,

$$q_n = a_t q_{n-1} + q_{n-2}$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 05A15, 11B39.

Key words and phrases. Binet-like formula, Matrix methods, Generating function, Fibonacci sequences, Continuant.

where $n \equiv t \pmod{r}$. Note that when r = 2, we get the sequence $\left\{F_n^{(a,b)}\right\}$. The open problem is finding a closed form of the generating function and a Binet-like formula for $\{q_n\}$.

The author found a closed form of the generating function for $\{q_n\}$ in terms of the continuant in [2]. In this paper, we give the matrix representation of the conditional sequence $\{q_n\}$ and then we solve the second part of this open problem, that is, we give a Binet-like formula for conditional sequence $\{q_n\}$ by using the matrix methods.

2. BINET-LIKE FORMULA FOR THE SEQUENCE $\{q_n\}$

In algebra, the continuant is a multivariate polynomial representing the determinant of a tridiagonal matrix and having applications in the theory of generalized continued fractions.

Let \varnothing denotes empty set. For positive numbers $a_0, a_1, ..., a_n$, define the continuant $K(a_0, a_1, ... a_n)$ recursively by

$$K(\emptyset) = 1, K(a_0) = a_0$$
 (2.1)

and for $n \ge 2$,

$$K(a_0, a_1, ..., a_n) = a_n K(a_0, a_1, ..., a_{n-1}) + K(a_0, a_1, ..., a_{n-2}).$$
 (2.2) (See [3] for detailed information).

Let define $K_1 = K(a_0, a_{r-1}, ..., a_2, a_1)$ and $K_2 = K(a_2, a_3, ..., a_{r-1})$ for given positive integer r. In [2], the author linked the sequence $\{q_n\}$ with the continuant as follows.

Theorem 2.1. If $n, r \ge 2$ be positive integers then

$$q_{nr+i} = (K_1 + K_2) q_{nr+i-r} + (-1)^{r+1} q_{nr+i-2r}$$
, for $i = 0, 1, ..., r-1$.

Proof. See [2] for proof.

Theorem 2.2. If $r \ge 2$ be positive integers then $\{q_n\}$ satisfies the 2r-order recurrence

$$q_n = (K_1 + K_2)q_{n-r} + (-1)^{r+1}q_{n-2r}$$

with initial conditions $q_0, q_1, q_2, ..., q_{2r-1}$.

Proof. Taking the values for n = 2, 3, 4, ... in Theorem 2.1, we see that each of the following elements of the sequence $\{q_n\}$

$$q_{2r}, q_{2r+1}, q_{2r+2}, ..., q_{3r}, q_{3r+1}, ..., q_{4r+1}, q_{4r+2}, ...$$

are satisfy the given 2r order recurrence

$$q_n = (K_1 + K_2)q_{n-r} + (-1)^{r+1}q_{n-2r}.$$

So, with initial conditions $q_0, q_1, q_2, ..., q_{2r-1}$ we get the desired result. By Theorem 2.2, we can see the conditional sequence $\{q_n\}$ as a constant coefficient 2r order recurrence for any positive integer r. So, we can use matrix methods to obtain the Binet-like formula for the conditional sequence $\{q_n\}$ by aid of the Theorem 2.2 for given any positive integer r.

Define $2r \times 2r$ matrix

$$A = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & \dots & 0 & 1 \\ (-1)^{r+1} & 0 & 0 & \dots & (K_1 + K_2) & \dots & 0 & 0 \end{bmatrix}$$

where $(K_1 + K_2)$ is the entry in (2r) th row and (r+1) th column. In fact, A is the companion matrix for the polynomial

$$p(x) = x^{2r} - (K_1 + K_2) x^r - (-1)^{r+1}.$$

p(x) is both characteristic and minimal polynomial for A. By using an inductive argument, we can give the matrix representation of the conditional sequence $\{q_n\}$ as

$$A^{n} \begin{bmatrix} q_{0} \\ q_{1} \\ \vdots \\ q_{2r-1} \end{bmatrix} = \begin{bmatrix} q_{n} \\ q_{n+1} \\ \vdots \\ q_{n+2r-1} \end{bmatrix}. \tag{2.3}$$

This matrix representation is important since it may be used to derive many interesting properties of the conditional sequence $\{q_n\}$.

Theorem 2.3. The polynomial p(x) has no multiple root.

Proof. A polynomial has a multiple root if and only if its discriminant zero. The discriminant of the polynomial p(x) is

$$D(p) = (-1)^{\frac{r(r-1)}{2}} R(p, p'),$$

where R(p, p') is the resultant of the polynomial p and the derivative of p. The resultant can be given by the determinant of the Sylvester matrix of the polynomials p and the derivative of it. By calculating this determinant we can find the discriminant as follows

$$D(p) = r^{2r} (-1)^{r+1} \left((K_1 + K_2)^2 + (-1)^r 4 \right)^r.$$

So, the discriminant is zero if and only if

$$(K_1 + K_2)^2 = -4$$
 , if r is even $(K_1 + K_2)^2 = 4$, if r is odd

for positive integer $r \ge 2$. But, this is impossible because of the definition of the continuant. Therefore, the polynomial p(x) has no multiple root. \Box

Let $\lambda_1, \lambda_2, ..., \lambda_{2r}$ be eigenvalues of the matrix A. These eigenvalues are all distinct by Theorem 2.3, so A can be diagonalized by using the Vandermode matrix

$$V(\lambda_1, \lambda_2, ..., \lambda_{2r}) = \begin{bmatrix} 1 & 1 & \dots & 1 & 1 \\ \lambda_1 & \lambda_2 & \dots & \lambda_{2r-1} & \lambda_{2r} \\ \lambda_1^2 & \lambda_2^2 & \dots & \lambda_{2r-1}^2 & \lambda_{2r}^2 \\ \vdots & \vdots & & \vdots & \vdots \\ \lambda_1^{2r-1} & \lambda_2^{2r-1} & \dots & \lambda_{2r-1}^{2r-1} & \lambda_{2r}^{2r-1} \end{bmatrix}.$$

So, we can give the following theorem by using the matrix methods in [4].

Theorem 2.4. The Binet-like formula for the conditional sequence $\{q_n\}$ is

$$q_n = \sum_{i=1}^{2r} \frac{\lambda_i^n}{p'(\lambda_i)}.$$

Proof. By (2.3), we can write a formula for q_n as follow

$$q_{n} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \end{bmatrix} A^{n} \begin{bmatrix} q_{0} \\ q_{1} \\ q_{2} \\ \vdots \\ q_{2r-1} \end{bmatrix}.$$
 (2.4)

By using the Vandermode matrix V, we can diagonalize A as

$$A = VDV^{-1}$$

where D is a diagonal matrix. We substitute for A in (2.4), we can get

$$q_n = \sum_{i=1}^{2r} \lambda_i^n y_i \tag{2.5}$$

where y_i 's satisfy

$$V\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{2r} \end{bmatrix} = \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ \vdots \\ q_{2r-1} \end{bmatrix}.$$

We can determine y_i 's by using Cramer's rule. Then substituting y_i 's in (2.5) and simplifying the obtained expression, we can get the desired result

$$q_n = \sum_{i=1}^{2r} \frac{\lambda_i^n}{p'(\lambda_i)}.$$

Example 2.1. Let's find the Binet-like formula for the conditional sequence $\{q_n\}$ for given integer r=3. Since r=3, we have

$$K_1 = K(a_0, a_2, a_1)$$

$$= a_1 K(a_0, a_2) + K(a_0)$$

$$= a_1 (a_0 + a_2 + 1) + a_0$$

$$= a_0 a_1 a_2 + a_0 + a_1$$

and

$$K_2 = K(a_2)$$
$$= a_2$$

by the definition of the continuant. So,

$$K_1 + K_2 = a_0 a_1 a_2 + a_0 + a_1 + a_2.$$

By Theorem 2.2 , the conditional sequence $\{q_n\}$ satisfy 6 order recurrence

$$q_n = (a_0a_1a_2 + a_0 + a_1 + a_2)q_{n-3} + q_{n-6}$$

with initial conditions q_0, q_1, q_2, q_3, q_4 and q_5 . So,

$$p(x) = x^6 - (a_0a_1a_2 + a_0 + a_1 + a_2)x^3 - 1.$$

Let λ_1 , λ_2 , λ_3 , λ_4 , λ_5 and λ_6 are roots of the polynomial p(x). These roots are distinct by Theorem 2.3. So, the Binet-like formula for the conditional sequence $\{q_n\}$ for given integer r=3 is

$$q_n = \sum_{i=1}^{6} \frac{\lambda_i^n}{p'(\lambda_i)}$$

by Theorem 2.4.

For given any r, we can similarly construct the Binet-like formula the conditional sequence $\{q_n\}$.

REFERENCES

- M. Edson and O. Yayenie, A new Generalization of Fibonacci Sequence and Extended Binet's Formula, INTEGERS Electronic Journal of Combinatorial Number Theory 9 (2009), 639-654.
- [2] M. Sahin, The Generating Function of a Family of the Sequences in terms of the Continuant, Appl. Math. Comput. (2010), doi: 10.1016/j.amc.2010.12.011
- [3] D. E. Knuth, Seminumerical Algorithms, Vol II of The Art of Computer Programming, Addison-Wesley 1981.
- [4] D. Kalman, Generalized Fibonacci Numbers by Matrix Methods, Fibonacci Quart. 20 1 (1982), pp. 73 76.

ANKARA UNIVERSITY, FACULTY OF SCIENCE, DEPARTMENT OF MATHEMATICS, TANDOGAN TR-06100, ANKARA, TURKEY.

E-mail address: muratsahin1907@gmail.com