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Abstract

This paper is an extension of the work [On the norms of circu-
lant matrices with the Fibonacci and Lucas numbers, Appl. Math.
and Comp., 160 (2005), 125-132.], in which for some norms of the
circulant matrices with classical Fibonacci and Lucas numbers it is
obtained the lower and upper bounds. In this new paper, we gener-
alize the results of that work.
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1 Introduction

The use of integer sequences, and in particular of Fibonacci sequence and
its variations, is rather common in physics [1-11]. The reason may be found
in the need, and even in the necessity, to express a physical phenomenon in
terms of an effective and comprehensive analytical form for the whole scien-
tific community. Fibonacci numbers also have been studied from different
points of view in modern science [1-11, 20-29].

A Fibonacci sequence is a sequence of natural numbers determined by
taking each number equal to the sum of the last two. For this reason, this
type of sequences are called “secondary Fibonacci sequences”, to distinguish
them from the ternary Fibonacci sequences, in which each term is a linear
combination of the last three.
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Beginning with Fy = 0; F; = 1, we have
1,1,2,3,5,8,13, 21, 34, 55, 89, 144, ...
where
Fot2 = Fpy1 + Fr. (1)

The Fibonacci sequence that obeys condition (1) may be generalized, giving
birth to “generalized secondary Fibonacci sequences” (GSFS),

a,b,pb+ ga,p(pb + ga) +gb, ...
which satisfy relations of the type
Gat1 =pGn +9Gny (2)

with p and ¢ natural numbers [25]. Spinadel [26], Gazale [27], Kappraff [29]
and later Stakhov [28], Falcén and Plaza [20, 23] independently introduced
the Generalized Fibonacci and Lucas Numbers of the Order m or simply Fi-
bonacci and Lucas m-numbers. They are given by the following recurrence
relations:

Fp(n) =mFp(n—1)+ Fp(n —2); Fp(0) = 0; Fa(1) = 1,
Lin(n) = mLp(n — 1) + Lm(n = 2); L (0) = 2, Lm (1) = m,

where m > 0 is a positive real number and n» = 0,+1,+2,....
The generalization given by Falcén and Plaza [20] is defined by the
following equation for any given integer number k > 1

Feny1 =kFppn + Finy forn>1
with initial conditions
Freo=0; Fr1=1,

and called k-Fibonacci numbers. These numbers are partial case of Spinade]’s
numbers defined in (2) for the case p = k and ¢ = 1. Also, k-Fibonacci
numbers that generalize, between others, both the classic Fibonacci num-
bers and the Pell numbers. It is obvious that when k& = 1, then nth k-
Fibonacci number is the nth classic Fibonacci number. In [20], Falcén
and Plaza showed the relation between the 4-triangle longest-edge (4TLE)
partition and the k-Fibonacci numbers, as another example of the relation
between geometry and numbers, and many properties of these numbers are
deduced directly from elementary matrix algebra. In [21], many proper-
ties of these numbers are deduced and related with the so-called Pascal



2-triangle. In [22], the 3-dimensional k-Fibonacci spirals are studied from a
geometric point of view. These curves appear naturally from studying the
k-th Fibonacci numbers {F} ,}.>, and the related hyperbolic k-Fibonacci
functions.

Besides, Fibonacci k-numbers named Fibonacci m-numbers were stud-
ied in [28]. The another generalization for Fibonacci numbers is the gen-
eralized Fibonacci p-numbers introduced by Stakhov in 1977. Stakhov [30]
defined the generalized Fibonacci p-numbers that are given for any integer
number p > 0 by the following recurrence relation:

with the initial values
Fp(0) =0, Fp(1) =1, Fp(2) = 1,..., Fp(p) = 1,

where n = 0,£1,+2,.... The generalized Fibonacci p-numbers can be rep-
resented in the following form:

Fy(n) 10 0 01 Fo(n-1)
Fp(n—-1) 10 000 Fp(n—2)
Fy(n-2) 01 000 Fp(n - 3)

Fp(n-p+1) 00 - 100 Fp(n —p)
F,(n-p) 00 - 010 F(n-p-1)
Ez Q:T; fnv—-l

where f;, and fn—; are (p+ 1) x 1 vectors and Q7 is the transpose of the
Fibonacci @Qp matrix:

1100 0 0)
0010 00
0001 00
Q=1 : t Do
0000 10
0000 01
\1 00 0 oo)

Qp is a (p+ 1) x (p+ 1) matrix which contains a p x p identity matrix in
its upper right corner. Regardless of the value of p, the first column always
begins and ends with 1, and has zeros elsewhere. The last row always begins
with 1 and has zeros in all other positions [31]. In general the nt* power of
the Qp matrix takes the following form [31]:
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Theorem 1 For any integer p > 1 and n € Z, the n'* power of the Fi-
bonacci Qp matriz is given by:

Fy(n+1) Fy(n) o Fp(n—p+2) Fy(n—-p+1)
Fo(n—p+1) Fp(n—p) -+ Fp(n—-2p+2) Fp(n—2p+ 1)
Q= : : : : :
Fp(n—-1) Fp(n-2) ... Fp(n - p) Fy(n-p-1)
Fy(n) Fp(n=1) --- Fp(n-p+1) Fp(n —p)

where Fy(n) is the n'* generalized Fibonacci p-number.

The application of the Fibonacci p-numbers in Fibonacci Coding Theory
uses the Q7 matrix to a great extent.

Remark 2 Qp is a (p + 1) x (p + 1) matriz where the first row is made
from a decreasing Fibonacci p-sequence of length p + 1, starting with the
term Fp(n + 1):

oy Fp(n+1),Fp(n),...,Fo(n—p+2),Fp(n—p+1),....

The second row consists of the sequence above shifted forwards by p
terms. All subsequent rows are found by shifting the sequence in the pre-
vious row backwards by a term. In other words, we conclude that the
Qp-matrices are circulant matrices.

In 2009, all these results are described in the book The Mathematics
of Harmony: From Buclid to Contemporary Mathematics and Computer
Science [32].

For any given ag,ay,...,an-1 € C, the circulant matrix B = (Bij)nxn is
deﬁned by bij = Gj—i(modn)» i.e.,

ag ai a ... Qp-1

An—1 Qg a ... Qp-2

B=| @-2 Gp-1 Qo ... QGn-3
a1 aj az ... Qg

A circulant matrix is a special kind of Toeplitz matrix where each row
vector is rotated one element to the right relative to the preceding row
vector. Several problems of physics and electromagnetics involve circulant
matrices (CM) and block-circulant matrices (BCM). For example, such ma-
trices appear when the method of moments is used to study the electro-
magnetic behavior of structures having circular periodicity around an axis
(e-g., circular arrays of equally spaced dipoles or cylindrical arrays of equally



spaced parallel wires). In such problems, the exploitation of the properties
of CM and BCM may lead to a considerable reduction of the computa-
tional complexity [29, 30]. CM and BCM have been studied extensively
and closed-form expressions for their inversion are well known [31, 32]. In
[15], the formulas of inversion have been derived in the CM case by writing
a matrix as a combination of permutation matrices, which are expressed
in terms of their eigenvalues and eigenvectors. In [14], this procedure has
been extended to the BCM case.

In this note, we first present a generalization of Spmadel’s numbers
defined in (2), which we call the generalized (s, t)-Fibonacci numbers, and
then establish bounds for norms of circulant matrices composed of these
numbers. Thus, in this note, we give the generalizations of results presented.

in Solak [24].

2 Backgrounds for matrix norms

There are many norms that could be defined for vectors. One type of norm
is called an /, norm, often denoted as ||.||,. For p > 1, it is defined as

1/p
l=ll, = (Z |2 P ) -

i
This is also sometimes called the Minkowski norm and also the Hélder

norm.
It is well known that some matrix norms are defined in terms of vector

norms. For clarity, we will denote a vector norm as ||.||, and a matrix norm
as ||.|[ ;- (This notation is meant to be generic; that is, ||. ||, represents any
vector norm.) The matrix norm ||.||,, induced by ||.||, is defined for the
n X m matrix A and m x 1 vector z by

| s,
4l = mexe 3)

Also, it can be said that an induced norm is indeed a matrix norm. For any
vector norm and its induced matrix norm, we see from equation (3) that

Azl < Al [l

because ||z|| > 0. The matrix norms that correspond to the I, vector norms
are defined for the n x m matrix A as

llAll, = |mex, Az, .
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It is clear that the !/, matrix norms satisfy the consistency property, because
they are induced norms. The /; and [, norms have interesting simplifica-
tions of equation (3):

4l = max 3 a1, @
i
so the !; is also called the column-sum norm; and

Al = m?xz las;] s (5)
7

s0 the I, is also called the row-sum norm. The Frobenius and the spectral
norms are defined as

lAle = /Z lass | (6)
15
Al = , /lgagnx‘- (4°4),

respectively. Here A* is conjugate transpose of matrix A. It is easy to see
that this measure has the consistency property, as a norm must. The Frobe-
nius norm is sometimes called the Euclidean matrix norm and denoted by
Il g, although the /3 matrix norm is more directly based on the Euclidean
vector norm, as we mentioned above.

I ||.|l, and ||.||, are matrix norms, then there are positive numbers r
and s such that, for any matrix A,

and

rl|lAll, < 1Al < sllAll, (")

(for more details see [16]). If A is an n x m real matrix we have some
specific instances of (7):

lAllee < vVmllAllg (8)
Al £ +/min (n,m) ||All,, (9)
I4ll, < vm liAll; , (10)
4l < vrllAly, (11)
Al < llAllg> (12)
lAllr < VRllAll - (13)



Let A = [a;;] and B = [b;;] be m x n matrices. The Hadamard product
of A and B is defined by Ao B = [a;;bij],,,,, (for more details see [17]).
Therefore if ||.|| is any norm on m x n matrices, then [18]

4o Bl < |AlllBIl, (19)
and if A= BoC, then [19]
I4ll; < r1(B)ex (C), (15)

where r; (B) = max,_ [ |bij|2 and ¢; (C) =max, /3 |c.-,-|2.
) P 7 i

3 Results and Proofs

Now we introduce a generalization of the Fibonacci k-numbers. It should
be noted that the recurrence formula of these numbers depends on four real
parameters.

Definition 3 For any nonzero real numbers s, t, the nth (s,t)-Fibonacci
{Fstm}aen Sequence is defined recurrently by

Fotny1 =8Fspn+tFy4n1 forn2>1, (16)
with

Feto=a, Fop1 =0,
where a and b are any real numbers.

The following table summarizes special cases of Fj; »:

(a,0) (s,2) Fytn

(0,1) (s,1)  the Fibonacci k-numbers [20]

(0,1) (1,1)  the classical Fibonacci numbers

(0,1) (2,1) the classical Pell numbers

(0,1) (1,2) the classical Jacobsthal numbers

(0,1) (3,-2) the classical Mersenne numbers

(2,1) (1,1) the classical Lucas numbers

2,2) (2,1) the classical Pell-Lucas numbers

(2,1) (1,2 the classical Jacobsthal-Lucas numbers
(2,3) (3,—-2) the classical Fermat numbers
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Lemma 4 Fors+t—1%#0,

n
Z 1
Fa»tvj =7 1 (tFa,t,n + F’)tnn‘*'l + se—a-— b) M (17)
= s+t—1

Proof. Let W = Fy 0+ Fst,1+ Fop2+ Fop3+ ...+ Fs¢n. Then,

SW = 8Fe40+8Fst1+8Fss20+8Fst3+..+8F,tn_1+38Fn
+W = + th,t.O + th,t,l + tFe,t,2 + ...+ th,t.n—l + th,t,n

yields (by using the generalized (s,t)-Fibonacci recursion on the above
columns)

sSWH+tW = sF 0+ (Fota+ Fera+ ...+ Fspn) + Fstnt1 +tFstn
= 8Fy40+ (W —Fou0—Fo11) +tFstn+ Fotnt1
W+ tFa,t,n + Fs,t_,n+1 +sa—~a—0b as Fs,t,o =a and Fa.t,l
From where,
1
W= ___3 Ti-1 (tFa,t,‘n + Fs,t,n+1 +sa—-a- b) .

Thus the result is obtained. m

Binet's formulas are well known in the Fibonacci numbers theory [[1], [8]].

Binet's formula allows us to express the nth generalized (s,t)-Fibonacci
number as functions of the roots & and B of the characteristic equation
z? = sz + t associated with recurrence relation (16).

Proposition 5 (Binet’s formula) If a and B are distinct, the nth gen-
eralized (8,t)-Fibonacci number is given by
b—fa o — b—aa
-8 a—§8
Proof. We now are assuming that o and J are distinct and |a| > [8]. Thus,
a® and 8" are independent solutions to the difference equation (16). And
since we already know that the null space is two dimensional, that makes
{a™,B"} a basis. In this case, F, ., is characterized as the set of linear
combinations of these two geometric progressions. Thus, we can express
F4.n in the form

B". (18)

Fs,t,n =

Fs,t,n =ca” + c2ﬂns
where the constants ¢; and c; are determined by the initial conditions

c +c2
b = ca+cf.

b.



Since we are assuming that a and § are distinct, so this system has the
solution

b—Ba
cl - a_ﬂ?
o = _b—aa
2 - a—ﬁ,

which completes the proof. m
Ifa=0,b=1andt =1, for the Fibonacci k-sequence, we have: o =

L‘b@ and 8 = -’53@. Therefore the general term of the Fibonacci
k-sequence is given by :

(o) ()
" ViZ+4

As immediate consequence of Binet’s formula given in Eq. (18), for the gen-
eralized (s, t)-Fibonacci sequence, a new idendity which is a generalization
of Catalan’s identity, is derived below:

Fy [20]. (19)

Lemma 6 If a and B are distinct, for the nth generalized (s, t)-Fibonacci
number

Fstn—rFstntr— F.:‘:z‘n = (_t)n+l—r x'yF,f,,., (20)
wherez=b— PBa andy = b - oa.

Proof. Let £ = b — Ba and y = b — aa. By using Eq. (18) in the left
hand side (LHS) of Eq. (20), and taking into account that af = —t it is
obtained

za™ " — yf" " zatT — yfmT (-’va" - yﬁ")2
a—-3 a-4 a~-f

_ z2a2" — xyan—rﬁn+" - xyan+rﬂn—r +

(a-B)°

Lyz ﬁ2n — z202" 4+ 2zya™ 8" — yz ﬂZn
N (@—B)°

- kgl (&) e (5) vamen]
zy (op)"" o g _ J

(@a-8)>° L (aB)

= (=t)"*'""ayF?, by Eq. (19).

(LHS)




Thus, Eq. (20) is proven. m
Note that for r = 1, Eq. (20) gives a generalization of Cassini’s identity
[12] for the generalized (s, t)-Fibonacci sequence

Fa,t,n—lFs,t,n+l - F.?,t,n = (_t)n xy. (21)
Lemma 7 Foralin>1,
(1" -2) (1) =1 (22)
i=1

Proof. Using mathematical induction method, it can be easily proven this
Lemma. =

Lemma 8 Let (s+t—1)(s—t+1) #0. If a and B are distinct, then

n
1
ZFGZJJ = (3 +t- 1) (8 —t+ 1) [F-‘it,n - tzFaz.t,n—l+ (23)
—o

+2 (b—a) — a? + 7z (14 (-1)")]

wherex=b—Pa and y=">b — aa.

Proof. Let T = i F2, ;. Then, we have that
i=0

n
T = ) Fouj
i=0

=0 g

1 n n n
- Z F2, i+t Z Fliim1—2t Z Fotj+1Fst5-1
Jj=0 j=0 j=0
1
= —35 [T—Fsz’t‘o +F82,t,ﬂ+l +t2F32't'_1+
n
T — 282, — 2> (<) 2y + F,5)] by (21)
Jj=0
1
= 3 [T (£ -2t+1) —a® + Flynpat

+t2 (b - a)2 - tzF,z’,,n - 2tj+1xy2 (—l)j] ,
=0



and hence, by (22), it follows that
T = si2 [T (1) -+ Flpppy + 8 (b—0)* - (24)
~2F2, 0 + oy (14 (<))
Therefore, from Eq. (24) we obtain
T(s+t—1)(s—t+1) = F2, .., —t2F% +t*(b-a)’-
—a? + ¢/ 1zy (1 + (—1)""'1) ,
which completes the proof. m

Theorem 9 Let s+t — 1 # 0 and let the n x n matriz A be as A = [aj;]
such that a;; = 8,t,mod(j—i,n)* Then,

n
lAll; = 14l = Trio1 (tFstn-1 + Fstn +8a—a—b),
nl/2
;It__—l (tFa,t,n.—l + Fa,t,n +sa—a— b) S "A“2 »
n3/2
"A"2 < s+t—1 (tFa,t,n—-l + Fs,t,n +sa—a-— b) ,
nl/2
Py (tFs -1+ Fapn +5a—a—b) < ||4|lg,
n3/2
"A"F < s+i—1 (th,t,n—l + Fa,t,n +sa—a— b) .
Proof. The matrix A is of the form
Fs,t,o Fs,t.l ot Fs.t,n—l
Fs,t,n—l Fs,t,o et Fa,t,n—2
A= . . . . (25)
Fopn  Fepz -+ Fapp
Since s+t — 1 # 0, from Eq. (4), (5) and (17) we have
n~-1
IAll, = lAlle=n)_ Fouj
=
n
m—:—l‘ (tFstn—1+ Fstn+sa—a-— b). (26)



From (10), (11) and (26) we get

nl/2
S+i-1 (tFst,n—1+ Fst,n + 3a —a — b) < ||All,,
n3/2
lAll, < sri—1 (tFstin—1+ Fstn+sa—a—b).
From (8), (13) and (26) we obtain
nl/2
sre=1 Faen-1+ Frn a0 —a—b) <[4,
n3/2
lAllF < Py (tFstn—1+ Fstn+3a—a—1b)

Corollary 10 Let s+t —1% 0 and let the n x n matriz A be as A = [a;]
such that a;; = Fy 4 mod(i+j,n)- Then,

n
Al = lAll, = st i1 (tFst;n + Fogne1 +5a —a—b),
nl/2
3771 Pt + Faenir +sa—a—b) <[4,
nd/2
IAll, < Sti—1 (tFotn + Fogni1 +35a—a—1b),
nl/2
8"_+ t—1 (th,t,n + Fa,t,n-{»-l +sa—a-— b) S "A"F ,
n3/2
lAllp < P (tFston + Fotni1+sa—a—b).

Theorem 11 Let (s+t—1)(s—t+1) # 0, a and 8 be distinct and the
matrizc A be matriz given in (25). Then,

2
Tt [Foon = PP +2 (b= ) -

Al = —a? +titlgy (1 + (—1)"'”)] ’
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2
T [Fan — CFan + 8 0= = IA]
—a? 4 titlzy (1 + (—1)n+1)] B

1
14l = (s+t—1)(s—t+1) [F:"“ —®F%,  +t2(b-a)’ -
_az +tj+1$y (l + (_1)n+1)] ,
[Alle <7 GIEDED [Fez.e.n —2F2, ., +t2(b—a)’ -
o0 —

—a? + 71y (14 (-]

2 2 2 2 2
m [Fs,t,n -t Fs.tm—l +t (b —a)’ - < ||A||
—a? + t*1zy (1 + (—1)"“)] = 17 eo

Proof. By the definitions of Frobenius norm and the matrix A, we have
that

n—1
2
IAlE=n)_ Foee

=0

From Eq. (23), we obtain

2
e [Foan = OFhna #E G- =

Al = —a? + titigy (1 + (—1)""'1)]

where z =b—-fBaand y=b— aa. Since 7‘; Al ¢ < llAll;, from (27) one
has

GFEDGED [Ff.z,n — 2y + 1 (b—0) - <Al
_a2 + tj+1x,y (1 + (_1)"+1)] - 2

From (8), (13) and (27) we get

2 -

e [Foen = PP + 12 (0= a)’ =
—a? + titiay (1 + (—1)""'1)]

b

Alle <n
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and

mﬁm [F.?.t,n —CF2 12 (b a)’ - < |4y
—a? +tit1gy (1 + (—l)""'l)] -

oo ?

respectively. On the other hand, let matrices B and C be as

?

By i3
B=(B.-,-)={ tmotty=im 129

and

F, —4n), :<J
C=(Cij)={ ””mf,‘j in) izj’ .

It is seen easily that A = B o C. Therefore,

r(B) = max, /z |bi;1>
J

n-1
2
= Fot
=0

Ty [Fren = B F a1 + 8 (0= )’ = (28)
—a? 4ty (1+ (-1)")]

and

a(C) = max, [ |c;l?

J S
13
n—1
= Y Fl
rd
T |Fltn — PP + 2 (b —a) - 20)
—a? +titlgy (1 + (—1)"'”)]

Thus, from (15), (28) and (29) we get
1
<
I4ll, - < (s+t—1)(s—t+1)

[FE,,,,, —?F2, +(b- a)? -

—a? +t7+1gy (1 + (—1)““)] ,

which completes the proof. m
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Corollary 12 Let (s+t—1)(s—t+1) #0, a and B be distinct, and the
n X n matriz A be as A = [a;;] such that ai; = Fy 4 moa(i4jn)- Then,

2 2
Za+t-—1jnla—t+1i F2yn—tF2 o+t (b—a)" —

IAllp = @+ ity (1 + (_1)n+1)]

’

2
GI=DGD [Faz,t.n — P 1+ (b—a)’ - < (1Al
< 2

—a? 4+ titlzy (1 + (—1)""’1)]

1

2 22 2(h_ 2\2 _
"AIIZ S (s+t—-1)(s—t+1) [Fs,t,n th,t,n—l+t (b a‘)

—a? + ¢ty (1 + (—1)”+1)] ,

2
<n Zs+t-1)113——t+15 [F az.t.n - t°F, :;',,t,n—l +12 (b—a) -

lAll oo a? + tHigy (1 + (_1)n+1)]

and

1 2 2 2
i&"'t-lii&-t'{"li [Faz»t‘n - t Fsvtln-l + t2 (b - a) - < "A"
—a? 4ty (14 ()™ T

4 Conclusion

In this study, we have defined the generalized (s,t)-Fibonacci sequence,
and then presented Binet’s formulas for this sequence. Using Binet’s for-
mula, for these numbers Catalan and Cassini’s identities have been given.
Computing the sum of the first terms of the generalized (s,t)-Fibonacci
sequence, we have established bounds for some norms of circulant matrices
composed of these sequences.
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